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Abstract: To capture the heterozygosity of vertex degrees of networks and under-

stand their distributions, a class of random graph models parameterized by the

strengths of vertices is proposed. These models have a framework of mutually in-

dependent edges, where the number of parameters matches the size of the network.

The asymptotic properties of the maximum likelihood estimator have been derived

in such models as the β-model, but general results are lacking. In these models,

the likelihood equations are identical to the moment equations. Here, we establish

a unified asymptotic result that includes the consistency and asymptotic normality

of the moment estimator instead of the maximum likelihood estimator, when the

number of parameters goes to infinity. We apply it to the generalized β-model,

maximum entropy models, and Poisson models.

Key words and phrases: Asymptotical normality, consistency, increasing number of

parameters, moment estimators, undirected network models.

1. Introduction

Exploring the generated mechanisms of networks is an important topic in net-

work analysis. The degrees of vertices have received wide attention recently (e.g.,

Britton, Deijfen, and Martin-Löf (2006); Blitzstein and Diaconis (2010); Bickel,

Chen, and Levina (2012); Zhao, Levina, and Zhu (2012); Rinaldo, Petrović, and

Fienberg (2013); Hillar and Wibisono (2013)). A larger degree indicates more

ability of that vertex to participate in network connections. The Erdös-Rényi

model (Erdös and Rényi (1959)) is generally acknowledged as one of the earliest

random graph models, in which each edge occurs with the same probability inde-

pendent of any other edge. Here one has homogenous random graphs in which all

vertex degrees have the same binomial distribution. For large number of vertices,

they are approximated by the Poisson distributions.

Consider an undirected random graphs with n vertices and binary edges. To

capture the heterozygosity of vertex degrees, a class of n-parameter models is

proposed, where the parameter of a vertex reflects the propensity of this vertex
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to form network connections. The β-model (a name coined by Chatterjee, Diaco-

nis, and Sly (2011)), an undirected version of the p1 directed exponential random

model, originally proposed by Holland and Leinhardt (1981), suggests that the

probability of an edge only depends on the sum of the strength parameters of the

corresponding two vertices and has a logistic representation. In this model, the

degree sequence is the exclusively natural sufficient statistic. Lauritzen (2003;

2008) addressed the β-model as the natural model for representing exchangeable

binary arrays whose distribution only depends on the row and column totals.

When the number of parameters (or vertices) goes to infinity, Chatterjee, Dia-

conis, and Sly (2011) proved the uniform consistency of the maximum likelihood

estimator (MLE); Yan and Xu (2013) further derived its asymptotic normality.

Rinaldo, Petrović, and Fienberg (2013) established the necessary and sufficient

condition for the existence and uniqueness of the MLE when a sample is given.

A similar model is Chung and Lu’s (2002) log-linear model, where the edge prob-

ability pij between vertices i and j is wiwj/(
∑n

k=1wk) under the normalization

constraint w2
i ≤

∑n
k=1wk, with wi referred to as the weight of vertex i. Jan-

son (2010) obtained conditions under which these two models are asymptotically

equivalent as n → ∞, and Perry and Wolfe (2012) demonstrated that they give

rise to essentially the same likelihood-based estimates of link probabilities in the

sparse finite-sample regimes. Moreover, Olhede and Wolfe (2012) derive the sam-

pling properties of undirected networks parameterized by independent Bernoulli

trials.

An edge in undirected networks takes not only binary (“present” or “absent”)

values but also weighted edges in many scenarios. Examples include collabora-

tion networks, where an edge represents the number of papers coauthored by two

scholars (e.g., Newman (2001)) or the number of bills cosponsored by legislators

(Fowler (2006)); social categorical recorded networks, where an edge denotes the

intensity of friendship such as “very good”, “good”, “general”, etc, or the sim-

ilarity (e.g., Bernard, Killworth, and Sailer (1980; 1982)); and neural networks,

where an edge represents discrete or continuous electrical pulses. In the case of

weighted edges, Hillar and Wibisono (2013) have proposed maximum entropy

models, in which the distribution of the edge (i, j) only depends on the sum

of strength parameters of vertices i and j independent of any other edges, and

proved that the MLE is uniformly consistent; Yan, Zhao, and Qin (2015) derived

the corresponding asymptotical normality. Ranola et al. (2010) used the Pois-

son distribution to model the multiple edges of biological networks. However,

asymptotic properties of the MLE in this model are still unknown.

At present, all asymptotic results of the MLE in these models are ad-hoc

or there are none. The lack of a unified theoretical framework is something we

wish to resolve. Two notable characterizations appeared in the above models.
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First, studying the distributions of vertex degrees is in the framework of mutually

independent edges. Second, the probability-mass or density function of the edge

(i, j) only depends on the sum of αi+αj , where αi denotes the strength parameter

of vertex i. Under these two assumptions, we study asymptotic properties of the

moment estimator instead of the MLE. The reason we use the method of moments

is that the degrees of vertices are explicitly represented in the moment equations;

they are not available for the maximum likelihood equations since we consider

a general probability mass function or density function for the edges. Using

the moment equations, it is convenient to establish the relationship between

the degrees and the parameters that are important for deriving the asymptotic

properties of the moment estimator. However, when the degrees of vertices are

the sufficient statistics in the exponential family distribution for graphs, the

moment equations are identical to the maximum likelihood equations (e.g., the

β-model, maximum entropy models, Poisson model).

For the remainder of this paper, we proceed as follows. In Section 2, we

establish a unified asymptotic result including the consistency and asymptotic

normality for the moment estimator of the parameter vector as the number of

parameters goes to infinity. In Section 3, we illustrate several applications on our

main results. In the generalized β-model, we relax the assumption of Hillar and

Wibisono (2013) that all the parameters are bounded by a constant to guarantee

the consistency of the MLE. Further discussion is in Section 4. Proofs are in the

Appendix.

2. Main Results

We derive asymptotic results for the moment estimator. As Yan and Xu

(2013) were only concerned with the asymptotic normality of the MLE in a

special β-model, the new challenge is to derive the consistency and asymptotic

normality simultaneously for the moment estimator in general network models

based on the degrees of vertices. We study the conditions guaranteeing such

results.

2.1. Notation and preliminaries

Let R+ = (0,∞), R0 = [0,∞), N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}. For a

vector x = (x1, . . . , xn)
⊤ ∈ Rn, denote by ∥x∥∞ = max1≤i≤n |xi| the ℓ∞ norm of

x. For an n × n matrix J = (Jij), ∥J∥∞ denotes the matrix norm induced by

the ∥ · ∥∞-norm on vectors in Rn:

∥J∥∞ = max
x ̸=0

∥Jx∥∞
∥x∥∞

= max
1≤i≤n

n∑
j=1

|Jij |.
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Let D be an open convex subset of Rn. We say an n × n function matrix

G(x) whose elements Gij(x) are functions on vectors x, is Lipschitz continuous

on D if there exists a real number λ such that for any v ∈ Rn and any x,y ∈ D,

∥G(x)(v)−G(y)(v)∥∞ ≤ λ∥x− y∥∞∥v∥∞, (2.1)

where λ may depend on n but is independent of x and y. For every fixed n, λ is

a constant.

Givenm,M > 0, we say an n×nmatrix V = (vij) belongs to the matrix class

Ln(m,M) if V is a diagonally balanced matrix with positive elements bounded

by m and M ,
vii =

∑n
j=1,j ̸=i vij , i = 1, . . . , n,

m ≤ vij ≤ M, i, j = 1, . . . , n; i ̸= j.
(2.2)

We use V to denote the Jacobian matrix induced by the moment equations and

show that it belongs to the matrix class Ln(m,M). We require the inverse of V ,

which doesn’t have a closed form. Yan and Xu (2013) proposed approximating

the inverse V −1 of V by a matrix S = (sij), where

sij =
δij
vii

− 1

v..
. (2.3)

Here, v.. =
∑n

i,j=1(1− δij)vij with δij the Kronecker delta function. We also use

S to approximate V −1, whose approximate errors are given in Proposition A.2

of the Appendix.

2.2. Asymptotic results

Consider a probability distribution P on the adjacency matrix A = (aij)n×n

of an undirected random graph G, with each edge aij (i ̸= j) having the form of

the discrete probability distribution

P (aij = a) = f((αi + αj)a),

or the density function f((αi + αj)a), where f(·) is a probability mass or den-

sity function and αi denotes the strength parameter of vertex i. If f is not well

behaved, there may exist multiple solutions for the moment estimate. For exam-

ple, if f takes the continuous distribution with the density 3αx2e−αx3
(a special

case of the Weibull distribution), then its expectation is Γ(4/3)α−1/3 and the

corresponding moment equations may have multiple solutions since this system

of equations is involved with the polynomial formula, where Γ(·) is the Gamma

function. If f behaves well, like the logistic function, then the solution is unique

if it exists. If edges only take two states “present” or “absent”, then a is the

dichotomous value “1” or “0”. In communication networks, if edges denote the
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number of emails between two persons, then a takes values from the set N0; and

if edges denote the calling time, then a takes nonnegative continuous real values.

For convenience, let aii = 0, i = 1, . . . , n, so there are no self-loops. We assume

that aij , 1 ≤ i < j ≤ n are mutually independent.

Here E(aij) only depends on the sum αi + αj . Let µ(αi + αj) = E(aij) and
α = (α1, . . . , αn). Let di =

∑
j aij be the degree of vertex i and d = (d1, . . . , dn)

be the degree sequence of graph G. Define a system of functions:

Fi(α) = di − E(di) = di −
n∑

j=1;j ̸=i

µ(αi + αj), i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))⊤.

The solution to F (α) = 0 is the moment estimator of α induced by the moment

equation d = E(d). Henceforth, we use α̂ to denote the moment estimator of α

satisfying F (α̂) = 0. Let F ′(α) denote the Jacobin matrix of F (α) on α.

A first a proposition has a proof in Appendix A.

Proposition 1. Assume that

(C1) V := V ar(d) ∈ Ln(m,M);

(C2) (di −E(di))/v
1/2
ii , i = 1, . . . , n and

∑
i(di −E(di))/(2v··)

1/2 are asymptoti-

cally standard normal as n → ∞.

If M/m2 = o(n), then for any fixed k, the first k elements of S(d − E(d)) are

asymptotically normal distribution with mean zero and covariance matrix given

by the upper k× k submatrix of the diagonal matrix B = diag(1/v11, . . . , 1/vnn),

where S is the approximate inverse of V defined at (2.3).

Remark 1. Since di and (1/2)
∑

i di are the respective sums of n and n(n−1)/2

independent random variables, condition C2 can be easily verified by Lyapunov’s

(Billingsley (1995), p.362), Lindeberg’s (1922), or Loève’s (1977, p.289) Central

Limit Theorem.

Given α with qn ≤ αi + αj ≤ Qn, assume A ∼ Pα. We make the following

assumptions.

(C3) F ′(α) ∈ Ln(m,M) or −F ′(α) ∈ Ln(m,M), where m = m(qn, Qn) and

M = M(qn, Qn).

(C4) F ′(α) is Lipschitz continuous with λ = (n − 1)ϕ1, where ϕi := ϕi(qn, Qn),

i = 1, 2, 3.

(C5) With probability approaching one,

max
i=1,...,n

|di − E(di)| ≤ ϕ2

√
(n− 1) log(n− 1). (2.4)
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(C6) |µ′′(θ̂ij)| = Op(ϕ3), where θ̂ij = t(αi + αj) + (1− t)(α̂i + α̂j), 0 ≤ t ≤ 1.

Theorem 1.

(1) Assume that (C3)−(C5) hold and

M2ϕ2

m3

√
log(n− 1)

(n− 1)
= o(1), (2.5)

M4ϕ1ϕ2

m5

√
log(n− 1)

(n− 1)
= o(1), (2.6)

then as n goes to infinity, with probability approaching one, the moment es-

timator α̂ exists and satisfies

∥α̂−α∥∞ = Op(
M2ϕ2

m3

√
log n

n
) = op(1). (2.7)

(2) If inequality (2.7) and conditions (C1), (C2), and (C6), and if

M6ϕ2ϕ3 log n

m9n1/2
= o(1), (2.8)

and M2/m3 = o(n), then for any fixed k ≥ 1, as n → ∞, the vector con-

sisting of the first k elements of (B−1)1/2(α̂−α) is asymptotically standard

multivariate normal, where (B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

The proof of the theorem is in Appendix B. We use the Newton-Kantovorich

Theorem, Proposition A.1 in the Appendix, to prove the consistency of the mo-

ment estimator by constructing the Newton’s iterative sequence. This technical

step is different from Chatterjee, Diaconis, and Sly (2011) and yields a simple

proof. It requires that the Jacobin matrix F ′(α) is Lipschitz continuous and

restricts the increasing rate of the Lipschitz λ on the dimension n of α; C4 has

the Lipschitz λ not faster than n. Generally, it is of the magnitude of n − 1,

since Fi(α) is the sum of n − 1 items. Condition C5 guarantees that the ℓ∞-

norm of F (α) = d − E(d) is bounded in the magnitude of (n log n)1/2, with

probability approaching one. If the random variables are sub-exponential, then

this condition can be verified by the concentration inequality (Vershynin (2012)).

Condition C6 requires that the second derivative of µ(α) exit and be bounded

by a function of qn and Qn with probability approaching one. If α̂ is a consistent

estimator of α, then the upper bound of the second derivation of µ(θ̂ij) is mainly

determined by qn and Qn since qn ≤ αi+αj ≤ Qn for all i ̸= j. If ϕ1, ϕ2, and ϕ3

are at least in the magnitude of O(1), then (2.6) implies (2.5) and (2.8) implies

M2/m3 = o(n).
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3. Applications

3.1. Generalized beta model

The beta model has been studied by many authors (e.g., Jackson (2008),

Blitzstein and Diaconis (2010), Chatterjee, Diaconis, and Sly (2011)). Hillar and

Wibisono (2013) have given its discrete version and proved the consistency of the

MLE under the assumption that all the parameters are bounded by a constant,

similar to Chatterjee, Diaconis, and Sly (2011). We consider here that the range

of parameters varies as n increases. Assume that aij , 1 ≤ i ̸= j ≤ n, take values

from the set Ω = {0, 1, . . . , r − 1} with r a fixed constant, and are distributed

independently with

P (aij = a) =
ea(αi+αj)∑r−1
k=0 e

k(αi+αj)
.

The moment equations are

di =

n∑
j=1;j ̸=i

r−1∑
a=0

aea(α̂i+α̂j)∑r−1
k=0 e

k(α̂i+α̂j)
, i = 1, . . . , n, (3.1)

and identical to the maximum likelihood equations. Here, we consider the sym-

metric parameter space

D = {α ∈ Rn : −Qn ≤ αi + αj ≤ Qn for 1 ≤ i < j ≤ n}.

The Jacobian matrix F ′(α) of F (α) is, for i, j = 1, . . . , n,

∂Fi

∂αi
=

n∑
j=1;j ̸=i

∑
0≤k<l≤r−1(k − l)2e(k+l)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))2

,

∂Fi

∂αj
=

∑
0≤k<l≤r−1(k − l)2e(k+l)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))2

, j = 1, . . . , n; j ̸= i.

Since e2k(αi+αj) ≤ e(k+(k−1))(αi+αj)+Qn , we have

r−1∑
k=0

e2k(αi+αj) ≤
∑

0≤k ̸=l≤r−1

e(k+l)(αi+αj)eQn .

Therefore,

(1/2)
∑

k ̸=l e
(k+l)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))2

=
(1/2)

∑
k ̸=l e

(k+l)(αi+αj)∑
k ̸=l e

(k+l)(αi+αj) +
∑m−1

k=0 e2k(αi+αj)

≥
∑

k ̸=l e
(k+l)(αi+αj)

2(1 + eQn)
∑

k ̸=l e
(k+l)(αi+αj)

≥ 1

2(1 + eQn)
.
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On the other hand,

(1/2)
∑

k ̸=l(k − l)2e(k+l)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))2

≤ 1

2
max
k ̸=l

(k − l)2 ≤ r2

2
.

Consequently, when −Qn ≤ αi + αj ≤ Qn for any i ̸= j,

1

2(1 + eQn)
≤
∣∣∣∂Fi

∂αj

∣∣∣ ≤ r2

2
.

Thus F ′(α) ∈ Ln(m,M), where m = (2(1 + eQn))−1 and M = r2/2. Let

gij(α) =
( ∂2Fi

∂α1∂αj
, . . . ,

∂2Fi

∂αn∂αj

)T
.

It is easy to verify that

∂2Fi

∂α2
i

=
n∑

j=1;j ̸=i

[
(1/2)

∑
k ̸=l,a(k − l)2(k + l − 2a)e(k+l+a)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))3

]
,

∂2Fi

∂αj∂αi
=

[
(1/2)

∑
k ̸=l,a(k − l)2(k + l − 2a)e(k+l+a)(αi+αj)

(
∑r−1

a=0 e
a(αi+αj))3

]
.

As
∑

k ̸=l,a e
(k+l+a)(αi+αj) ≤ (

∑r−1
a=0 e

a(αi+αj))3,∣∣∣∂2Fi

∂α2
i

∣∣∣ ≤ (r − 1)3(n− 1),
∣∣∣ ∂2Fi

∂αj∂αi

∣∣∣ ≤ (r − 1)3. (3.2)

This leads to ∥gii(α)∥1 ≤ 2(n − 1)(r − 1)3, where ∥x∥1 =
∑

i |xi| for a general

vector x. When i ̸= j and k ̸= i, j,

∂2Fi

∂αk∂αj
= 0,

so we have ∥gij(α)∥1 ≤ 2(r − 1)3, for j ̸= i. Consequently, for a vector v,

max
i

{∑
j

[∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)
]
vj

}
≤ ∥v∥∞max

i

n∑
j=1

∣∣∣∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)
∣∣∣

= ∥v∥∞max
i

n∑
j=1

∣∣∣ ∫ 1

0
gi(tx+(1−t)y)(x−y)dt

∣∣∣
≤ 4(r − 1)3(n− 1)∥v∥∞∥x− y∥∞.

This shows

m =
1

2(1 + eQn)
, M =

r2

2
, ϕ1 = 4(r − 1)3.
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We derive ϕ2. Since aij ∈ [0, r− 1] and di is a sum of n− 1 independent random

variables ai,j , j = 1, . . . , n; j ̸= i, by Hoeffding’s inequality (Hoeffding (1963)),

we have

P (|di − E(di)| ≥ (r − 1)
√

(n− 1) log(n− 1))

≤ 2 exp

(
−

2
(
(r − 1)

√
(n− 1) log(n− 1)

)2
(n− 1)(r − 1)2

)
≤ 2

(n− 1)2
.

Since

P (max
i

|di − E(di)| ≥ x) ≤
∑
i

P (|di − E(di)| ≥ x),

with probability approaching one, we have

max
i

|di − E(di)| ≤ ϕ2

√
(n− 1) log(n− 1),

where ϕ2 = r − 1. Thus, condition (C5) holds. We have

M4ϕ1ϕ2

m5

√
log n

n
= O

(
e5Qn

√
log n

n

)
.

If eQn = o
(
(n/ log n)1/10

)
, then (2.6) is satisfied. By Theorem 1, the uniform

consistency of α̂ follows.

Corollary 1. If eQn = o
(
(n/ log n)1/10

)
, then as n goes to infinity, with proba-

bility approaching one, α̂ exists and satisfies

∥α̂−α∥∞ = Op

(
e3Qn

√
log n

n

)
.

Now di =
∑

k ̸=i aik and (
∑

i di)/2 =
∑

1≤i<j≤n aij are sums of n − 1 and

n(n− 1)/2 independent discrete random variables, respectively. The covariance

matrix of d−E(d) is F ′(α), denoted by V , such that condition C1 holds. By the

central limit theorem for the bounded case in (Loève (1977), p.289), we know that

v
−1/2
ii {di − E(di)} and (2v··)

−1/2[
∑n

i=1{di − E(di)}] are asymptotically standard

normal if vii diverges. Since

(n− 1)

(1 + eQn)
≤ vii ≤ (n− 1)(r − 1), i = 1, . . . , n; v·· ≥

n(n− 1)

1 + eQn
.

If eQn = o(n), then vii → ∞, v·· → ∞ and M/m2 = o(n) such that conditions of

Proposition 1 hold. By (3.2), we have |µ′′(θij)| ≤ (r−1)3.We haveM6ϕ2ϕ3/m
9 =

(r2/2)6 · (r − 1) · (r − 1)3 · (2(1 + eQn))9.
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Corollary 2. If eQn = o
(
n1/18/(log n)1/9

)
, then for any fixed k ≥ 1, as n → ∞,

the vector consisting of the first k elements of (B−1)1/2(α̂−α) is asymptotically

standard multivariate normal, where (B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

3.2. Weighted graphs with continuous weights

When using the maximum entropy distributions to model weighted graphs
with continuous weights, Hillar and Wibisono (2013) showed that aij , 1 ≤ i ̸=
j ≤ n, are mutually independent exponential random variables with density

f(a) =
1

(αi + αj)
e−(αi+βj)a, αi + αj > 0.

The moment estimating equations are

di =
∑
k ̸=i

(α̂i + α̂k)
−1, i = 1, . . . , n, (3.3)

which are identical to the likelihood equations. Correspondingly,

Fi(α) = di −
∑
k ̸=i

(αi + αk)
−1, i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))′.

The Jacobian matrix F ′(α) of F (α) can be calculated as, for i = 1, . . . , n,

∂Fi

∂αj
=

1

(αi + αj)2
, j = 1, . . . , n; j ̸= i;

∂Fi

∂αi
=
∑
k≠i

1

(αi + αk)2
.

From Ln(m,M) in (2.2), we can see that F ′(α) ∈ Ln(m,M) with m = Q−2
n

and M = q−2
n if qn ≤ αi + αk ≤ Qn, i ̸= k. Theorem 1 can be applied. The

consistency of the MLE has been derived by Hillar and Wibisono (2013) and
the corresponding asymptotic normality has been done in Yan, Zhao, and Qin
(2015).

3.3. Weighted graphs with discrete weights

When considering weighted graphs with discrete weights, Hillar andWibisono
(2013) showed that the aij , 1 ≤ i ̸= j ≤ n, are mutually independent geometric
random variables with the probability aij at a ∈ N0

P (aij = a) = (1− e−(αi+αj))e−(αi+αj)a, αi + αj > 0.

The moment estimating equations are

di =
∑
k ̸=i

e−(α̂i+α̂j)

1− e−(α̂i+α̂j)
=

1

e(α̂i+α̂j) − 1
, i = 1, . . . , n. (3.4)
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Correspondingly,

Fi(α) = di −
∑
k ̸=i

1

e(αi+αk) − 1
, i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))′.

The Jacobin matrix F ′(α) of F (α) can be calculated as follows. For i = 1, . . . , n,

∂Fi

∂αj
=

e(αi+αj)

(e(αi+αj) − 1)2
, j = 1, . . . , n; j ̸= i;

∂Fi

∂αi
=
∑
k ̸=i

e(αi+αk)

(e(αi+αk) − 1)2
.

We see that −F ′(α) ∈ Ln(M,m) with m = eQn(eQn − 1)−2 and M = eqn(eqn −
1)−2 if qn ≤ αi +αk ≤ Qn, i ̸= k. Theorem 1 can be applied. The consistency of
the MLE has been derived by Hillar and Wibisono (2013) and the corresponding
asymptotic normality has been done in Yan, Zhao, and Qin (2015).

3.4. Poisson models

Assume that each aij is Poisson distributed with parameter αi + αj > 0.
This model has been considered by Ranola et al. (2010) and Sadinle (2012) in its
directed version. For convenience, we transform αi to eαi (i = 1, . . . , n) with

P (aij = a) =
ea(αi+αj)

a!
exp(eαi+αj ).

The moment equations are

di =

n∑
j ̸=i;j=1

eα̂i+α̂j , i = 1, . . . , n. (3.5)

With Fi(α) = di − E(di) = di −
∑

j ̸=i e
αi+αj , i = 1, . . . , n, we have

∂Fi(α)

∂αi
= −

∑
j ̸=i

eαi+αj ,
∂Fi(α)

∂αj
= −eαi+αj , j ̸= i.

Consider the parameter space D = {α : −Qn ≤ αi + αj ≤ Qn}. Then −F ′(α) ∈
Ln(m,M), where m = 1/eQn and M = eQn . Let gkij = ∂2Fi/(∂αk∂αj) and
gij = (g1ij , . . . , gnij)

⊤. We have

gkij =



−
∑

l ̸=i e
αi+αl , k = i = j,

−eαi+αk , k ̸= i, i = j,

−eαi+αk , k = j, i ̸= j,

−eαk+αj , k = i, i ̸= j,

0, otherwise.
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By the mean-value theorem for vector-valued functions (Lang (1993, p.341)), we
have

∥(F ′(x)− F ′(y))v∥∞ = ∥v∥∞max
i

∑
j

∣∣∣∂Fi(x)

∂αj
− ∂Fi(y)

∂αj

∣∣∣
= ∥v∥∞max

i

∑
j

∣∣∣ ∫ 1

0
g⊤
ij(tx+ (1− t)y)dt(x− y)

∣∣∣
≤ ∥v∥∞∥(x− y)∥∞max

i

∑
j,k

∣∣∣ ∫ 1

0
gkij(tx+ (1− t)y)dt

∣∣∣
≤ 4(n− 1)eQn∥v∥∞∥(x− y)∥∞.

Therefore, we can choose ϕ1 = 4eQn . Lemma C.2 in Appendix C shows

ϕ2 = 2c3

√
2e4Qn

γ
, (3.6)

where c3 is an absolute constant. We have

M4ϕ1ϕ2

m5

√
log(n− 1)

(n− 1)
= e9Qn × 4eQn × 2c3

√
2e4Qn

γ
×

√
log(n− 1)

(n− 1)

= O(e12Qn

√
log n

n
).

Corollary 3. If eQn = o((n/ log n)1/24), then

∥α̂−α∥∞ = Op

(
e7Qn

√
logn

n

)
= op(1).

The covariance matrix of d−E(d) is V = −F ′(α) ∈ Ln(m,M), so C1 holds.
Note that di =

∑
k ̸=i aik and (

∑
i di)/2 =

∑
1≤i<j≤n aij are sums of n − 1 and

n(n− 1)/2 Poisson random variables. As the third moment of the Poisson with
parameter λ is λ+ 3λ2 + λ3, we have∑

j ̸=i E(a3ij)

v
3/2
ii

≤ (n− 1)(eQn + 3e2Qn + e3Qn)

(n− 1)3/2e−3Qn/2
≤ 5e7Qn/2

(n− 1)1/2
.

If eQn = o(n1/7), then the above expression goes to zero. This shows that the

condition for the Lyapunov Central Limit Theorem, holds. Therefore, v
−1/2
ii {di−

E(di)} and (2v··)
−1/2

∑
i{di−E(di)} are asymptotically standard normal if eQn =

o(n1/7). Thus, C2 holds. If eQn = o((n/ log n)1/24), then by Corollary 3,

|µ′′(θ̂ij)| = exp(tij(α̂i + α̂j) + (1− tij)(αi + αj))

= Op(e
Qn × ee

7Qn(logn)1/2n−1/2

).
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Thus, C6 holds with ϕ3 as above. If eQn = n1/36/(log n)1/18, then

M6ϕ2ϕ3 log n

m9n1/2
=

log n

n1/2
× e15Qn × 2c3

√
2e4Qn

γ
× eQn × ee

7Qn(logn)1/2n−1/2

= o(1).

Corollary 4. If eQn = n1/36/(log n)1/18, then for any fixed k ≥ 1, as n → ∞,

the vector consisting of the first k elements of (B−1)1/2(α̂−α) is asymptotically

standard multivariate normal, where (B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

3.5. Rayleigh distribution

We consider a Rayleigh distribution for edges in which the moment equa-

tions are different from the maximum likelihood equations. The density for the

Rayleigh distribution with the parameter σ > 0 is f(x) = xσ−2 exp(−x2/(2σ2))

(Papoulis (1991), p.78). Let aij have the Rayleigh distribution with the param-

eter e(αi+αj)/2, so that the density of aij is

f(a) =
a

eαi+αj
e−a2/(2eαi+αj ).

As E(aij) =
√

π/2e(αi+αj)/2, the moment equations are

di =
n∑

j ̸=i;j=1

√
π

2
e(α̂i+α̂j)/2, i = 1, . . . , n, (3.7)

while the maximum likelihood equations are

1

2

∑
j ̸=i

a2ije
−(ᾱi+ᾱj) = n− 1, i = 1, . . . , n,

where ᾱi is the MLE of αi. The moment equations are simpler than the maximum

likelihood equations. Since (3.7) is similar to (3.5) for the Poisson model, deriving

the asymptotic results for the moment estimator is also similar, and is omitted.

4. Discussion

We have established a unified asymptotic theory for the moment estimator

in a class of undirected random graph models parameterized by the strengths of

vertices, and have illustrated applications to the generalized β-model, maximum

entropy models on graphs, and the Poisson model. The moment estimator is

induced by the moment equations based on the degree sequence; in particular,

the MLE is exactly the moment estimator in exponential family distributions

on graphs with the degree sequence as the sufficient statistic. The numerical

evaluations on asymptotic properties of the moment estimator have been provided

in Yan and Xu (2013), Yan, Zhao, and Qin (2015).
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If the maximum likelihood equations are identical to the moment equations,

then condition C3 implies C1, the Fisher information matrix of the parameter

vector and the covariance matrix of the degree sequence are the same. Conditions

C3–C5 crucially depend on values qn and Qn that measure the minimum and

maximum values of the set {αi + αj : i ̸= j}. If qn is too small or Qn is too

large, then the moment estimate doesn’t exist. In contrast with the conditions

guaranteeing the consistency of the moment estimator, those guaranteeing its

asymptotic normality seems more severe, as illustrated by the examples in Section

3. It is of interest to see whether these conditions can be relaxed.

In this paper, we assume that the network edges are mutually independent.

This assumption holds when we only consider the distribution of the vertex de-

grees with them as the exclusively sufficient statistics. If edges are dependent, as

long as the moment condition is correct, we should be able to obtain a consistent

estimator since our method is driven by moment condition. However, without

the mutual independence assumption, the resulting estimator’s asymptotic dis-

tribution is not clear. A more complex dependent case is that other network

statistics, such as triangle measuring transitivity effect, are involved. In this

case, we still have the moment equations based on these network statistics as

well as the degree sequence. In such situation, it is intricate to investigate the

asymptotic properties of the moment estimator since the asymptotic background

is involved with not only an increasing dimension of the parameter space but also

dependent edges (Fienberg (2012)). It would be of interest to see whether the

current method can be extended after some modifications. On the other hand, if

the exponential family for network statistics such as k-stars and triangles is used,

there is the problem of model degeneracy. See (Chatterjee and Diaconis (2013),

Schweinberger (2011), Strauss (1986)). A probability distribution for random

graphs needs to be properly chosen in order to avoid this problem.

Acknowledgements

We are very grateful to two anonymous referees and the Editor Hsin-Cheng

Huang for their valuable comments that have greatly improved the manuscript.

This research was supported by National Natural Science Foundation of China

(11341001, 11401239, 11271147, 11131002, 11271032). Yan’s research was sup-

ported by Postdoctoral Science Foundation of China (2014M552064).

Appendix A.

For a subset C ⊂ Rn, let C0 and C denote the interior and closure of C

in Rn, respectively. Let Ω(x, r) denote the open ball {y : ∥x − y∥ < r}, and
Ω(x, r) be its closure. We use Newton’s iterative sequence to prove the existence
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and consistency of the moment estimates relying on results of Gragg and Tapia

(1974).

Proposition A.1. Let F (x) = (F1(x), . . . , Fn(x))
⊤ be a function vector on x ∈

Rn. Assume that the Jacobian matrix F ′(x) is Lipschitz continuous on an open

convex set D with the Lipschitz constant λ. Given x0 ∈ D, assume that [F ′(x0)]
−1

exists,

∥[F ′(x0)]
−1∥∞ ≤ ℵ, ∥[F ′(x0)]

−1F (x0)∥∞ ≤ δ, h = 2ℵλδ ≤ 1,

Ω(x0, t
∗) ⊂ D0, t∗ :=

2

h
(1−

√
1− h)δ =

2

1 +
√
1− h

δ ≤ 2δ,

where ℵ and δ are positive constants that may depend on x0 and the dimension

n of x0. Then the Newton iterates xk+1 = xk − [F ′(xk)]
−1F (xk) exist and xk ∈

Ω(x0, t
∗) ⊂ D0 for all k ≥ 0; x̂ = limxk exists, x̂ ∈ Ω(x0, t∗) ⊂ D and F (x̂) = 0.

Thus if t∗ → 0, then ∥x̂− x0∥ = o(1).

For a matrix A = (aij), take ∥A∥ := maxi,j |aij |. Yan and Xu (2013) derived

the following.

Proposition A.2. If V ∈ Ln(m,M) at (2.2), and n is large enough,

∥V −1 − S∥ ≤ c1M
2

m3(n− 1)2
,

where S is defined at (2.3) and c1 is a constant that does not depend on M , m,

and n.

Lemma A.1. If V ∈ Ln(m,M), for large enough n,

∥V −1∥∞ ≤ ∥V −1−S∥∞+∥S∥∞ ≤ c1nM
2

m3(n− 1)2
+

1

m
(

1

n(n− 1)
+

1

n− 1
) ≤ c2M

2

nm3
,

where c2 is a constant that does not depend on M , m, and n.

Appendix A: Proof of Proposition 1

We have [S(d − E(d))]i = (di − E(di))/vii −
∑

i(di − E(di))/(v··). Since

V ∈ Ln(m,M),
maxi vii

v··
≤ (n− 1)M

n(n− 1)m2
=

M/m2

n
.

By (C2),

√
vii[S(d− E(d))]i =

di − E(di)√
vii

+Op(

√
vii
v··

) =
di − E(di)√

vii
+Op(

√
M/m2

n
).
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For any fixed k, if vii diverges, then

di − E(di)√
vii

=

∑k
l=1(dil − E(dil))√

vii
+

∑n
l=k+1(dil − E(dil))√

vii

=

∑n
l=k+1(dil − E(dil))√

vii
+ o(1).

For any fixed k,
∑n

l=k+1(dil−E(dil)), i = 1, . . . , k, are independent. The condition

M/m2 = o(n) implies mn → ∞. The latter further implies vii → ∞ as n → ∞.

Therefore, for any fixed k, (di − E(di))/v
1/2
ii , i = 1, . . . , k, are asymptotically

independent standard normal.

Appendix B: Proof of Theorem 1

To prove the first part of this theorem, it is sufficient to show that the

Newton-Kantovorich conditions hold. We only give the proof in case F ′(α) ∈
Ln(m,M). The proof when −F ′(α) ∈ Ln(m,M) is similar, and we omit it. In

the Newton’s iterative step, we take the true parameter vector α as the starting

point α(0) := α. Let V = F ′(α) ∈ Ln(m,M) and W = V −1 − S. By Lemma

A.1, we have ℵ = c2M
2/(nm3). Note that F (α) = d − E(d). Assuming (2.4),

by Proposition A.2 we have

∥[F ′(α)]−1F (α)∥∞ ≤ n∥W∥∥F (α)∥∞ +max
i

|Fi(α)|
vii

+
1

v··

n∑
i=1

|Fi(α)|

≤
(

c1nM
2

(n− 1)2m3
+

2

m(n− 1)

)
× ϕ2

√
(n− 1) log(n− 1)

≤ c3M
2ϕ2

m3

√
log(n− 1)

(n− 1)
,

where c3 is a constant. Therefore, we can choose

δ =
c3M

2ϕ2

m3

√
log(n− 1)

(n− 1)
.

If (2.6) holds, by C4,

h = 2ℵλδ = c2M
2

(n− 1)m2
× (n− 1)ϕ1 ×

c3M
2ϕ2

m3

√
log(n− 1)

(n− 1)

=
M4ϕ1ϕ2

m5

√
log(n− 1)

(n− 1)
= o(1).
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By Proposition A.1, ∥α̂ − α∥∞ = O((M2ϕ2/m
3)
√

log n/n). By C5, (2.4) holds

with probability approaching one such that (2.7) holds if (2.5) is satisfied. This

shows the first part.

For the second part, let γ̂ij = α̂i + α̂j − αi − αj and assume

max
i ̸=j

|γ̂ij | = O(
M2ϕ2

m3

√
log n

n
). (B.1)

Condition C4 holds, V = Cov(d − E(d)) ∈ Ln(m,M). Let W = V −1 − S and

U = Cov[W{d− E(d)}]. Then

U = WVW T = (V −1 − S)− S(I − V S),

{S(I − V S)}i,j =
(δi,j − 1)vi,j

vi,ivj,j
+

1

v··
.

According the definition of Ln(m,M), since

|{S(I − V S)}i,j | ≤ max

{
M

(n− 1)2m2
,

1

n(n− 1)m

}
≤ 2M

(n− 1)2m2
,

∥U∥ ≤ ∥V −1 − S∥+ ∥S(I − V S)∥ ≤ c1M
2

m3(n− 1)2
+

2M

m2(n− 1)2
.

If M2/m3 = o(n), then

∥U∥ = o(n−1). (B.2)

For i = 1, . . . , n, by a Taylor’s expansion, we have

di − E(di) =
∑
j ̸=i

(µ(α̂i + α̂j)− µ(αi + αj))

=
∑
j ̸=i

[µ′(αi + αj)(µ(α̂i + α̂j)− µ(αi + αj))] + hi,

where hi = (1/2)
∑

j ̸=i µ
′′(θ̂ij)[((α̂i + α̂j)− (αi + αj))]

2, and θ̂ij = tij(αi + αj) +

(1 − tij)(α̂i + α̂j), 0 < tij < 1. Writing the above expressions in matrices,

d− Ed = V (α̂−α) + h, or, equivalently,

α̂−α = V −1(d− Ed) + V −1h

= S(d− Ed) +W (d− Ed) + V −1h,

where h = (h1, . . . , hn)
T . Assume that µ′′(θ̂ij) = O(ϕ3). Then

|hi| ≤
1

2
(n− 1)ϕ3γ̂

2
ij .
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Therefore,

|(V −1h)i| = |(Sh)i|+ |(Wh)i|

≤max
i

|hi|
vii

+

∑
i |hi|
v··

+ ∥W∥
∑
i

|hi|

≤ O
(3ϕ3γ̂

2
ij

2m
+

c1M
2

m3(n− 1)2
× 1

2
n(n− 1)ϕ3γ̂

2
ij

)
≤ O

(
M2ϕ3

m3
×
(M2ϕ2

m3

√
log n

n

)2)
= O

(M6ϕ2ϕ3 log n

m9n

)
.

If M6ϕ2ϕ3 logn/m
9 = o(n1/2), then, (V −1h)i = o(n−1/2). By the first part of

this theorem, (B.1) holds with probability approaching 1. And by C6, µ′′(θ̂ij) =

Op(ϕ3). Consequently, by (B.2), we have

(α̂−α)i = [S(d− E(d))]i + op(n
−1/2).

Therefore, the second part of the theorem follows from Proposition 1.

Appendix C: Proof of (3.6)

A real-valued random variable X is sub-exponential with parameter κ > 0 if

E[|X|p]1/p ≤ κp for all p ≥ 1.

If X is a κ-sub-exponential random variable with finite first moment, then the

centered random variable X − E[X] is also sub-exponential with parameter 2κ

since [
E
(∣∣X − E[X]

∣∣p)]1/p ≤ [E
(
|X|p

)
]1/p +

∣∣E[X]
∣∣ ≤ 2[E

(
|X|p

)
]1/p.

Theorem C.1 (Vershynin (2012), Corollary 5.17). Let X1, . . . , Xn be indepen-

dent centered random variables, and suppose each Xi is sub-exponential with

parameter κi. Let κ = max1≤i≤n κi. Then for every ϵ ≥ 0,

P
(∣∣∣ 1

n

n∑
i=1

(Xi − E(Xi))
∣∣∣ ≥ ϵ

)
≤ 2 exp

[
− nγ ·min

( ϵ2
κ2

,
ϵ

κ

)]
,

where γ > 0 is an absolute constant.

Lemma C.1. Let X be a Poisson random variable with parameter λ > 0. Then

X is sub-exponential with parameter c3e
−λ, and the centered random variable

X −λ is sub-exponential with parameter 2c3e
−λ, where 1 < c3 < 3 is an absolute

constant.
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Proof. Let ⌈p⌉ denote the minimum integer among all integers larger than p.

Then p ≤ ⌈p⌉+ 1. Direct calculation gives

E(X⌈p⌉) =

⌈p⌉∑
k=1

{
⌈p⌉
k

}
λk =

⌈p⌉∑
k=1

[
λk × 1

k!

k∑
j=0

(−1)k−j

(
k

j

)
j⌈p⌉

]

≤
⌈p⌉∑
k=1

k∑
j=0

λkk!

j!(k − j)!k!
j⌈p⌉ ≤ λ⌈p⌉

⌈p⌉∑
k=1

k∑
j=0

j⌈p⌉

≤ λ⌈p⌉
⌈p⌉∑
k=1

∫ k+1

1
x⌈p⌉dx ≤ λ⌈p⌉

⌈p⌉∑
k=1

(k + 1)⌈p⌉+1

⌈p⌉+ 1

≤ λ⌈p⌉ 1

⌈p⌉+ 1

∫ ⌈p⌉+1

2
x⌈p⌉+1dx = λ⌈p⌉ (⌈p⌉+ 1)⌈p⌉+2

(⌈p⌉+ 1)(⌈p⌉+ 2)
.

Therefore,

[E(X⌈p⌉+1)]1/p ≤ (λ⌈p⌉+1)1/p[
(⌈p⌉+ 2)⌈p⌉+3

(⌈p⌉+ 2)(⌈p⌉+ 3)
]1/p ≤ [λ(⌈p⌉+ 2)]1+1/p ≤ c3λ

2p,

where 1 < c3 < 3 is an absolute constant.

Lemma C.2. With probability at least 1− 2n/(n− 1)2, we have

max
1≤i≤n

|di − E(di)| ≤ 2c3

√
2e4Qn

γ
(n− 1) log(n− 1).

Proof. With aij a Poisson random variable with the parameter e−Qn ≤ λ =

eαi+αj ≤ eQn , by Lemma C.1, aij − e(αi+αj) is sub-exponential with parameter

2c3e
2(αi+αj) ≤ 2c3e

2Qn . For each i = 1, . . . , n, the random variables (aij −
eαi+αj , j ̸= i) are independent sub-exponential random variables, so we can apply

Theorem C.1 with κ = 2c3e
2Qn and

ϵ = κ

(
2 log(n− 1)

γ(n− 1)

)1/2

.

Assume n is sufficiently large such that ϵ/κ =
√

2 log(n− 1)/γ(n− 1) ≤ 1. Then

by Theorem C.1, for each i = 1, . . . , n we have

P

(
1

n− 1
|di − Ed∗i | ≥ κ

(
2 log(n− 1)

γ(n− 1)

)1/2
)

≤ 2 exp

(
−(n− 1)γ · 2 log n

γ(n− 1)

)
=

2

(n− 1)2
.
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By the union bound,

P
(
∥d− d∗∥∞ ≥ 2c3

√
2eQn

γ
(n− 1) log(n− 1)

)

≤
n∑

i=1

P
(
|di − d∗i | ≥ 2c3

√
2eQn

γ
(n− 1) log(n− 1)

)
≤ 2n

(n− 1)2
.
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