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Abstract: Quantile regression offers a convenient tool to access the relationship

between a response and covariates in a comprehensive way and it is appealing es-

pecially in applications where interests are on the tails of the response distribution.

However, due to data sparsity, the finite sample estimation at tail quantiles often

suffers from high variability. To improve the tail estimation efficiency, we consider

modeling multiple quantiles jointly for cases where the quantile slope coefficients

tend to be constant at the tails. We propose two estimators, the weighted com-

posite estimator that minimizes the weighted combined quantile objective function

across quantiles, and the weighted quantile average estimator that is the weighted

average of quantile-specific slope estimators. By using extreme value theory, we es-

tablish the asymptotic distributions of the two estimators at the tails, and propose

a procedure for estimating optimal weights. We show that the optimally weighted

estimators improve the efficiency over equally weighted estimators, and the effi-

ciency gain depends on the heaviness of the tail distribution. The performance of

the proposed estimators is assessed through a simulation study and the analysis of

precipitation downscaling data.

Key words and phrases: Efficiency, extreme value index, information aggregation,

joint-quantile regression, optimal weights, regularly varying.

1. Introduction

An important problem in many fields is to model rare and extreme phenom-

ena that corresponds to the lower or upper tails of a variable; see Pandey and

Nguyen (1999), Friederichs (2010), Wang, Li and He (2012), Abrevaya (2001),

Chernozhukov and Du (2008) for various examples. Quantile regression, first

proposed by Koenker and Bassett (1978), provides a useful tool for studying the

conditional tail distribution of the response. Without loss of generality, we focus

on high quantile regression.

The main challenge for tail quantile regression is data sparsity, especially for

heavy-tailed distributions where the disturbance of errors remains strong in the

far tail. By fitting the regression model at one quantile level at a time, the conven-

tional (or local) quantile regression is often unstable at the tails. In applications

where the covariate effects have some common features across quantile levels in

the tail region, it is desirable to aggregate information across multiple quan-

tiles to improve the estimation efficiency over the conventional quantile-specific
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estimator. For instance, Figure 1 in Section 4 plots the conventional quantile

regression estimates of slopes at multiple quantiles, where the response is the

observed daily precipitation in Chicago area and the predictor is the simulated

daily precipitation from the ERA-40 reanalysis model. The estimated quantile

slopes appear to be constant at the upper quantiles τ ∈ [0.990, 0.995]. For such

data sets, one could utilize the commonality of quantile slopes to improve the

estimation efficiency at tails by pooling information across tail quantiles.

Consider a linear regression model with quantile-invariant covariate effects,

there exist two plausible ways to combine information across quantiles: combining

the local quantile estimators or the criterion functions involved in the estimation

procedure at different quantiles. The first strategy leads to the weighted quan-

tile average estimator (WQAE) introduced by Koenker and Bassett (1978), the

weighted average of quantile-specific slope estimators. The second strategy leads

to the weighted composite regression of quantiles (WCRQ) estimator, first pro-

posed by Hogg (1980), that minimizes the combined quantile objective function

across quantiles. For central quantiles, Koenker (1984) studied the asymptotic

properties of these two estimators and showed their asymptotic equivalency when

optimal weights are used. In recent years, combined quantile regression has been

studied in various setups with more work focusing on the second strategy; see

for instance Zou and Yuan (2008), Jiang, Jiang and Song (2012), Kai, Li and

Zou (2010), Guo, Tian, and Zhu (2012), Jiang et al. (2012), Jiang et al. (2013),

Jiang, Qian and Zhou (2012), Tang, Zhou and Wu (2012), and Jiang, Wang

and Bondell (2013). Zhao and Xiao (2014) discussed both WQAE and WCRQ

methods for linear and nonparametric regression models.

Previous works on combined quantile regression have been restricted to cen-

tral quantiles with quantile level τ ∈ [ϵ, 1 − ϵ], where 0 < ϵ < 1 is some positive

constant. To our knowledge, there exists no discussion about how to optimally

combine information across tail quantiles. At the tails, with quantile level τ → 1

as the sample size n → ∞, the convergence rate of quantile regression estimator

depends on the heaviness of the tails of the response distribution and is slower

than root-n. In this paper, using the tools of extreme value theory, we establish

the asymptotic properties of the weighted composite and weighted quantile aver-

age estimators for tail quantile regression, and propose a procedure for estimating

the optimal weights for both estimators. The technical details are provided in

the online supplementary material.

2. Proposed Methods

2.1. Joint-quantile regression model

Let Y be the scalar response variable, X be the p-dimensional vector of co-

variates, and {(yi,xi)}n1 be a random sample of (Y,X). Suppose we are interested
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in regression at the upper tails with quantile level τ ∈ T = (1 − ϵ1,n, 1 − ϵ2,n),

where ϵ1,n > ϵ2,n > 0, ϵ1,n → 0 and nϵ2,n → ∞ as n → ∞. Let FY (·|x) denote

the conditional distribution function of Y given x. The linear quantile regression

model assumes that

QY (τ |x) = α0(τ) + xTβ0(τ), τ ∈ T , (2.1)

where QY (τ |x) = inf{y : FY (y|x) ≥ τ} is the τth conditional quantile of Y given

X = x, and α0(τ) ∈ R and β0(τ) ∈ Rp are the unknown quantile coefficients as-

sociated with the τth quantile level. At a given quantile level τ , the conventional

quantile regression estimator of (α(τ),β(τ)) is defined as(
α̂(τ), β̂(τ)

)
= argmin

(α,β)∈Rp+1

n∑
i=1

ρτ (yi − α− xT
i β), (2.2)

where ρτ (t) = t{τ − I(t ≤ 0)} is the quantile loss function and I(·) is the indi-

cator function (Koenker (2005)). The conventional quantile regression method

estimates the quantile coefficient at each quantile level of interest separately, and

the resulting local slope estimator β̂(τ) can vary freely in τ . However, in data-

sparse area such as the extreme tails, the variability of local estimates is often

overly high. In some applications it might be reasonable to assume the slope

coefficient β(τ) to share some common features, for instance, to be constant or

locally linear, within a certain region of quantiles. By utilizing this commonality,

we can aggregate information across quantiles to improve the estimation effi-

ciency. We focus on linear quantile regression with constant slopes at the upper

tails, but the proposed method can be adapted to accommodate such other com-

mon features as local linearity, and cases where only a subset of the components

of β(τ) are locally constant.

We assume the following linear quantile regression model at the upper tails

QY (τ |x) = α0(τ) + xTβ0, τ ∈ T . (2.3)

Different from (2.1), here the quantile slope is assumed to be constant at the

upper tails across τ ∈ T , with α0(τ) still an increasing function of τ . Based

on the extreme value theory, we develop two optimally combined estimators for

tail quantile regression, which are obtained by aggregating information across K

quantiles τ1 < · · · < τK ∈ T .

function ‘anova.rq’ in R package quantreg (Koenker (2005), Page 76).

2.2. Optimally weighted quantile average estimator

For (2.3) atK upper quantiles, the unknown parameters consist ofK distinct

intercepts α0(τk) and one common slope vector β0. Denote the vector of true
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parameters θ0 = (α0,1, . . . , α0,K ,βT
0 )

T , where α0,k = α0(τk), k = 1, . . . ,K. Let

ϖk be the weight assigned to τk, k = 1, . . . ,K. For identifiability, we assume

that 1TKϖ = 1, where ϖ = (ϖ1, . . . , ϖK)T , and 1K denotes a K-dimensional

vector of ones. We take the weighted quantile average estimator of θ as

β̂WQAE =
K∑
k=1

ϖkβ̂(τk), (2.4)

where β̂(τk) is the local quantile slope estimator obtained by minimizing the

objective function in (2.2) at the τkth quantile. The WQAE is the weighted

average over conventional estimators at multiple high quantiles, and thus can be

viewed as a special case of the L-estimator with discrete weights. Portnoy and

Koenker (1989) and Koenker (1984) studied the L-estimator for the slope in the

location-shift linear model, which implies that β(τ) is constant across the entire

quantile region τ ∈ (0, 1).

The asymptotic properties of WQAE at central quantiles have been studied

by Koenker (1984) and Zhao and Xiao (2014). In our Theorem 1, we establish

the asymptotic distribution of β̂WQAE at the tails. For any sequences a(z) and

b(z), we use the notation a(z) ∼ b(z) to mean that a(z)/b(z) → 1 as a specified

limit is taken over z. We make the following assumptions.

A1. The distribution function FY (y|xi) is absolutely continuous with continu-

ous density fY (y|xi) that is uniformly bounded away from zero and infinity

and has a bounded first derivative around QY (τk|xi) for any k = 1, . . . ,K.

A2. The distribution of X has a compact support X . The expectation E(X) =

0, and E(XXT ) = D exists and is positive definite.

A3. Let U = Y − XTβ0. There exists some distribution function F0(·) in

the maximum domain of attraction with extreme value index ξ, such that

1 − FU (z|x) ∼ 1 − F0(z) as z → su uniformly in x ∈ X , where su is the

upper end-point of U .

A4. ∂F−1
0 (1− τ)/∂τ is regularly varying at 0 with exponent −ξ − 1.

A5. For k = 1, . . . ,K, (1 − τk)/(1 − τ) = lk + o(1) for some τ → 1 and

n(1− τ) → ∞, where the lk > 0 are constants.

Here A3 requires that Y , after linear transformation, is tail equivalent to

a distribution F0 in the maximum domain of attraction. The domain of attrac-

tion assumption covers such common distributions as the Gaussian, Beta, and t

distribution; see de Haan and Ferreira (2006) for more details about domains of

attraction. Condition A4 is a von Mises-type condition that specifies how the

density function decays at the right tail. It is basic for a distribution to belong

to the maximum domain of attraction. Condition A5 restricts attention to the
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intermediate order of extreme quantiles with τk → 1 and n(1 − τk) → ∞ as

n → ∞. In finite sample analysis, we can let τ = τ1 and lk = (1 − τk)/(1 − τ1).

We define

an =

√
(1− τ)n

F−1
0 (τ)− F−1

0 (τ̃m)
, where τ̃m = 1−m(1− τ) for some m > 1.

Theorem 1. Suppose that (2.3) and A1−A5 hold. With ϖ = (ϖ1, . . . , ϖK)T ,

as n → ∞,

an(β̂WQAE − β)
d→ N

(
0, σ2

WQAE(ϖ)

(
m−ξ − 1

−ξ

)−2

D−1

)
,

where σ2
WQAE(ϖ) = ϖTΦ−1(ξ)ΓΦ−1(ξ)ϖ, Γ is a K×K matrix with the (k, k

′
)th

element min(lk, lk′ ), Φ(ξ) = diag{(lξ+1
1 , . . . , lξ+1

K )}, and D = E(XXT ).

Theorem 1 suggests that the asymptotic covariance of β̂WQAE depends on

the weights ϖ only through a scalar function σ2
WQAE(ϖ) of ϖ. Therefore, the

optimal weight that maximize the efficiency of β̂WQAE is

ϖopt = argmin
ϖ

ϖTΦ−1(ξ)ΓΦ−1(ξ)ϖ, subject to 1TKϖ = 1. (2.5)

The minimization in (2.5) is a standard constrained optimization problem, with

ϖopt = Φ(ξ)Γ−1ϕ(ξ){ϕT (ξ)Γ−1ϕ(ξ)}−1. (2.6)

Therefore, the minimal value of σ2
WQAE is {ϕT (ξ)Γϕ(ξ)}−1. We refer to the

optimal WQAE of β0 based on ϖopt as β̂OWQAE.

2.3. Weighted composite quantile estimator

An alternative estimator of the common slope β is the weighted composite

regression of quantiles (WCRQ) defined as

θ̂WCRQ = argmin
α1,...,αK ,β

K∑
k=1

ωk

n∑
i=1

ρτk(yi − αk − xT
i β), (2.7)

where ωk is the weight assigned to τk. The estimator θ̂WCRQ is referred to as

the weighted composite regression of quantiles (WCRQ) estimator.

Here θ̂WCRQ depends on the prespecified weights ωk. Focusing on central

quantiles, Zou and Yuan (2008), Kai, Li and Zou (2010), Jiang, Wang and Bondell

(2013) considered a combined quantile objective function that is similar to that in

(2.7), but assigns equal weights to different quantiles. Since neighboring quantiles
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are correlated, especially at the tails, assigning equal weights is not an efficient

way to combine information across quantiles in general.

When the components in ωopt are non-negative, the combined objective func-

tion in (2.7) is convex. The optimization in (2.7) can be recast into a linear

programming problem and solved by using existing software such as the function

“make.lp” in the R package lpSolveAPI or function “rq.fit.fnb” in the R pack-

age quantreg. When some weights are negative, the objective function in (2.7)

might not be convex, leading to difficulty in minimization. To avoid potential

computational difficulty, we first consider WCRQ with nonnegative weights.

Theorem 2. If (2.3) and A1-A5 hold, and ωk ≥ 0 for k = 1, . . . ,K, then as

n → ∞,

an(β̂WCRQ − β0)
d→N

(
0, σ2

WCRQ(ω)

(
m−ξ − 1

−ξ

)−2

D−1

)
,

σ2
WCRQ(ω) = {ωTϕ(ξ)}−2ωTΓω,where ϕ(ξ) = (lξ+1

1 , . . . , lξ+1
K )T .

Sub-optimal Estimator. Similar to WQAE, the optimal weights for WCRQ

can be obtained by minimizing the asymptotic variance of β̂WCRQ, which depends

on the weights only through a scalar σ2
WCRQ(ω). Let

ωsub = argmin
ω1≥0,...,ωK≥0

{ωTϕ(ξ)}−2ωTΓω, subject to 1TKω = 1. (2.8)

We refer to ωsub as the sub-optimal weight since it minimizes the asymptotic

variance of β̂WCRQ under the nonnegative restriction. The optimization in (2.8)

is a standard quadratic programming problem, and can be solved by existing

quadratic programming software such as the function “solve.QP” in the R pack-

age quadprog. We denote the minimizer of (2.7) based on ωsub as θ̂WCRQ+.

Compared with OWQAE, the additional restriction in θ̂WCRQ+ can cause

some loss of efficiency for the estimation of β as indicated in Proposition 1.

Without the nonnegative constraint, we find

ωopt =
Γ−1ϕ(ξ)

{1TKΓ−1ϕ(ξ)}
. (2.9)

Following the argument in the proof of Theorem 2, we can show that the asymp-

totic normality in Theorem 2 holds for the WCRQ estimator based on the weights

ωopt, and with the same asymptotic variance. We refer to the WCRQ estima-

tor based on ωopt as the OWCRQ (optimally weighted composite regression of

quantile).

Proposition 1. For any weight ω ∈ RK , σ2
WCRQ(ω) ≥ {ϕT (ξ)Γϕ(ξ)}−1, and

the equality holds if and only if ω = ωopt.
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Remark 1. In Theorems 1 and 2, the normalizing sequence an and the asymp-

totic variances involve m while the optimal weights ϖopt and ωopt do not. Thus

users need not choose m for computing β̂OWQAE and β̂OWCRQ.

Remark 2. For tail quantile regression, the occurrence of negative optimal

weights in ωopt depends on the heaviness of the tail of the response distribution.

We can show that when the response distribution is heavy-tailed with ξ > 0,

the least extreme quantile receives positive weight and all the others negative

weights. For light-tailed distributions with ξ = 0, as τ → 1, all the weights are

put into the least extreme quantile level τ1 while other higher quantiles receive

zero weight. For short-tailed distributions with ξ < 0, all the weights at high

quantiles are positive. Some justifications are provided in the supplementary

material. Table 2 gives the optimal weights for normal, t2, t1, Beta(2, 5), and

Beta(2, 2.5) distributions.

One-step Estimator. When ωopt contains negative weights, the weighted ob-

jective function in (2.7) may be non-convex, making it hard to minimize. To

utilize the optimal weights ωopt and avoid the non-convex optimization, we con-

sider an alternative one-step estimator. Let zi,k = (eTk ,x
T
i )

T , where ek is a

K-dimensional vector with the kth entry 1 and the others 0. Let

A(θ)=

K∑
k=1

n∑
i=1

ω
(o)
k zi,k{I(yi−zTi,kθ < 0)−τk}, B(θ)=

K∑
k=1

n∑
i=1

ω
(o)
k zi,kz

T
i,kfY (z

T
i,kθ|xi),

where ω
(o)
k is the kth element of ωopt. The one-step estimator of θ0 is

θ̂OS = θ̃ −
{
B(θ̃)

}−1
A(θ̃), (2.10)

where θ̃ is any an-consistent estimator of θ0.

This one-step approach was first discussed by Bickel (1975) for estimating the

location parameter in a linear model. Recently, Bradic, Fan, and Wang (2011)

studied the one-step method for variable selection based on penalized composite

quasi-likelihood. Following their arguments, we can show that for tail quantiles,

the one-step slope estimator β̂OS achieves the same asymptotic efficiency as the

OWQAE and OWCRQ estimators as long as the initial slope estimator β̃ is

consistent of the same rate an.

Theorem 3. If A1-A5 hold and ||θ̃ − θ0|| = Op(1/an), then

an(β̂OS − β0)
d→ N

(
0,

1

ϕT (ξ)Γϕ(ξ)

(
m−ξ − 1

−ξ

)−2

D−1

)
.
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To achieve this asymptotic efficiency, the initial estimator θ̃ can be any an-

consistent estimator, such as the conventional quantile regression estimator or

θ̂WCRQ with any given nonnegative weights. In our implementation, we use

θ̂WCRQ+ as the initial estimator.

In (2.10), B(θ) involves the unknown quantity fY (z
T
i,kθ|xi) = fY {QY (τk|xi)

|xi}, which has to be estimated in practice. In general, we can estimate

fY {QY (τ |x)|x} by using the difference quotient method proposed by Hendricks

and Koenker (1992), or estimate
∑n

i=1 zi,kz
T
i,kfY (z

T
i,kθ|xi) by using the kernel

method proposed by Powell (1991). Our numerical investigation suggests that

these two methods work well for large sample sizes but they sometimes lead to

unstable results for small samples. Model (2.3) and A3 imply that as τ → 1,

fY {QY (τ |x)|x} = fU{α(τ)|x} ∼ f0{α(τ)}, which is common across x. There-

fore, we suggest using the nonparametric kernel density estimation based on the

estimated residuals ϵ̂i = yi − xT
i β̂WCRQ+ as in Zhao and Xiao (2014).

The calculation of WQAE requires only minimizing the convex quantile ob-

jective function in (2.2) at each quantile level τk separately. Therefore, negative

weights in ϖopt do not cause any computational difficulty. In contrast, the

WCRQ method requires solving the combined objective function, and a one-step

iteration is needed for calculating the optimal estimator when some of the op-

timal weights are negative. Despite the possible computational complication,

the WCRQ method has advantages. First, it can be used to accommodate gen-

eral interquantile commonality in a more direct way, for instance, locally linear

quantile slopes with β(τk) = β(τ1) + (τk − τ1)γ, where γ is an unknown pa-

rameter. Further, penalization can be incorporated in the weighted composite

quantile loss function for variable selection and inter-quantile shrinkage; see for

instance Bradic, Fan, and Wang (2011), Jiang, Wang and Bondell (2013), and

Jiang, Bondell and Wang (2014).

2.4. Estimation of extreme value index

The optimal and sub-optimal weights involve the unknown extreme value

index ξ, a measurement of the heaviness of the tail distribution. We estimate ξ

by the maximum likelihood estimator. Suppose z1, . . . , zn is a random sample

of Z that has distribution function F . Pickands (1975) showed that if F is in

the domain of attraction with the extreme value index ξ then, as u → zF , the

endpoint of Z, P (Z ≤ u + z|Z > u) converges to the distribution function of

the generalized Pareto distribution (GPD) with parameters Ψ = (ξ, σ, u)T . The

density function of the GPD can be written as

g(z|Ψ) =

 1
σ

{
1 + ξ(z−u)

σ

}−(1+ξ)/ξ
, if ξ ̸= 0,

1
σ exp{− (z−u)

σ }, if ξ = 0,
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Table 1. The asymptotic relative efficiency of QAE, CRQ, WCRQ+ and
OWCRQ with respect to OWQAE (OWCRQ) for five types of distributions.

Tail type QAE CRQ WCRQ+
Light (ξ = 0) 0.64 0.81 1.00
Heavy (ξ = 0.5) 0.23 0.52 0.90
Heavy (ξ = 1) 0.06 0.33 0.77
Short (ξ = −0.2) 0.84 0.92 1.00
Short (ξ = −0.4) 0.95 0.95 1.00

where z > u for ξ ≥ 0 and 0 ≤ z−u ≤ −σ/ξ for ξ < 0. that is, {zi−u : zi ≥ u, i =

1, . . . , n}. it was shown that the maximum likelihood estimator of ξ is consistent

and asymptotically normal; see Smith (1987) and Theorem 3.4.2 in de Haan and

Ferreira (2006) for details. In our setup, we take ui = Q̂Y (τ0|xi), i = 1, . . . , n,

where τ0 → 1 as n → ∞, and Q̂Y (τ0|x) is any consistent estimator of QY (τ0|x),
for instance, the conventional quantile regression estimator. We then estimate ξ

by maximizing the GPD likelihood based on the exceedances {yi−ui : yi ≥ ui, i =

1, . . . , n}. If F0(·) satisfies the second-order condition on page 44 of de Haan and

Ferreira (2006) and ξ > −1/2, it follows by Smith (1987) and Theorem 3.4.2

in de Haan and Ferreira (2006) that the maximum likelihood estimator of ξ is

consistent and asymptotically normal. Throughout our numerical studies, we

choose τ0 = 0.95 and obtain the maximum likelihood estimator of ξ by using the

function “gpd.fit” in the R package ismev.

2.5. Comparison of asymptotic efficiency

Theorems 1−3 suggest that OWQAE, OWCRQ, and the one-step estimator

achieve the same asymptotic efficiency, while WCRQ+ is asymptotically less

efficient when some of the optimal weights are negative.

We assess the efficiency gain of using optimal weights by comparing the

asymptotic efficiency of OWCRQ/OWQAE, WCRQ+ with CRQ and QAE, the

composite and quantile average estimators based on equal weights. We consider

five cases: ξ = 0 corresponding to such light-tailed as the exponential and normal,

ξ = 0.5 and 1 corresponding to such heavy-tailed distributions as t2 and t1,

ξ = −0.2 and -0.4 corresponding to short-tailed distributions such as Beta(2, 5)

and Beta(2, 2.5). We consider quantiles τk = 0.95, 0.96, 0.97, 0.98 and 0.99. Table

1 summarizes the asymptotic relative efficiency of QAE, CRQ and WCRQ+ with

respect to OWQAE (or equivalently OWCRQ), and Table 2 presents the optimal

weights for the WCRQ and WQAE methods.

Table 2 suggests that, for the optimal WCRQ and WQAE methods, less

weights (and sometimes even negative weights) are put on coefficients corre-

sponding to the more extreme quantiles. This pattern is in line with Remark 2.
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Table 2. Optimal weights for the WCRQ and WQAE methods at τk = 0.95,
0.96, 0.97, 0.98 and 0.99.

ωopt for WCRQ ϖopt for WQAE
Tail type 0.95 0.96 0.97 0.98 0.99 0.95 0.96 0.97 0.98 0.99
Light (ξ = 0) 1 0 0 0 0 1 0 0 0 0
Heavy (ξ = 0.5) 2.96 -0.34 -0.39 -0.48 -0.74 1.26 -0.10 -0.08 -0.05 -0.03
Heavy (ξ = 1) 7.41 -1.60 -1.60 -1.60 -1.60 1.35 -0.19 -0.11 -0.05 -0.12
Short (ξ = −0.2) 0.61 0.03 0.04 0.07 0.25 0.80 0.03 0.04 0.04 0.09
Short (ξ = −0.4) 0.35 0.03 0.05 0.10 0.47 0.53 0.05 0.06 0.09 0.28

When the quantile level gets more extreme, the local estimator becomes more

unstable, and assigning less weights can reduce the variance of the weighted

estimator.

Table 1 shows that the optimal estimators have higher efficiency across dif-

ferent types of distributions when compared to the estimators QAE and CRQ

with equal weights. The efficiency gains of OWCRQ and OWQAE also depend

on the heaviness of the tail, and are more pronounced for heavy-tailed distri-

butions. One explanation is that, for heavy-tailed error distributions, the data

sparsity leads to larger variances to the local quantile regression estimator at

more extreme tails. The optimally weighted estimators improve efficiency by as-

signing more weights to the less extreme quantiles. For distributions with light

and short tails, estimators based on equal weights lose some efficiency but the

efficiency loss is not as substantial as for heavy-tailed distributions, and OWCRQ

and WCRQ+ are the same since all the optimal weights are non-negative. For

heavy-tailed distributions, optimal weights outperform sub-optimal weights.

3. Simulation Study

To demonstrate the finite sample performance of the proposed methods,

we conducted simulations. We considered: univariate predictors with constant

quantile slope, univariate predictors with constant quantile slope only at upper

quantiles, and multivariate predictors with constant slopes across quantiles.

Example 1. The data were generated from

yi = xiβ + ϵi, i = 1, . . . , n, (3.1)

where xi ∼ N(0, 1), β = 1, and the ϵi independent and identically distributed.

Here the τth conditional quantile of Y is QY (τ |x) = F−1
ϵ (τ)+ x, where Fϵ is the

cumulative distribution function of ϵi.

Example 2. The slope is constant only at the upper quantiles with τ > 0.9.

The quantile function is QY (τ |x) = α(τ) + β(τ)x, where α(τ) = F−1
ϵ (τ) and
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β(τ) =

{
β − F−1

ϵ (0.90) + F−1
ϵ (τ) if 0 < τ < 0.90,

β if 0.90 ≤ τ < 1,
(3.2)

with β = 1. To generate the data, we first generated xi ∼ U(0, 1) and quantile

levels ui ∼ U(0, 1), and then let yi = α(ui) + β(ui)xi, i = 1, . . . , n. Therefore,

β(τ) varies for τ < 0.9, but it is constant for τ ≥ 0.9.

Example 3. We generated data from

yi = xi,1β1 + xi,2β2 + ϵi, i = 1, . . . , n, (3.3)

where xi,1 ∼ N(0, 1), xi,2 ∼ N(0, 1), β1 = 1 and β2 = 2, and ϵi are i.i.d. with dis-

tribution Fϵ. The τth conditional quantile of Y given x1 and x2 is QY (τ |x1, x2) =
F−1
ϵ (τ) + x1 + 2x2, and the slopes are constant across τ ∈ (0, 1).

For these examples, we took ϵ to be standard normal, t2, and Beta(2, 5). We

considered sample sizes: n=500 and 1,000. We chose the equally spaced extreme

upper quantiles as τk = 1− (6−k)n−3/4, where k = 1, . . . , 5. The simulation was

repeated 500 times for each scenario.

Five estimators of β are included for comparison: the quantile aver-

age estimator with equal weights (QAE), the composite estimator with equal

weights (CRQ), the optimally weighted quantile average estimator (OWQAE),

the one-step composite estimator (referred to as OWCRQ as the two have the

same asymptotic efficiency), and the weighted composite estimator based on the

sub-optimal nonnegative weights (WCRQ+). For the OWQAE, OWCRQ and

WCRQ+ methods, the extreme value index ξ was estimated by the maximum

likelihood estimator introduced in Section 2.3.

Tables 3 and 4 summarize the mean squared error (MSE) of different esti-

mators of β in Examples 1 and 2. For Example 3, we report the mean integrated

squared error

MISE =
1

500

500∑
j=1

{(β̂j1 − β1)
2 + (β̂j2 − β2)

2},

where β̂j1 and β̂j2 are the estimators of β1 and β2 from the jth simulation.

Since t2 is a heavy-tailed distribution with infinite variance while the normal

has variance 1 and the Beta has variance 0.026, MSE and MISE under the t2
distribution have much larger magnitudes.

Tables 3−5 OWCRQ and OWQAE have similar performance, which agrees

with the asymptotic theory. For the heavy-tailed t2 distribution, OWQAE and

OWCRQ are more efficient than WCRQ+. For the t2 distribution, the three

methods involving weight estimation perform significantly better than the two

methods QAE and CRQ based on equal weights. For normal errors, optimally
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Table 3. The 103×MSE of different estimators of β in Example 1. The
values in the parentheses are the standard errors of 103×MSE.

Distribution n QAE OWQAE CRQ WCRQ+ OWCRQ
Normal 500 11.54 10.29 10.52 9.96 9.96

(0.76) (0.72) (0.74) (0.66) (0.66)
1,000 8.82 7.16 7.78 7.19 7.17

(0.61) (0.51) (0.54) (0.52) (0.52)
t2 500 349.89 101.01 173.39 104.41 100.58

(20.08) (6.43) (11.01) (6.71) (6.40)
1,000 628.92 148.91 302.17 167.87 159.20

(39.72) (8.78) (19.09) (10.22) (9.69)
Beta(2, 5) 500 0.39 0.39 0.37 0.39 0.40

(0.03) (0.03) (0.03) (0.02) (0.03)
1,000 0.26 0.25 0.24 0.24 0.24

(0.01) (0.01) (0.01) (0.01) (0.01)

Table 4. The 103×MSE of different estimators of β in Example 2. The
values in the parentheses are the standard errors of 103×MSE.

Distribution n QAE OWQAE CRQ WCRQ+ OWCRQ
Normal 500 129.68 124.94 114.67 119.63 119.66

(8.48) (8.22) (7.54) (7.96) (7.90)
1,000 99.75 88.31 89.78 85.21 85.09

(5.94) (5.60) (5.28) (5.29) (5.25)
t2 500 5493.83 1459.47 2452.45 1498.51 1467.96

(406.81) (95.32) (161.92) (99.53) (97.95)
1,000 8044.79 2116.36 3807.19 2241.42 2182.90

(518.23) (144.46) (223.98) (145.35) (143.02)
Beta(2, 5) 500 4.25 4.54 3.95 4.54 4.57

(0.28) (0.29) (0.26) (0.30) (0.30)
1,000 2.97 2.88 2.86 2.79 2.79

(0.18) (0.18) (0.17) (0.17) (0.16)

weighted methods still have some efficiency gain over the equally weighted es-

timators but the gain is less obvious than it is for the t2 distribution. For the

short-tailed Beta(2, 5) distribution, the optimally weighted methods have no ob-

vious efficiency gain, and this agrees with our asymptotic efficiency comparison

in Section 2.5. For the t2 distribution, MSE with n =1,000 is surprisingly higher

than that with n = 500. That is due to the fact that larger n is associated

with more extreme quantiles τk, and the gain from increased sample size is less

than the lose due to the increased disturbance at the more extreme tail for this

heavy-tailed distribution.
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Table 5. The 103×MISE of different estimators in Example 3. The values
in the parentheses are the standard errors of 103×MISE.

Distribution n QAE OWQAE CRQ WCRQ+ OWCRQ
Normal 500 22.68 21.15 20.66 20.66 20.66

(1.10) (1.03) (0.98) (1.00) (0.99)
1,000 17.40 13.63 15.16 13.46 13.36

(0.75) (0.63) (0.67) (0.63) (0.63)
t2 500 780.16 231.48 428.49 249.95 240.52

(38.45) (11.24) (22.78) (12.00) (11.58)
1,000 1007.67 290.43 537.08 312.2 298.63

(42.22) (12.88) (24.15) (13.55) (12.97)
Beta(2, 5) 500 0.76 0.77 0.70 0.74 0.74

(0.03) (0.04) (0.03) (0.03) (0.03)
1,000 0.52 0.45 0.48 0.45 0.45

(0.02) (0.02) (0.02) (0.02) (0.02)

4. Application to Chicago Precipitation Data

An important topic in climate studies is quantifying extremal phenomena

such as heavy precipitation or high temperature, for which quantile regression

serves as a promising tool. We applied the proposed methods to the statistical

downscaling of daily precipitations at the Aurora station of Chicago. The re-

sponse Y is the observed daily precipitation (inches) at the station from 1957 to

2002, and the covariate X is the simulated daily precipitation from the ERA-40

reanalysis model introduced in Uppala et al. (2005).

Since we are interested in estimating the extremely heavy precipitation con-

ditioning on X, we only include the wet days data. In this data set 30% of the

days are wet with yi > 0. Since in climate studies it is commonly assumed that

the percentage of wet days in the future is the same as in the past and prediction

is based on the simulated daily precipitation, we define the wet days data as the

pairs of (yi, xi) with xi exceeding its 70th sample percentile. This yields a data

set of 4,816 observations.

As a preliminary analysis, we applied conventional quantile regression at

high quantiles τ > 0.99. The slope estimates appear to be stable from τ = 0.990

to τ = 0.995; see Figure 1. We apply a variation of the Wald-type test (Koenker,

2005, page 76) for testing the null hypothesis H0 : β(0.990) = β(0.991) = . . . =

β(0.995) and obtain a p-value=0.794. However, the test for H0 : β(0.990) =

. . . = β(0.996) = β(0.997) = β(0.998) yields a p-value of 4−10, suggesting a

violation of the common slope assumption for τ ≥ 0.996. Therefore, we chose six

quantile levels 0.990, 0.991, . . . , 0.995 to apply the proposed combined estimation

methods.
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Figure 1. Local quantile regression estimates of the slope at upper quantiles
for the precipitation data in Aurora station.

Table 6. The estimated common slope β̂ for the proposed methods and the
bootstrap standard error (s.e.), and the quantile-specific weights given by

different methods based on the estimated extreme value index ξ̂ = 0.29.

Estimate QAE CRQ OWQAE WCRQ+ OWCRQ

β̂ 115.07 132.63 91.21 96.25 96.78
bootstrap s.e. (103.08) (117.21) (30.72 ) (40.93) (40.20)
τ1 = 0.990 1/6 1/6 1.22 1 1.55
τ2 = 0.991 1/6 1/6 -0.03 0 -0.05
τ3 = 0.992 1/6 1/6 -0.03 0 -0.05
τ4 = 0.993 1/6 1/6 -0.03 0 -0.06
τ5 = 0.994 1/6 1/6 -0.03 0 -0.06
τ6 = 0.995 1/6 1/6 -0.10 0 -0.32

Table 6 summarizes the estimated slopes from different methods. The values

in the parentheses are the bootstrap standard errors based on 1,000 bootstrap

samples obtained by sampling the paired observations (yi, xi) with replacement.

Here β̂QAE and β̂CRQ are larger than the other estimates, which is partially due

to the fact that these two methods enforce equal weights at the six quantiles

including the higher quantile τ = 0.994, at which the quantile slope estimation

β̂(0.994) is the largest among the six slope estimations. In addition, the estima-

tors β̂QAE and β̂CRQ have larger variances, which lead to insignificance in the

slope. The OWQAE, OWCRQ and WCRQ+ estimators have smaller variances,

and all three showed that at the high quantiles, the simulated daily precipitation

has a significant positive effect on the observed precipitation and thus can serve

as a good predictor for high precipitation.
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Table 7. The prediction error of different methods at quantile levels 0.990,
0.992 and 0.995. The values in the parentheses are the standard errors of
the prediction errors based on 500 times of cross-validation.

τ RQ QAE CRQ OWQAE WCRQ+ OWCRQ

0.990 65.27 66.75 68.74 65.27 65.27 65.25
(0.34) (0.30) (0.29) (0.33) (0.34) (0.33)

0.992 57.10 57.92 60.29 56.77 56.79 56.76
(0.32) (0.30) (0.29) (0.33) (0.33) (0.33)

0.995 45.01 43.76 46.47 42.31 42.38 42.37
(0.25) (0.26) (0.3) (0.32) (0.32) (0.32)

We conducted a cross-validation study to evaluate the prediction accuracy
of each method. We randomly choose half of the data set as the training data
(total 2,408 observations) and the other half as the validation data. For each
method, we used training data to obtain the estimated coefficients α̂(τ) and β̂(τ)
and predicted the τth conditional quantile of Y as Q̂Y (τ |xi) = α̂(τ) + xiβ̂(τ).
The prediction error is

PE =

2408∑
i=1

ρτ{yi − Q̂Y (τ |xi)}, τ ∈ {0.990, . . . , 0.995},

where {(yi, xi), i = 1, . . . , 2408} are in the validation set. The cross validation was
repeated 500 times and the mean of PE is reported at τ =0.990, 0.992 and 0.995
in Table 7. Results show that the optimally weighted methods perform generally
better than the equally-weighted methods QAE and CRQ and the local quantile
regression method (RQ). Moreover, the gain in the prediction accuracy of the
optimally weighted methods increases as the quantile level gets more extreme.

For the precipitation data, it is interesting but challenging to estimate the
quantiles in the more extreme tail. Since the slope in this data set does not appear
to be constant for τ ∈ [0.996, 1), the proposed methods cannot be directly used
for this. We could consider joint-quantile estimation by incorporating some other
type of commonality such as local linearity in the slope; further research is needed
in this direction.

Supplementary Material
Proofs for Theorems 1−3, Proposition 1 and the statements in Remark 2 are

provided in the online supplementary material.
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