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Abstract: We investigate the theoretical properties of robust estimators for the re-

gression coefficient function in functional linear regression. A robust procedure is

provided in which we use outlier-resistant loss functions including non-convex loss

functions. Their robust estimates are computed using an iteratively reweighted

penalized least-squares algorithm. Using a pseudo data approach, we are able to

show that our robust estimators also achieve the same convergence rate for pre-

diction and estimation as the penalized least squares estimator does in the classi-

cal functional linear regression. Theoretical developments are demonstrated using

numerical studies with various types of robust loss, illustrating the merit of the

method.
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1. Introduction

Regression problems with functional predictors are increasingly encountered

in many applications, and several statistical models and methods have been de-

veloped for them. It is frequently the case that a functional predictor is linked to

a scalar response variable. In such cases, the most popular regression model for

modeling their relationship is the functional linear model. This assumes that the

scalar response Y depends on a square integrable random function X through

the relationship

Y = α0 +

∫
T
X(t)β0(t)dt+ σε, (1.1)

where α0 is the intercept, β0 is a square integrable function on the compact

interval T representing the slope function, and ε is a random error with zero

mean and unit variance. Recent work on functional linear regression includes,

among others, Cardot, Ferraty, and Sarda (2003), Yao, Müller, and Wang (2005),

Cai and Hall (2006), Hall and Horowitz (2007), Li and Hsing (2007), Crambes,

Kneip, and Sarda (2009), Yuan and Cai (2010), Cardot and Johannes (2010),

and Shin and Hsing (2012).
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Since the estimation of the slope function β0 is an infinite dimensional prob-

lem, regularization through dimension reduction or penalization is necessary. The

popular methods are least squares estimation with dimension reduction by func-

tional principal component analysis (e.g., Yao, Müller, andWang (2005); Hall and

Horowitz (2007)), and penalized least squares with smoothness-inducing penalty

on β0 (e.g., see Cardot, Ferraty, and Sarda (2003); Crambes, Kneip, and Sarda

(2009); Yuan and Cai (2010)). However, the majority of methods in the liter-

ature are least-squares type estimators with squared error loss function and, as

a result, the presence of outliers has a serious effect on the resulting estimators.

There have been some proposals to address robustness in the functional linear re-

gression by adopting outlier-resistant loss functions. Maronna and Yohai (2011)

proposed a robust version of smoothing spline estimator based on MM estimation

with the biweight loss function. Gervini (2012) proposed a GM estimation for

FPCA-based functional linear regression, where both the predictor and response

variables are random functions, by considering an outlier-resistant loss function

corresponding to t-distribution. Maronna and Yohai (2011) and Gervini (2012)

suggested robust procedures and demonstrated robust properties under numeri-

cal studies, but asymptotic properties of their estimators were not studied. Yuan

and Cai (2010) studied a general form of the estimator for β0 with any convex

loss function by assuming that β0 resides in a reproducing kernel Hilbert space

(RKHS). Although their estimator includes M-type estimators, their theoreti-

cal work did not go beyond the least-squares type estimator. Our goal here is

to extend the applicability of the RKHS approach to robust functional linear

regression by adopting an outlier-resistant loss function.

Suppose we observe data (xi, yi), 1 ≤ i ≤ n, consisting of n independent

copies of (X,Y ) in the model (1.1). Suppose that β0 is in a Hilbert space H. For

estimating α0 and β0, consider the general problem

min
α∈R,β∈H

[
1

n

n∑
i=1

ρ

(
yi − α−

∫
T xi(t)β(t)dt

σ̂

)
+ λJ(β)

]
, (1.2)

where ρ is a loss function, σ̂ is a preliminary scale estimate of errors, J(β) is

a penalty functional on β, and λ > 0 is a regularization parameter. Most pe-

nalized least-squares approaches to functional linear regression take H =Wm
2 =

{β : β, β(1), . . ., β(m−1) are absolutely continuous and β(m) ∈ L2} and J(β) =∫
T [β

(m)(t)]2dt. In that case, if ρ(r) = r2, the solution to (1.2) is the smooth-

ing spline estimator for functional linear regression (Crambes, Kneip, and Sarda

(2009)). However, this solution is known to be highly sensitive to outlying ob-

servations. Thus, it is natural to consider an outlier-resistant loss function in

order to robustify the estimators of α0 and β0. By replacing the squared-error
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loss by a non-convex ρ-function, Maronna and Yohai (2011) proposed a robust

version of the smoothing spline estimator. Further, Cardot, Crambes, and Sarda

(2005) studied quantile regression by considering the L1-type loss function defin-

ing quantiles of the regression. For a convex ρ-function, Yuan and Cai (2010)

derived the explicit form of the minimizer over f of (1.2) by the representer the-

orem (Kimeldorf and Wahba (1971)). They then proposed the penalized least

squares estimators for α0 and β0 associated with ρ(r) = r2 and focused on their

asymptotic properties. In this paper, we extend the scope of the approach in Yuan

and Cai (2010), practically and theoretically, by considering outlier-resistant loss

functions that are not necessarily convex. Specifically, we show that our robust

estimators achieve the same convergence rate for prediction and estimation as

do the least-squares type estimators in the regular functional linear regression.

To the best of our knowledge, this is the first work that provides a theoretical

background for robust functional linear regression.

The remainder of the paper is organized as follows. Section 2 introduces

M-type smoothing spline estimators for functional linear regression and its es-

timating algorithm, and Section 3 investigates the asymptotic properties of the

proposed estimator. Sections 4 and 5 then provides simulation studies and a data

example to demonstrate the performance of the proposed method. Proofs of the

main results in Section 3 are provided in the online supplementary note.

2. Robust Functional Linear Regression

As (1.1) we take the slope function β0 to be in an RKHS H, which is a

subspace of the Hilbert space of square integrable functions on T , and suppose

X satisfies E
(∫

T |X(t)|2dt
)
<∞. Suppose that J(β) = ∥P1β∥2H, where P1 is the

orthogonal projection of β in H onto a subspace H1, and H has a decomposition

H = H0 ⊕ H1, where H0 = {β ∈ H : J(β) = 0} is a finite dimensional linear

subspace of H with dim(H0) = L ≤ n.

LetK be the reproducing kernel ofH andK1 the reproducing kernel ofH1. If

K is continuous and square integrable on T ×T , then ηi(t) :=
∫
T xi(u)K(u, t)du

are in H, i = 1, . . . , n (Cucker and Smale (2001)). Since β(u) = ⟨β(·),K(u, ·)⟩H
by the reproducing property, the penalized least squares (PLS) criterion in (1.2)

is
1

n

n∑
i=1

ρ

(
yi − α− ⟨ηi, β⟩H

σ̂

)
+ λ∥P1β∥2H. (2.1)

Using the representer theorem, it can be shown that the minimizer over β of (2.1)

has the form

βλ(t) =

L∑
l=1

dlθl(t) +

n∑
i=1

ciξi(t), (2.2)
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where the θl, 1 ≤ l ≤ L, are an orthonormal basis of H0 and ξi(t) = P1ηi(t) =∫
T xi(u)K1(u, t)du. This is because for β = βλ + ϱ with ϱ an element in H1 per-

pendicular to ξ1, . . ., ξn, we observe ⟨ηi, β⟩H = ⟨ηi, βλ⟩H and ∥P1β∥2H = ∥P1βλ∥2H+
∥ϱ∥2H. Thus, (2.1) is

1

n

n∑
i=1

ρ

(
yi − α− ⟨ηi, βλ⟩H

σ̂

)
+ λ(∥P1βλ∥2H + ∥ϱ∥2H),

which is minimized when ϱ = 0, and its minimizer over β0 has the form (2.2).

Since (P1βλ)(·) =
∑n

i=1 ciξi(·) and ∥P1βλ∥2H =
∑n

i=1

∑n
j=1 cicj⟨ξi, ξj⟩H, minimiz-

ing (2.1) is reduced to

min
α,d,c

[
1

n

n∑
i=1

ρ
(yi − α−

∑L
l=1 dl

∫
T xi(t)θl(t)dt−

∑n
j=1 cj⟨ξi, ξj⟩H

σ̂

)
+λ

n∑
i=1

n∑
j=1

cicj⟨ξi, ξj⟩H
]

(2.3)

with d = (d1, . . ., dL)
T and c = (c1, . . . , cn)

T .

For illustration, suppose that H =Wm
2 [0, 1]. If we use the inner product

⟨f, g⟩H =
m−1∑
k=0

f (k)(0)g(k)(0) +

∫ 1

0
f (m)(t)g(m)(t)dt,

then the reproducing kernel of H is

K(s, t) =

m−1∑
k=0

sktk

(k!)2
+

∫ 1

0

(s− u)m−1
+ (t− u)m−1

+

{(m− 1)!}2
du

with u+ = max(u, 0). If P1 is the orthogonal projection onto the subspace H1 =

{f ∈ H : f (k)(0) = 0, 0 ≤ k ≤ m − 1}, then J(f) = ∥P1f∥2H =
∫ 1
0 [f

(m)(t)]2dt.

The reproducing kernel of H1 isK1(s, t) = {(m−1)!}−2
∫ 1
0 (s−u)

m−1
+ (t−u)m−1

+ du

and θk(t) = tk−1/(k − 1)!, 1 ≤ k ≤ m, are an orthonormal basis of H0. In case

m = 2, βλ(t) = d1+d2t+
∑n

i=1 ci
∫
T xi(s)K1(s, t)ds with θ1(t) = 1, θ2(t) = t and

K1(s, t) =
∫ 1
0 (s− u)+(t− u)+du.

If ρ is differentiable, there is a variational equation for obtaining a minimizer

β̂nλ over β of (2.1).

Proposition 1. Suppose that ψ = ρ′ exists everywhere. Then, a minimizer β̂nλ
of (2.1) satisfies

− 1

n

n∑
i=1

ηiψ

(
yi − α− ⟨ηi, β⟩H

σ̂

)
1

σ̂
+ 2λP1β = 0. (2.4)
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We now present the estimation algorithm with details. Taking derivatives

(2.3) with respect to α, c, and d and setting them equal to 0, it can be shown

that the solution to the resulting estimating equations is the minimizer of the

penalized weighted least-squares criterion

1

n

n∑
i=1

wi

(
yi − α−

L∑
l=1

dl

∫
T
xi(t)θl(t)dt−

n∑
j=1

cj⟨ξi, ξj⟩H
)2

+ 2λcTΣc, (2.5)

where Σ = {Σij} is an n×nmatrix with Σij = ⟨ξi, ξj⟩H =
∫
T
∫
T xi(s)K1(s, t)xj(t)dsdt

and

wi =
1

σ̂2
w

(
yi − α−

∑L
l=1 dl

∫
T xi(t)θl(t)dt−

∑n
j=1 cj⟨ξi, ξj⟩H

σ̂

)

with w(r) = ψ(r)/r. Letting y = (y1, . . ., yn)
T , T = {Til} an n× L matrix with

Til =
∫
T xi(t)θl(t)dt, and W = diag(w1, . . ., wn), (2.5) is written in the matrix

form 1

n
(y − α1− Td− Σc)TW (y − α1− Td− Σc) + 2λcTΣc. (2.6)

Letting Z = [1, T ] and b = (α, d1, . . ., dL)
T , the minimizer of (2.6) is given by

b̂ = (ZTM−1Z)−1ZTM−1y,

ĉ =M−1(In − Z(ZTM−1Z)−1ZTM−1)y
(2.7)

with M = Σ + 2nλW−1. Here the matrix M is not well defined when wi = 0

for some i. This can happen with a loss function (e.g., biweight loss) whose ψ

function takes 0 value for some domain region. In such case we can easily show

that the minimizer of (2.6) is

b̂ = (ZT
2 M

−1
2 Z2)

−1ZT
2 M

−1
2 y2,

ĉ2 =M−1
2 (In2 − Z2(Z

T
2 M

−1
2 Z2)

−1ZT
2 M

−1
2 )y2,

ĉ1 = 0n1

(2.8)

with M2 = Σ22 + 2nλW−1
2 . Here, n1 = #{i : wi = 0} and n2 = #{i : wi ̸= 0}

with n = n1+n2, y2, c2, W2, Z2, Σ22 are redefined appropriately after removing

from y, c, W , Z, Σ the rows and rows/columns corresponding to {i : wi = 0},
and c1 is the sub-vector of c, having the entries corresponding {i : wi = 0}.

The minimizer of (2.5) is obtained by an iteratively reweighted least squares

(IRWLS) procedure. If ρ is a convex loss function having monotone ψ, then

(2.5) has a unique minimum. However, when non-convex loss functions (e.g.,

biweight loss or t loss) are used, the objective function (2.1) is non-convex and

may have multiple local minima. Consequently, when ρ is non-convex, it is
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important to start the IRWLS algorithm with a robust, consistent initial fit. In

our implementation, we consider L1 loss function with ρ(r) = |r| at (2.1) and use

the resulting quantile regression fit as an initial fit for the iterative algorithm.

L1 estimation does not require the scale parameter estimation and its estimators

have high breakdown point (Maronna, Martin, and Yohai (2006)).

The optimization problem (1.2) involves an auxiliary scale estimate σ̂ that

is required to make the estimate β̂nλ scale invariant. The preliminary scale

estimate can be computed using the residuals r0i from the initial L1 fit. Since

the robustness properties of M-type estimators depend on the robustness of the

auxiliary scale estimator, we consider a robust scale estimate. A popular robust

scale estimator is an M-estimator. Given the residuals r0i , an M-scale estimate σ̃

satisfies
1

n

n∑
i=1

ρ0

(
r0i
σ̃

)
= δ (2.9)

with δ ∈ (0, 1), where ρ0 is a loss function. A frequently used scale estimate is

obtained when ρ0 is the biweight function with k = 1 and δ = 0.5. To get a

consistent scale estimate at the normal distribution, we use the M-scale estimate

as σ̂ = σ̃/1.56. Another simple and robust choice of an M-scale estimate is

the normalized median absolute deviation (MAD), σ̂ = medi(|r0i |)/0.6745. See

Maronna, Martin, and Yohai (2006) for more details.

The choice of the smoothing parameter is crucial in performance of the

regularized estimators for most smoothing methods. Commonly used practi-

cal strategies for choosing the smoothing parameter are cross validation (CV)

and generalized cross validation (GCV). Since leave-one-out CV or k-fold CV

are computationally burdensome, we propose to use GCV as follows. Based on

the fact that the fitted value is a linear predictor of the response as ŷ = Hλy,

we select the smoothing parameter λ as a minimizer of the weighted version of

GCV score:

GCV(λ) =
1

n

(ŷ − y)TW (ŷ − y)

{1− tr(Hλ)/n}2
, (2.10)

where the hat matrixHλ has the form ofHλ = {Σ+2nλW−1M−1Z(ZTM−1Z)−1

ZT }M−1. If some wi = 0 exist with the biweight ρ-function, the hat matrix is

modified as Hλ = {Σ22+2nλW−1
2 M−1

2 Z2(Z
T
2 M

−1
2 Z2)

−1ZT
2 }M

−1
2 with notations

defined as in (2.8). We tested CV and GCV with extensive simulations, and

found little difference between them. We prefer GCV and use it for the smoothing

parameter selection in simulations.

3. Asymptotic Properties

In this section, we show that the asymptotic properties of the penalized least

squares estimator for β0 (e.g., Crambes, Kneip, and Sarda (2009); Yuan and Cai
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(2010)), hold for penalized M-estimators for β0. For simplicity, we assume that

EX(·) = 0 and EY = 0. Then, β0 can be estimated by

β̂nλ = argmin
β∈H

[
1

n

n∑
i=1

ρ
(yi − ⟨ηi, β⟩H

σ̂

)
+ λ∥P1β∥2H

]
.

All our results are applicable to the more general setting when EX(·) ̸= 0 and

EY ̸= 0.

In nonparametric regression, Cox (1983) showed that the asymptotic prop-

erties of the least squares smoothing spline hold for general M-type smoothing

splines. He tackled this by approximating a nonlinear M-type smoothing spline

by a linear smoothing spline acting on some unobservable pseudo data. For func-

tional linear regression, we use a similar approach. For this, we define pseudo

data
ỹi =

∫
T
xi(t)β0(t)dt+ σ

ψ(εi)

Eψ′ = ⟨ηi, β0⟩H + σ
ψ(εi)

Eψ′

and let β̃nλ be the minimizer of

1

n

n∑
i=1

(ỹi − ⟨ηi, β⟩H)
2 + 2

λσ2

Eψ′ ∥P1β∥2H. (3.1)

Now define operators on Sn = span{η1, . . ., ηn} by

Φnλ(β, σ) = − 1

n

n∑
i=1

ηiψ

(
yi − ⟨ηi, β⟩H

σ

)
1

σ
+ 2λP1β,

and

Ψnλβ = − 1

n

n∑
i=1

ỹiηi + Gnλβ

with

Gnλβ =
1

n

n∑
i=1

⟨ηi, β⟩Hηi + 2(
λσ2

Eψ′ )P1β.

An estimator β̂nλ is a solution of Φnλ(β, σ̂) = 0 from Proposition 1, and β̃nλ is the

solution of Ψnλβ = 0. Since Ψnλβ̃nλ = 0, equivalently, Gnλβ̃nλ = n−1
∑n

i=1 ỹiηi,

we have β̃nλ = G−1
nλ

(
n−1

∑n
i=1 ỹiηi

)
. It can be shown that Gnλ is invertible as

in Cox (1983). Here Gnλβ = 0 is the equation for obtaining a least squares

smoothing spline for the regression coefficient function β0 with identically zero

ỹi’s, and its unique solution is β = 0.

We need assumptions for our theoretical development.

(A1) The random errors εi are independent of the covariates xi.

(A2) ψ = ρ′ satisfies (i) ψ ∈ C2(−∞,∞), (ii) supt |ψ(j)(t)| < ∞, j = 0, 1, 2, (iii)

Eψ = 0, Eψ′ ̸= 0,Var(ψ(j)) <∞, j = 0, 1.
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(A3) σ̂ − σ = Op(n
−1/2).

(A4) The eigenvalues κk of the reproducing kernel K1 of H1 satisfy κk ∼ k−2r

for r > 1/2.

(A5) The eigenvalues πk of the covariance operator Γ for X satisfy πk ∼ k−2s for

s > 1/2.

(A6) λ ∼ n−(2r+2s)/(2r+2s+1).

(A7) For any square integrable function f , there exists some constant C ≥ 1 such

that

E

(∫
T
f(t)X(t)dt

)4

≤ C

{
E

(∫
T
f(t)X(t)dt

)2
}2

.

(A8) γk ∼ πkκk with νk = (1 + γ−1
k )−1 the kth largest eigenvalue of R1/2ΓR1/2,

where Γ is the covariance operator associated with the covariance function

Γ of the process X and R is the operator associated with the reproducing

kernel R of an RKHS with the norm

∥f∥2R =

∫
T

∫
T
f(s)Γ(s, t)f(t)dsdt+ J(f).

We use the same notation for a nonnegative bivariate function and an integral

operator with kernel having that function: (Rf)(·) =
∫
T R(·, t)f(t)dt.

The assumption (A2) is common in general M-type smoothing splines as in,

for example, Cox (1983) and Cunningham, Eubank, and Hsing (1991). A special

case of (A4) hasH =Wm
2 [0, 1] andH1 = {f ∈ H : f (k)(0) = 0, 0 ≤ k ≤ m−1}, so

K1(s, t) = [(m−1)!]−2
∫ 1
0 (s−u)

m−1
+ (t−u)m−1

+ du and κk ∼ k−2m. IfX is Gaussian

then
∫
T f(t)X(t)dt is a normal random variable and (A7) follows; the constant

C in (A7) is at least 1 since
{
E
(∫

T f(t)X(t)dt
)2}2

≤ E
(∫

T f(t)X(t)dt
)4

by

Lyapunov’s inequality. Assumptions (A4)−(A8) are borrowed from Yuan and

Cai (2010); if one uses the theoretical results in Crambes, Kneip, and Sarda

(2009) instead of Yuan and Cai (2010), (A4)−(A8) need to be replaced by the

corresponding ones there.

For ∥f∥2Γ =
∫
T
∫
T f(s)Γ(s, t)f(t)dsdt with the covariance function Γ of X,

the M-type smoothing spline estimator β̂nλ behaves similarly to the least squares

smoothing spline estimator β̃nλ based on pseudo data.

Theorem 1. Let Cn = E∥β̃nλ − β0∥2Γ. If (A1)−(A8) hold, for any δ > 0 and

some constant M > 0, there is an n0 such that for all n ≥ n0,

P [there is a solution β̂nλ to Φnλ(β, σ̂) = 0
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satisfying

∥β̂nλ − β̃nλ∥2Γ ≤ δ−2MCn] ≥ 1− δ.

Thus, with high probability β̂nλ and β̃nλ are much closer than β̃nλ and β0,

so our robust estimator β̂nλ enjoys the same asymptotics as the least squares

estimator β̃nλ. Since the υi = σψ(εi)/Eψ
′ have zero mean and constant variance,

it follows from Yuan and Cai (2010) that, under (A4)-(A8),

Cn = E∥β̃nλ − β0∥2Γ = O(n−(2r+2s)/(2r+2s+1)). (3.2)

If there is a unique solution to Φnλ(f, σ̂) = 0, then

∥β̂nλ − β0∥2Γ ≤ 2∥β̂nλ − β̃nλ∥2Γ + 2∥β̃nλ − β0∥2Γ,

with ∥β̂nλ − β̃nλ∥2Γ = Op(Cn) from Theorem 1 and ∥β̃nλ − β0∥2Γ = Op(Cn) from

(3.2), gives the following theorem.

Theorem 2. If ψ′ > 0 and (A1)−(A8) hold,

∥β̂nλ − β0∥2Γ = Op(n
−(2r+2s)/(2r+2s+1)).

The condition ψ′ > 0 here ensures that Φnλ(f, σ̂) = 0 has a unique solution,

though it is not necessary to ensure uniqueness. For example, Huber’s ψ is

not strictly increasing, but the corresponding estimate is unique unless there is

a large gap in the middle of the data. When there are multiple solutions to

(2.4) when, for example, the loss function ρ is non-convex (e.g., biweight loss or

Cauchy loss), Theorem 2 remains valid for a solution of (2.4) that is close enough

to β̃nλ. Thus, the initial value plays a crucial role in the IRWLS algorithm to

get the estimator β̂nλ which shares the asymptotic properties of the penalized

least squares estimator β̃nλ; with a robust and consistent initial fit, we could get

a solution β̂nλ sufficiently close to β̃nλ so that Theorem 2 holds.

Here ∥β̂nλ−β0∥2Γ measures the prediction error for any random function X∗

possessing the same distribution as X and independent of x1, . . ., xn, since

∥β̂nλ − β0∥2Γ = E
[( ∫

T
β̂nλ(t)X

∗(t)dt−
∫
T
β0(t)X

∗(t)dt
)2∣∣∣xi, yi, 1 ≤ i ≤ n

]
.

Remark 1. One can obtain a similar rate to the smoothing spline estimators

in Crambes, Kneip, and Sarda (2009) under slightly different assumptions. Us-

ing those results, Cn = O(λ + (nλ1/(2m+2q+1))−1) when the penalty functional

J(β) =
∫
T [β

(m)(t)]2dt and q quantifies the decaying rate of the eigenvalues of

the covariance function Γ by
∑∞

r=k+1 πr = O(k−2q). Here q is related to s by

2q = 2s − 1. The values q and s explain the structure of the distribution of X.

On the other hand, m and r explain the smoothness of the regression coefficient
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function β0. Thus, the convergence rate for M-type smoothing spline estimators

in functional linear regression model depends on the smoothness of the sample

path of X and the regression coefficient function β0 as the least squares smooth-

ing spline estimator does.

Write ∥f∥2 =
∫
T [f(t)]

2dt as the standard norm for L2. Let ϕk be the eigen-

function of the covariance operator Γ corresponding to its eigenvalue πk, and φk

be the eigenfunction of the reproducing kernel K1 corresponding to its eigen-

value κk. When Γ and K1 have the same set of eigenfunctions, we can derive the

convergence rate for the estimation error of an estimator for β0, as follows.

Theorem 3. Assume that ϕk = φk for all k ≥ 1. If 2r > 2s+ 1, then under the

assumptions of Theorem 2, ∥β̂nλ − β0∥2 = Op(n
−2r/(2r+2s+1)).

As mentioned in Yuan and Cai (2010), ϕk and φk differ in general, but

they are the same when Γ and K1 share a common set of eigenfunctions. The

setting ϕk = φk, k = 1, 2, . . ., is commonly adopted in FPCA-based functional

linear regression (Cai and Hall (2006); Hall and Horowitz (2007)). The condition

2r > 2s+ 1 indicates that β0 is smoother than the sample path of X.

Remark 2. The estimation error behaves differently from the prediction error.

Theorem 3 has estimation error larger when the eigenvalues of the covariance

operator Γ decay faster, while Theorem 2 has prediction error smaller when the

eigenvalues of the covariance operator Γ decay faster.

As to assumption (A3), an initial estimator β̂0 is not
√
n-consistent so that

the residuals r0i = yi −
∫
T xi(t)β̂

0(t)dt differ from the true errors ϵi = σεi by

more than the order n−1/2. Nevertheless, we can show that an M-scale estimator

based on the residuals is
√
n-consistent for σ under appropriate conditions. For

this, we consider a leave-one-out estimator in a manner similar to Müller, Schick,

and Wefelmeyer (2004).

Theorem 4. Suppose ρ0 at (2.9) is twice differentiable and satisfies supt |ρ′′0(t)| <
∞, Eρ′0 = 0, and Var(ρ′0) < ∞. Let β̂−i be a leave-one-out estimator for β and

set β̂ij = E[β̂−i|(xk, yk), 1 ≤ k ≤ n, k ̸= j]. If

E∥β̂−i − β0∥2Γ = o(n−1/2), (3.3)

1

n

n∑
i=1

n∑
j=1

E∥β̂−i − β̂ij∥2Γ = o(1), (3.4)

then
√
n(σ̂ − σ) = Op(1).
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In our implementation, we use the L1 fit for initial fitting so β̂0 is the min-
imizer over β of (2.1) with ρ(r) = |r|. Cardot, Ferraty, and Sarda (2003) de-
rived the convergence rate of the prediction error, but (3.3) is not achieved with
their rate. Kato (2012) showed that the convergence rate for the prediction
error in FPCA-based functional linear quantile regression is the same as that
in FPCA-based functional linear regression (Cai and Hall (2006)), where the
prediction error always satisfies (3.3). Although the convergence rate for the
quantile smoothing spline estimator is not well-studied in literature, the con-
vergence rate of the prediction error with smoothing spline estimator, faster
than the order n−1/2, can be derived in parallel with FPCA-based functional
linear quantile regression. From (2.2) and (2.7), a leave-one-out estimator β̂−i

is given in the form of β̂−i(·) =
∑n

j=1Wij(·)yj with Wii(·) = 0, where Wij(·)
depends only on xk, 1 ≤ k ≤ n, k ̸= i. Since (β̂−i − β̂ij)(t) = σWij(t)εj , the
sufficient condition for (3.4) is n−1

∑n
i=1

∑n
j=1E∥Wij∥2 = o(1). One can show

that
∑n

j=1E∥Wij∥2 = O(n−1λ−1) for the least squares smoothing spline estima-
tor. Analogously, one can derive the same order for quantile smoothing spline
estimator under some conditions so that (3.4) is met.

4. Simulation Study

In this section, we provide the numerical performance of the proposed es-
timators. Several outlier-resistant loss functions are considered, as is squared
error. The ρ and ψ functions of the loss functions are:

(Huber) ρH(x)=x2+(2k|x| − k2−x2)I(|x|>k), ψH(x)=min(|x|, k) · sign(x);

(Logistic) ρL(x)=x+ 2 log(1 + exp(−x)), ψL(x)=
1−exp(−x)
1+exp(−x)

;

(Biweight) ρB(x)=1− {1− (xk )
2}3I(|x| ≤ k), ψB(x) = x{1− (xk )

2}2I(|x| ≤ k);

(Cauchy) ρC(x)=log(1 + x2), ψC(x)=
x

1 + x2
;

(Squared
ρS(x)=x

2, ψS(x)=x.error)

The Huber and biweight loss functions have an additional tuning parameter, k,
that determines the robustness and efficiency of the resulting estimator. We use
k = 1.4 for Huber and k = 4.68 for biweight, respectively, corresponding to
95% efficiency (Maronna, Martin, and Yohai (2006)). The Huber and logistic
ρ-functions are convex, while the biweight and Cauchy ρ-functions are not.
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We adopted the simulation setting of Hall and Horowitz (2007) and Yuan and

Cai (2010) with modifications for additive error, in order to contain some outliers.

The true slope function β0 defined on T = [0, 1] was β0 =
∑50

j=1 4(−1)j+1j−2ϕj

with ϕ1(t) = 1 and ϕj+1(t) =
√
2 cos(jπt) for j ≥ 1. The random function X was

generated as X =
∑50

j=1 πjZjϕj with independent samples Zj from U(−
√
3,
√
3)

and πj = j−2s. We took s = 0.6, 1, and 2, to regulate the decaying rate of

eigenvalues of the covariance function of X. We took H = W 2
2 [0, 1] with the

associated inner product, reproducing kernel, and penalty term as defined in

Section 2.1. Several additive random errors in the linear model were considered

to represent the outlier-prone situations: Gaussian: ϵ ∼ N(0, 1) (no outliers);

t with 3 degree of freedom: ϵ ∼ t3; t with 10 degree of freedom: ϵ ∼ t10; and

mixture Gaussian: ϵ ∼ (1 − p)N(0, 1) + pN(10, 1) with p = 0.1. The scale

parameter was set by σ = 1. We considered n = 50, 100, 200, and 500. As in

Yuan and Cai (2010), we measured the estimation accuracy by integrated squared

error ∥β̂nλ − β0∥2 and prediction error ∥β̂nλ − β0∥2Γ. For each configuration, we

repeated the experiment 1,000 times.

In Figures 1 through 4, we provide the prediction and estimation errors, av-

eraged over 1,000 simulation runs, with λ chosen by GCV. Results were obtained

under the different types of additive errors and loss functions. All panels in the

figures show prediction and estimation errors linearly decreasing in the logarith-

mic scale as the sample size n increases. For prediction error this agrees with

the results in Theorem 2, and for estimation errors this agrees with the results in

Theorem 3. Here s affects prediction and estimation errors in opposite directions,

as was shown under square-loss in Yuan and Cai (2010); it is the same for all

four outlier-resistant loss functions under the existence of outliers (see Figures 2

through 4) as shown in Theorems 2 and 3.

As to performance of the loss functions considered, their qualities for pre-

diction are rather different. Table 1 lists the averages and standard deviations

of prediction errors over 1,000 simulation runs. There is no real difference under

Gaussian additive errors, but prediction from the squared loss case is outper-

formed by other outlier-resistant loss functions when additive errors follow mix-

ture Gaussian, t3, and t10. The non-convex loss functions (biweight and Cauchy)

clearly outperform convex loss functions (Huber and logistic) under severe outly-

ingness (mixture Gaussian), while all four outlier-resistant loss functions perform

comparably under mild outlyingness (t3 and t10). The same pattern can be ob-

served in estimation. Numerical evidence suggests the use of outlier-resistant

loss in functional linear regression and the preference of non-convex loss in the

existence of strong outlying observations.
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Figure 1. Prediction and estimation errors with different loss functions when
the additive error was generated from Gaussian distribution (no outliers).
All axes are in log scale.

Figure 2. Prediction and estimation errors with different loss functions when
the additive error was generated from mixture Gaussian distribution. All
axes are in log scale.

5. Ozone Pollution Data Example

We applied our methodologies to ozone data from the California Environmen-

tal Protection Agency website (http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.

htm), where ozone observed in California during 1980 and 2011 was recorded. We

took hourly ozone levels in the city of Sacramento between June and August of

2005 as our data set, a total of 92 days. Ozone levels at 4 A.M. were not recorded

http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
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Figure 3. Prediction and estimation errors with different loss functions when
the additive error was generated from t-distribution with df = 3. All axes
are in log scale.

Figure 4. Prediction and estimation errors with different loss functions when
the additive error was generated from t-distribution with df = 10. All axes
are in log scale.

during the period, and two days of the period had some missing observations. We

focused on the prediction of the daily maximum ozone level based on the ozone

profile observed on the previous day. Thus we used hourly profile of ozone level

as random covariate function evaluated on discrete time points and maximum

ozone of the following day as response variable. Ozone levels were subjected to

square-root transformation.
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Table 1. Average (standard error) of prediction errors over 1,000 simulation
runs.

Distribution
s n Loss function Gaussian mixture Gaussian t3 t10
0.6 50 Square 0.1138 (0.128) 0.8896 (1.144) 0.2751 (0.404) 0.1533 (0.186)

Huber 0.1038 (0.101) 0.1327 (0.092) 0.1370 (0.120) 0.1133 (0.117)
Logistic 0.1017 (0.099) 0.1727 (0.141) 0.1491 (0.130) 0.1161 (0.114)
Biweight 0.0995 (0.086) 0.1097 (0.107) 0.1398 (0.121) 0.1126 (0.097)
Cauchy 0.1096 (0.070) 0.1118 (0.072) 0.1285 (0.093) 0.1155 (0.077)

100 Square 0.0565 (0.050) 0.4144 (0.483) 0.1540 (0.279) 0.0702 (0.069)
Huber 0.0530 (0.038) 0.0747 (0.043) 0.0760 (0.049) 0.0593 (0.047)
Logistic 0.0513 (0.037) 0.0910 (0.055) 0.0811 (0.055) 0.0594 (0.047)
Biweight 0.0526 (0.036) 0.0557 (0.040) 0.0770 (0.055) 0.0613 (0.047)
Cauchy 0.0650 (0.039) 0.0692 (0.040) 0.0752 (0.044) 0.0703 (0.043)

200 Square 0.0278 (0.023) 0.2268 (0.239) 0.0705 (0.063) 0.0347 (0.031)
Huber 0.0271 (0.020) 0.0426 (0.027) 0.0387 (0.026) 0.0291 (0.022)
Logistic 0.0256 (0.018) 0.0522 (0.033) 0.0409 (0.028) 0.0290 (0.022)
Biweight 0.0269 (0.020) 0.0283 (0.020) 0.0391 (0.027) 0.0300 (0.023)
Cauchy 0.0364 (0.025) 0.0383 (0.025) 0.0428 (0.028) 0.0375 (0.026)

500 Square 0.0115 (0.009) 0.0981 (0.093) 0.0313 (0.031) 0.0140 (0.008)
Huber 0.0110 (0.007) 0.0169 (0.011) 0.0150 (0.010) 0.0121 (0.010)
Logistic 0.0106 (0.007) 0.0224 (0.015) 0.0159 (0.011) 0.0119 (0.007)
Biweight 0.0110 (0.007) 0.0119 (0.008) 0.0155 (0.011) 0.0127 (0.008)
Cauchy 0.0143 (0.010) 0.0155 (0.011) 0.0161 (0.012) 0.0154 (0.011)

1 50 Square 0.0976 (0.116) 0.8189 (0.988) 0.2468 (0.359) 0.1287 (0.153)
Huber 0.0854 (0.093) 0.1023 (0.089) 0.1148 (0.113) 0.0942 (0.099)
Logistic 0.0834 (0.088) 0.1384 (0.131) 0.1258 (0.122) 0.0966 (0.097)
Biweight 0.0817 (0.079) 0.0907 (0.090) 0.1189 (0.118) 0.0922 (0.086)
Cauchy 0.0864 (0.071) 0.0859 (0.071) 0.1025 (0.094) 0.0909 (0.075)

100 Square 0.0482 (0.042) 0.3778 (0.439) 0.1254 (0.144) 0.0600 (0.061)
Huber 0.0436 (0.034) 0.0541 (0.035) 0.0620 (0.046) 0.0511 (0.045)
Logistic 0.0424 (0.033) 0.0672 (0.048) 0.0667 (0.052) 0.0501 (0.043)
Biweight 0.0434 (0.032) 0.0463 (0.035) 0.0620 (0.048) 0.0509 (0.041)
Cauchy 0.0496 (0.033) 0.0507 (0.034) 0.0570 (0.039) 0.0550 (0.041)

200 Square 0.0252 (0.021) 0.2086 (0.235) 0.0599 (0.058) 0.0300 (0.026)
Huber 0.0242 (0.018) 0.0330 (0.019) 0.0331 (0.021) 0.0257 (0.019)
Logistic 0.0235 (0.018) 0.0407 (0.025) 0.0348 (0.023) 0.0257 (0.020)
Biweight 0.0245 (0.018) 0.0261 (0.018) 0.0337 (0.022) 0.0269 (0.019)
Cauchy 0.0303 (0.020) 0.0303 (0.018) 0.0345 (0.021) 0.0307 (0.020)

500 Square 0.0102 (0.008) 0.0854 (0.090) 0.0282 (0.028) 0.0126 (0.010)
Huber 0.0098 (0.007) 0.0158 (0.010) 0.0139 (0.010) 0.0110 (0.008)
Logistic 0.0092 (0.007) 0.0197 (0.012) 0.0145 (0.011) 0.0106 (0.008)
Biweight 0.0101 (0.007) 0.0107 (0.008) 0.0140 (0.010) 0.0116 (0.008)
Cauchy 0.0137 (0.010) 0.0146 (0.010) 0.0151 (0.011) 0.0145 (0.010)
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Table 1. (Continuous)

Distribution
s n Loss function Gaussian mixture Gaussian t3 t10
2 50 Square 0.0725 (0.083) 0.7203 (0.785) 0.2017 (0.270) 0.0975 (0.106)

Huber 0.0668 (0.077) 0.0816 ( 0.089) 0.0986 (0.110) 0.0756 (0.081)
Logistic 0.0625 (0.069) 0.1177 (0.135) 0.1076 (0.117) 0.0781 (0.083)
Biweight 0.0622 (0.065) 0.0685 (0.070) 0.1003 (0.111) 0.0742 (0.077)
Cauchy 0.0706 (0.074) 0.0679 (0.072) 0.0863 (0.098) 0.0780 (0.082)

100 Square 0.0353 (0.035) 0.3169 (0.330) 0.1025 (0.112) 0.0455 (0.046)
Huber 0.0315 (0.032) 0.0360 (0.034) 0.0468 (0.046) 0.0388 (0.040)
Logistic 0.0304 (0.030) 0.0477 (0.046) 0.0518 (0.052) 0.0374 (0.037)
Biweight 0.0304 (0.029) 0.0333 (0.032) 0.0467 (0.046) 0.0370 (0.036)
Cauchy 0.0357 (0.035) 0.0348 (0.034) 0.0415 (0.041) 0.0402 (0.039)

200 Square 0.0184 (0.018) 0.1704 (0.177) 0.0482 (0.053) 0.0225 (0.022)
Huber 0.0172 (0.017) 0.0193 (0.017) 0.0229 (0.020) 0.0184 (0.018)
Logistic 0.0164 (0.015) 0.0250 (0.023) 0.0243 (0.021) 0.0183 (0.017)
Biweight 0.0162 (0.015) 0.0174 (0.015) 0.0228 (0.020) 0.0189 (0.018)
Cauchy 0.0194 (0.018) 0.0183 (0.017) 0.0224 (0.020) 0.0200 (0.019)

500 Square 0.0076 (0.006) 0.0658 (0.068) 0.0203 (0.021) 0.0091 (0.007)
Huber 0.0073 (0.006) 0.0092 (0.007) 0.0096 (0.008) 0.0078 (0.006)
Logistic 0.0069 (0.005) 0.0115 (0.009) 0.0102 (0.009) 0.0077 (0.006)
Biweight 0.0072 (0.005) 0.0077 (0.006) 0.0097 (0.008) 0.0078 (0.006)
Cauchy 0.0086 (0.007) 0.0087 (0.007) 0.0092 (0.007) 0.0089 (0.007)

We first applied functional linear regression with the square loss. The QQ-

plot using the resulting scaled residuals is presented in Figure 5; it hints at the

existence of outliers. We applied four types of robust functional linear regression

to the same data, and present QQ-plot of the scaled residuals from Huber loss case

in Figure 5. Since robust regression is less likely affected by outliers, outlying

observations are more likely highlighted in the resulting residual QQ-plot, as

shown in Figure 5. Other robust regressions using the different robust losses

yielded the similar residual QQ-plots.

To verify the prediction enhancement for an independent data set, we set

up the test data for the same period of the year 2006. Using the model built on

the 2005-year data, we predicted the daily maximum ozone level based on the

previous hourly ozone profile. In Table 2, root mean squared error (RMSE) and

RMSE with upper 10% trimming (RMSE(0.9)) are presented, demonstrating that

all types of robust functional linear regression provide considerable improvement

in prediction.

Supplementary Materials

The supplementary material contains the proofs of Proposition 1, Theorems

1, 3, and 4.
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Figure 5. QQ-plots of scaled residuals for functional linear regression using
square loss (left panel) and Huber loss (right panel).

Table 2. RMSE and RMSE(0.9) (RMSE with upper 10% trimming) for test
data set.

Square Huber Logistic Biweight Cauchy
RMSE 0.0294 0.0256 0.0281 0.0255 0.0261
RMSE (0.9) 0.0224 0.0206 0.0217 0.0207 0.0209

Table 3. Caption of the table.

Bandwidth h = 3 h = 4 h = 5

Estimates N̂LC
H N̂LC

H̄
N̂LL

H̄
N̂LC

H N̂LC
H̄

N̂LL
H̄

N̂LC
H N̂LC

H̄
N̂LL

H̄

beta(10, 10) BIAS -22.5 -14.8 14.0 -13.3 -6.9 12.5 -8.2 -4.7 11.5
p̄ = 0.500 S.E. 13.8 14.9 12.1 12.6 14.6 11.7 15.1 19.3 15.5
cv = 0.218 RMSE 26.4 21.0 18.5 18.3 16.2 17.1 17.2 19.9 19.3
beta(5, 5) BIAS -32.2 -19.9 5.4 -21.9 -11.8 4.9 -15.6 -8.4 5.1
p̄ = 0.500 S.E. 15.8 16.2 12.3 14.3 19.8 12.9 16.4 19.8 14.6
cv = 0.302 RMSE 35.9 25.7 13.4 26.1 15.9 11.9 22.6 21.5 15.4
beta(4, 8) BIAS -53.7 -29.1 -10.8 -42.0 -19.3 -8.4 -34.4 -13.9 -7.6
p̄ = 0.333 S.E. 20.8 19.4 18.1 18.5 18.8 15.6 19.2 20.6 16.4
cv = 0.392 RMSE 57.6 34.9 21.1 45.9 26.9 17.8 39.4 24.9 18.1
beta(3, 5) BIAS -57.4 -32.4 -15.5 -45.6 -22.8 -13.1 -37.4 -17.1 -11.4
p̄ = 0.375 S.E. 21.2 19.9 17.1 18.9 18.8 15.0 19.6 21.6 15.6
cv = 0.430 RMSE 61.2 38.1 23.1 49.4 29.5 19.9 42.3 27.5 19.3
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