Shrinkage estimation of large dimensional precision matrix using random matrix theory

Cheng Wang^{1,3}, Guangming Pan², Tiejun Tong³ and Lixing Zhu³

¹Shanghai Jiao Tong University ²Nanyang Technological University ³Hong Kong Baptist University

Supplementary Material

A1. Proof of Theorem 1

By Corollary A.41 of Bai and Silverstein (2010), we have

$$L^{3}(F^{\frac{n\lambda}{p}\Sigma_{p}^{-1}},F^{\frac{\lambda}{y}\Sigma_{p}^{-1}}) \leq (\frac{n}{p}-\frac{1}{y})^{2}\lambda^{2}\frac{1}{p}tr(\Sigma_{p}^{-2}).$$

Condition S2 implies that

$$\frac{1}{p}tr(\Sigma_p^{-2}) \leq C.$$

Noting $p/n \to y$, we have $L^3(F^{\frac{n\lambda}{p}\sum_p^{-1}}, F^{\frac{\lambda}{y}\sum_p^{-1}}) \to 0$. Therefore, the Stieltjes transform of the LSD of $F^{\frac{n\lambda}{p}\sum_p^{-1}}$ is

$$m_H(z) = \int \frac{1}{\frac{\lambda}{yt} - z} dH(t)$$

where $z \in \mathbb{C}^+$. Then by Bai and Silverstein (2010, chap. 4) or the main theorem in Pan (2010), as $n \to \infty$, $F^{\frac{1}{p} \mathbb{W} \mathbb{Y}^T + \frac{n\lambda}{p} \Sigma_p^{-1}}$ converges almost surely to a non-random distribution F_1 , whose Stieltjes transform $m_1(z)$ satisfies

$$m_1(z) = \int \frac{1}{\frac{\lambda}{ty} - z + \frac{1}{y(1 + m_1(z))}} dH(t).$$
(1)

It is easy to verify that $F^{y(\frac{1}{p}\mathbb{Y}\mathbb{Y}^T + \frac{n\lambda}{p}\Sigma_p^{-1})}$ converges almost surely to a non-random distribution F_2 , whose Stieltjes transform is $m_2(z) = \frac{1}{\nu}m_1(\frac{z}{\nu})$.

Similarly, by Corollary A.41 of Bai and Silverstein (2010), we can prove that $y(\frac{1}{p}\mathbb{Y}\mathbb{Y}^T + \frac{n\lambda}{p}\Sigma_p^{-1})$ and $\frac{1}{n}\mathbb{Y}\mathbb{Y}^T + \lambda\Sigma_p^{-1}$ have the same LSDs. Here we also use the fact

that the support of F_1 or F_2 is bounded by Bai and Silverstein (1998) or the extreme eigenvalues of S_n is bounded by Pan and Zhou (2011).

Altogether, we have that, as $n \to \infty$, $F^{\frac{1}{n} \mathbb{Y} \mathbb{Y}^T + \lambda \Sigma_p^{-1}}$ converges almost surely to a non-random distribution F_2 , whose Stieltjes transform $m_2(z)$ satisfies

$$m_2(z) = \int \frac{1}{\frac{\lambda}{t} - z + \frac{1}{1 + ym_2(z)}} dH(t).$$
(2)

Finally, Theorem A.43 of Bai and Silverstein (2010) yields

$$\begin{split} \|F^{\Sigma_p^{-1/2}(S_n+\lambda I_p)\Sigma_p^{-1/2}} - F^{\frac{1}{n}\mathbb{Y}\mathbb{Y}^T + \lambda\Sigma_p^{-1}}\| \\ &\leq \frac{1}{p} rank(\Sigma_p^{-1/2}(S_n+\lambda I_p)\Sigma_p^{-1/2} - (\frac{1}{n}\mathbb{Y}\mathbb{Y}^T + \lambda\Sigma_p^{-1})) \\ &= \frac{1}{p} rank(\bar{Y}\bar{Y}^T) \leq \frac{1}{p}, \end{split}$$

where $||f|| = \sup_{x} |f(x)|$. The proof is completed.

A2. Proof of Lemma 1

First, $m_0(-\lambda)$ is the solution of Equation (2.7). Added to this, almost surely,

$$\frac{1}{p}tr(\frac{1}{\lambda}S_n+I_p)^{-1}\to\lambda m_0(-\lambda).$$

Then, $\lambda m_0(-\lambda) \ge \min(0, 1-\frac{1}{y})$. Hence, $1-y+y\lambda m_0(-\lambda) \ge 0$.

Next, suppose we have two solutions M_1 , M_2 of Equation (2.7) and $1 - y + y\lambda M_j \ge 0$, j = 1, 2. Then

$$M_1 = \int \frac{dH(t)}{t(1 - y + y\lambda M_1) + \lambda},$$

$$M_2 = \int \frac{dH(t)}{t(1 - y + y\lambda M_2) + \lambda}.$$

Hence,

$$M_1-M_2=(M_2-M_1)\int \frac{ytdH(t)}{(t(1-y+y\lambda M_1)+\lambda)(t(1-y+y\lambda M_2)+\lambda)}$$

If $M_1 \neq M_2$, we have

$$-1 = \int \frac{yt\lambda dH(t)}{(t(1-y+y\lambda M_1)+\lambda)(t(1-y+y\lambda M_2)+\lambda)},$$

which is in contradiction with $\frac{yt\lambda}{(t(1-y+y\lambda M_1)+\lambda)(t(1-y+y\lambda M_2)+\lambda)} \ge 0$. Therefore, Equation (2.7) has a unique solution.

A3. Proof of Theorem 2

To proof Theorem 2, we need the following lemma.

Lemma 1 Under the conditions of Theorem 1, almost surely,

$$\frac{1}{p}tr(\Sigma_p^{1/2}(S_n+\lambda I_p)^{-1}\Sigma_p^{1/2})\to R_1(\lambda),$$

$$\frac{1}{p}tr(\Sigma_p^{1/2}(S_n+\lambda I_p)^{-1}\Sigma_p^{1/2})^2\to R_2(\lambda),$$

where $R_1(\lambda)$ and $R_2(\lambda)$ satisfy

$$R_1(\lambda) = \int \frac{1}{\frac{\lambda}{t} + \frac{1}{1 + yR_1(\lambda)}} dH(t), \qquad (3)$$

$$R_2(\lambda) = \int \frac{1 + \frac{yR_2(\lambda)}{(1+yR_1(\lambda))^2}}{(\frac{\lambda}{t} + \frac{1}{1+yR_1(\lambda)})^2} dH(t).$$
(4)

Proof: By the definition of ESD and Helly-Bray theorem,

$$\frac{1}{p}tr(\Sigma_p^{1/2}(S_n+\lambda I_p)^{-1}\Sigma_p^{1/2}) = \int \frac{1}{x}dF^{\Sigma_p^{-1/2}(S_n+\lambda I_p)\Sigma_p^{-1/2}}(x) \xrightarrow{a.s.} \int \frac{1}{x}dF(x) = \lim_{z\to 0} m(z),$$

$$\frac{1}{p}tr(\Sigma_p^{1/2}(S_n+\lambda I_p)^{-1}\Sigma_p^{1/2})^2 = \int \frac{1}{x^2}dF^{\Sigma_p^{-1/2}(S_n+\lambda I_p)\Sigma_p^{-1/2}}(x) \xrightarrow{a.s.} \int \frac{1}{x^2}dF(x) = \lim_{z\to 0} m'(z).$$

That is,

$$R_1(\lambda) = \int \frac{1}{x} dF(x) = \lim_{z \to 0} m(z),$$

$$R_2(\lambda) = \int \frac{1}{x^2} dF(x) = \lim_{z \to 0} m'(z).$$

Equation (2.5) yields

$$m'(z) = \int \frac{1 + \frac{ym'(z)}{(1+ym(z))^2}}{(\frac{\lambda}{t} - z + \frac{1}{1+ym(z)})^2} dH(t).$$
(5)

For both sides of Equation (2.5) and (5), letting $z \rightarrow 0$, we can get

$$R_1(\lambda) = \int \frac{1}{\frac{\lambda}{t} + \frac{1}{1 + yR_1(\lambda)}} dH(t),$$

$$R_2(\lambda) = \int \frac{1 + \frac{yR_2(\lambda)}{(1 + yR_1(\lambda))^2}}{(\frac{\lambda}{t} + \frac{1}{1 + yR_1(\lambda)})^2} dH(t).$$

This finishes the proof of Lemma 1.

Now we prove Theorem 2. By Lemma 1, we have

$$m_0(-\lambda) = \int \frac{dH(t)}{t(1-y+y\lambda m_0(-\lambda))+\lambda}.$$

In Lemma 1, writing

$$v(\lambda) = \frac{1}{\lambda} (1 - \frac{R_1(\lambda)}{1 + yR_1(\lambda)}),$$

thus

$$R_1(\lambda) = \frac{1 - \lambda v(\lambda)}{1 - y(1 - \lambda v(\lambda))},$$

and

$$\frac{1-\lambda v(\lambda)}{1-y(1-\lambda v(\lambda))} = \int \frac{1}{\frac{\lambda}{t} + \frac{1}{1+y\frac{1-\lambda v(\lambda)}{1-y(1-\lambda v(\lambda))}}} dH(t).$$

Further, we can show that

$$v(\lambda) = \int \frac{dH(t)}{t(1-y+y\lambda v(\lambda))+\lambda},$$

which is the same as Euqution (2.7). In addition,

$$1 - y + y\lambda v(\lambda) = 1 - y + y(1 - \frac{R_1(\lambda)}{1 + yR_1(\lambda)}) = \frac{1}{1 + yR_1(\lambda)} \ge 0.$$

Hence, $v(\lambda) = m_0(-\lambda)$ and

$$R_1(\lambda) = \frac{1 - \lambda m_0(-\lambda)}{1 - y(1 - \lambda m_0(-\lambda))}.$$
(6)

Further,

$$R_1'(\lambda) = \frac{dR_1(\lambda)}{d\lambda} = -\frac{m_0(-\lambda) - \lambda m_0'(-\lambda)}{(1 - y(1 - \lambda m_0(-\lambda)))^2}.$$
(7)

By the formula of (3),

$$R_1'(\lambda) = -\int \frac{\frac{1}{t} - \frac{yR_1'(\lambda)}{(1+yR_1(\lambda))^2}}{(\frac{\lambda}{t} + \frac{1}{1+yR_1(\lambda)})^2} dH(t),$$

then

$$\int \frac{1}{\left(\frac{\lambda}{t}+\frac{1}{1+yR_1(\lambda)}\right)^2} dH(t) = \frac{(1+yR_1(\lambda))^2(R_1(\lambda)+\lambda R_1'(\lambda))}{1+yR_1(\lambda)+y\lambda R_1'(\lambda)}.$$

By (4), we have

$$R_{2}(\lambda) = \frac{\int \frac{1}{(\frac{\lambda}{t} + \frac{1}{1 + yR_{1}(\lambda)})^{2}} dH(t)}{1 - \frac{y}{(1 + yR_{1}(\lambda))^{2}} \int \frac{1}{(\frac{\lambda}{t} + \frac{1}{1 + yR_{1}(\lambda)})^{2}} dH(t)}$$

= $(1 + yR_{1}(\lambda))^{2} (R_{1}(\lambda) + \lambda R'_{1}(\lambda)).$

Finally, by (6) and (7) we have

$$R_2(\lambda) = \frac{1 - \lambda m_0(-\lambda)}{(1 - y(1 - \lambda m_0(-\lambda)))^3} - \frac{\lambda m_0(-\lambda) - \lambda^2 m_0'(-\lambda)}{(1 - y(1 - \lambda m_0(-\lambda)))^4}$$

This finishes the proof of Theorem 2.

A4. Proof of Theorem 3

Lemma 1 implies that

$$R_{1}(\beta) = \int \frac{1}{\frac{\beta}{t} + \frac{1}{1 + yR_{1}(\beta)}} dH(t),$$

$$R_{2}(\beta) = \int \frac{1 + \frac{yR_{2}(\beta)}{(1 + yR_{1}(\beta))^{2}}}{(\frac{\beta}{t} + \frac{1}{1 + yR_{1}(\beta)})^{2}} dH(t).$$

Moreover, $\frac{1}{1+yR_1(\beta)} = 1 - y(1 - \beta m_0(-\beta))$ where $m_0(-z)$ is the Stieltjes transform of LSD of S_n . Denoting the LSD of S_n as $F^{(0)}(x)$, then

$$m_0(-\beta) = \int \frac{1}{x+\beta} dF^{(0)}(x).$$
 (8)

Further, if we define another distribution function as

$$F^{(1)}(x) = (1 - y)I_{(0,\infty)}(x) + yF^{(0)}(x),$$
(9)

and

$$m_1(-\beta) = \int \frac{1}{x+\beta} dF^{(1)}(x),$$
(10)

we have $1 - y(1 - \beta m_0(-\beta)) = \beta m_1(-\beta)$. Writing $\gamma = \gamma(\beta) = 1/m_1(-\beta)$, we have

$$R_1(\beta) = \frac{\gamma}{\beta} \int \frac{t}{t+\gamma} dH(t),$$

$$R_2(\beta) = \frac{\frac{\gamma^2}{\beta^2} \int (\frac{t}{t+\gamma})^2 dH(t)}{1 - y \int (\frac{t}{t+\gamma})^2 dH(t)}.$$

Therefore,

$$L(\beta) = 1 - \frac{(R_1(\beta))^2}{R_2(\beta)}$$

= $1 - (\int \frac{t}{t+\gamma} dH(t))^2 (\frac{1}{\int \frac{t^2}{(t+\gamma)^2} dH(t)} - y)$
= $L_H(\gamma).$

For $\gamma(\beta)$, we have

$$\gamma(\boldsymbol{\beta}) = \frac{1}{\int \frac{1}{x+\boldsymbol{\beta}} dF^{(1)}(x)},$$

which is a strictly increasing function on β . Therefore, γ and β are one-to-one mapping. Specially, when $y \leq 1$ that is $F^{(1)}(x)$ has a point mass 1 - y at the origin, the function $\gamma(\beta)$: $(0,\infty) \mapsto (0,\infty)$. When $y \geq 1$, the function $\gamma(\beta)$: $(0,\infty) \mapsto (\gamma_0,\infty)$ where $\gamma_0 \int 1/x dF^{(1)}(x) = 1$. Altogether, we have

$$\begin{split} \min_{\substack{\beta > 0}} L(\beta) &= \min_{\substack{\gamma > 0}} L_H(\gamma), \ y \leq 1, \\ \min_{\substack{\beta > 0}} L(\beta) &= \min_{\substack{\gamma > \gamma_h}} L_H(\gamma), \ y \geq 1. \end{split}$$

When H(x) is a degenerate distribution at σ^2 ,

$$L_H(\gamma) = y(\frac{\sigma^2}{\sigma^2 + \gamma})^2.$$

Obviously, $L_H(\gamma)$ achieves its minimum value $L_0 = 0$ at $\gamma^* = \infty$. Moreover, $\beta_{opt} \to \infty$ and

$$\frac{1}{\alpha_{\text{opt}}} = \frac{R_2(\beta_{\text{opt}})}{R_1(\beta_{\text{opt}})} = \lim_{\gamma \to \infty} \frac{\frac{\sigma^4}{(\sigma^2 + \gamma)^2}}{\frac{\sigma^2}{\sigma^2 + \gamma}} = 0,$$
$$\frac{\beta_{\text{opt}}}{\alpha_{\text{opt}}} = \lim_{\gamma \to \infty} \frac{1}{\gamma} \frac{\frac{\sigma^4}{(\sigma^2 + \gamma)^2}}{\frac{\sigma^2}{\sigma^2 + \gamma}} = \sigma^2,$$

which means the theoretical optimal estimator is $\hat{\Omega}_p = \sigma^{-2} I_p$.

For general distribution H(x), denoting $f_k(x) = \int (\frac{t}{t+x})^k dH(t), k = 1, 2, 3$, we have

$$\begin{aligned} \frac{dL_H(x)}{dx} &= \frac{f_1(x)}{(f_2(x))^2} (f_1(x)f_2'(x) - 2(1 - yf_2(x))f_1'(x)f_2(x)) \\ &= \frac{2f_1(x)}{x(f_2(x))^2} (f_1(x)(f_3(x) - f_2(x)) - (1 - yf_2(x))(f_2(x) - f_1(x))f_2(x)) \\ &= \frac{2f_1(x)(f_2(x) - f_1(x))}{x} (y - \frac{f_1(x)f_3(x) - f_2(x)f_2(x)}{f_2(x)(f_1(x) - f_2(x))}), \end{aligned}$$

where we use the facts that $f'_{k}(x) = -k \int \frac{t^{k}}{(t+x)^{k+1}} dH(t)$ and $xf'_{k}(x) = k(f_{k+1}(x) - f_{k}(x))$. Writing $g(x) = \frac{f_{1}(x)f_{3}(x) - f_{2}(x)f_{2}(x)}{f_{2}(x)f_{2}(x)(f_{1}(x) - f_{2}(x))}$, it is easy to show $\lim_{x \to 0^{+}} g(x) = 0$ and $\lim_{x \to +\infty} g(x) = 0$.

 $+\infty$. Therefore, $L_H(\gamma)$ can achieve its global minimum value at γ^* which satisfies

$$\frac{f_1(\boldsymbol{\gamma}^*)f_3(\boldsymbol{\gamma}^*) - f_2(\boldsymbol{\gamma}^*)f_2(\boldsymbol{\gamma}^*)}{f_2(\boldsymbol{\gamma}^*)f_2(\boldsymbol{\gamma}^*)(f_1(\boldsymbol{\gamma}^*) - f_2(\boldsymbol{\gamma}^*))} = \mathbf{y}.$$

Thus, by the definition of $\gamma(\beta)$, when $y \le 1$, β_{opt} satisfies the equation $\gamma^* = \frac{\beta_{opt}}{1 - y(1 - \beta_{opt}m_0(-\beta_{opt}))}$. The proof is finished.

A5. Proof of Theorem 4

By Theorem 3, almost surely, as $n \rightarrow \infty$,

$$\hat{R}_1(\lambda) \to R_1(\lambda),$$

 $\hat{R}_2(\lambda) \to R_2(\lambda).$

By the continuous mapping theorem, almost surely, we have

$$L_n(\lambda) = 1 - rac{(\hat{R}_1(\lambda))^2}{\hat{R}_2(\lambda)}
ightarrow L(\lambda).$$

By the definition of β_n^* , we have

$$L_n(\beta_n^*) \le L_n(\beta_{\text{opt}}) \xrightarrow{a.s.} L(\beta_{\text{opt}}) = L_0.$$
(11)

Noting that $\hat{R}_k, k = 1, 2$ are decreasing functions, it is straightforward to show that \hat{R}_1, \hat{R}_2 are uniformly convergent on the bounded interval $[C_1, C_2]$. That is, for any $\varepsilon > 0$, when *n* is large enough, for all $\beta \in [C_1, C_2]$, we have,

$$\begin{aligned} |\hat{R}_1(\beta) - R_1(\beta)| &\leq \varepsilon, \ a.s. \\ |\hat{R}_2(\beta) - R_2(\beta)| &\leq \varepsilon, \ a.s. \end{aligned}$$

which can guarantee the uniformly convergence of $L_n(\beta)$. Therefore, we can claim for any $\varepsilon > 0$, when *n* is large enough, almost surely,

$$|L_n(\beta) - L(\beta)| \le \varepsilon, \quad \text{for any } \beta \in [C_1, C_2].$$
(12)

Specially, we have, almost surely,

$$L_n(\beta_n^*) \ge L(\beta_n^*) - \varepsilon \ge L_0 - \varepsilon.$$
(13)

Together with (11), we get $L_n(\beta_n^*) \xrightarrow{a.s.} L_0$.

Similarly, denoting

$$R_{1n}(\beta) = \frac{1}{p} tr(\Sigma_p^{1/2}(S_n + \beta I_p)^{-1}\Sigma_p^{1/2}),$$

$$R_{2n}(\beta) = \frac{1}{p} tr(\Sigma_p^{1/2}(S_n + \lambda I_p)^{-1}\Sigma_p^{1/2})^2,$$

we have, for any $\varepsilon > 0$, when *n* is large enough, for all $\beta \in [C_1, C_2]$,

$$|R_{1n}(\beta) - R_1(\beta)| \le \varepsilon, \ a.s.$$
$$|R_{2n}(\beta) - R_2(\beta)| \le \varepsilon, \ a.s.$$

and

$$\begin{aligned} |\hat{R}_1(\beta) - R_{1n}(\beta)| &\leq 2\varepsilon, \ a.s.\\ |\hat{R}_2(\beta) - R_{2n}(\beta)| &\leq 2\varepsilon, \ a.s.. \end{aligned}$$

Then, we have

1

$$\begin{aligned} \frac{1}{p} tr(\alpha_n^*(S_n + \beta_n^* I_p)^{-1} \Sigma_p - I_p)^2 &= (\alpha_n^*)^2 R_{2n}(\beta_n^*) - 2\alpha_n^* R_{1n}(\beta_n^*) + 1 \\ &= R_{2n}(\beta_n^*)(\alpha_n^* - \frac{R_{1n}(\beta_n^*)}{R_{2n}(\beta_n^*)})^2 + 1 - \frac{R_{1n}^2(\beta_n^*)}{R_{2n}(\beta_n^*)} \\ &= R_{2n}(\beta_n^*)(\frac{\hat{R}_1(\beta_n^*)}{\hat{R}_2(\beta_n^*)} - \frac{R_{1n}(\beta_n^*)}{R_{2n}(\beta_n^*)})^2 + 1 - \frac{R_{1n}^2(\beta_n^*)}{R_{2n}(\beta_n^*)}.\end{aligned}$$

Moreover, for any $\beta \in [C_1, C_2]$, almost surely, $R_1(\beta)$ and $R_2(\beta)$ are bounded which ensure there are constants C_3, C_4 that $0 < C_3 < \hat{R}_1(\beta), \hat{R}_1(\beta), R_{1n}(\beta), R_{2n}(\beta) < C_4$. Then, almost surely,

$$\left|\frac{1}{p}tr(\alpha_{n}^{*}(S_{n}+\beta_{n}^{*}I_{p})^{-1}\Sigma_{p}-I_{p})^{2}-L_{n}(\beta_{n}^{*})\right| < C_{0}\varepsilon.$$
(14)

Together with $L_n(\beta_n^*) \xrightarrow{a.s.} L_0$, we have

$$\frac{1}{p}tr(\alpha_n^*(S_n+\beta_n^*I_p)^{-1}\Sigma_p-I_p)^2 \xrightarrow{a.s.} L_0.$$
(15)

The proof is completed.

References

- Bai, Z. and Silverstein, J. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. *Annals of Probability* 26, 316–345.
- Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices. Springer, New York.
- Pan, G. (2010). Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix. *Journal of Multivariate Analysis* 101, 1330–1338.
- Pan, G. and Zhou, W. (2011). Central limit theorem for Hotelling's T² statistic under large dimension. *Annals of Applied Probability* 21, 1860–1910.

Cheng Wang

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong E-mail: cescwang@gmail.com

Guangming Pan

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

E-mail: gmpan@ntu.edu.sg

Tiejun Tong

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong E-mail: tongt@hkbu.edu.hk

Lixing Zhu

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong E-mail: lzhu@hkbu.edu.hk