Shrinkage estimation of large dimensional precision matrix using random matrix theory

Cheng Wang ${ }^{1,3}$, Guangming Pan ${ }^{2}$, Tiejun Tong ${ }^{3}$ and Lixing Zhu 3
${ }^{1}$ Shanghai Jiao Tong University
${ }^{2}$ Nanyang Technological University
${ }^{3}$ Hong Kong Baptist University

Supplementary Material

A1. Proof of Theorem 1

By Corollary A. 41 of Bai and Silverstein (2010), we have

$$
L^{3}\left(F^{\frac{n \lambda}{p} \Sigma_{p}^{-1}}, F^{\frac{\lambda}{y} \Sigma_{p}^{-1}}\right) \leq\left(\frac{n}{p}-\frac{1}{y}\right)^{2} \lambda^{2} \frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{-2}\right)
$$

Condition S2 implies that

$$
\frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{-2}\right) \leq C .
$$

Noting $p / n \rightarrow y$, we have $L^{3}\left(F^{\frac{n \lambda}{p} \Sigma_{p}^{-1}}, F^{\frac{\lambda}{y} \Sigma_{p}^{-1}}\right) \rightarrow 0$. Therefore, the Stieltjes transform of the LSD of $F^{\frac{n \lambda}{p} \Sigma_{p}^{-1}}$ is

$$
m_{H}(z)=\int \frac{1}{\frac{\lambda}{y t}-z} d H(t)
$$

where $z \in \mathbb{C}^{+}$. Then by Bai and Silverstein (2010, chap. 4) or the main theorem in Pan (2010), as $n \rightarrow \infty, F^{\frac{1}{p} \mathbb{Y} \mathbb{Y}^{T}+\frac{n \lambda}{p} \Sigma_{p}^{-1}}$ converges almost surely to a non-random distribution F_{1}, whose Stieltjes transform $m_{1}(z)$ satisfies

$$
\begin{equation*}
m_{1}(z)=\int \frac{1}{\frac{\lambda}{t y}-z+\frac{1}{y\left(1+m_{1}(z)\right)}} d H(t) \tag{1}
\end{equation*}
$$

It is easy to verify that $F^{y\left(\frac{1}{p} \mathbb{Y} \mathbb{Y}^{T}+\frac{n \lambda}{p} \Sigma_{p}^{-1}\right)}$ converges almost surely to a non-random distribution F_{2}, whose Stieltjes transform is $m_{2}(z)=\frac{1}{y} m_{1}\left(\frac{z}{y}\right)$.

Similarly, by Corollary A. 41 of Bai and Silverstein (2010), we can prove that $y\left(\frac{1}{p} \mathbb{Y} \mathbb{Y}^{T}+\frac{n \lambda}{p} \Sigma_{p}^{-1}\right)$ and $\frac{1}{n} \mathbb{Y}^{T}+\lambda \Sigma_{p}^{-1}$ have the same LSDs. Here we also use the fact
that the support of F_{1} or F_{2} is bounded by Bai and Silverstein (1998) or the extreme eigenvalues of S_{n} is bounded by Pan and Zhou (2011).

Altogether, we have that, as $n \rightarrow \infty, F^{\frac{1}{n} \mathbb{Y} \mathbb{Y}^{T}}+\lambda \Sigma_{p}^{-1}$ converges almost surely to a nonrandom distribution F_{2}, whose Stieltjes transform $m_{2}(z)$ satisfies

$$
\begin{equation*}
m_{2}(z)=\int \frac{1}{\frac{\lambda}{t}-z+\frac{1}{1+y m_{2}(z)}} d H(t) \tag{2}
\end{equation*}
$$

Finally, Theorem A. 43 of Bai and Silverstein (2010) yields

$$
\begin{aligned}
& \| F^{\Sigma_{p}^{-1 / 2}\left(S_{n}+\lambda I_{p}\right) \Sigma_{p}^{-1 / 2}}-F^{\frac{1}{n} \mathbb{Y} \mathbb{Y}^{T}+\lambda \Sigma_{p}^{-1} \|} \\
\leq & \frac{1}{p} \operatorname{rank}\left(\Sigma_{p}^{-1 / 2}\left(S_{n}+\lambda I_{p}\right) \Sigma_{p}^{-1 / 2}-\left(\frac{1}{n} \mathbb{Y} \mathbb{Y}^{T}+\lambda \Sigma_{p}^{-1}\right)\right) \\
= & \frac{1}{p} \operatorname{rank}\left(\bar{Y} \bar{Y}^{T}\right) \leq \frac{1}{p}
\end{aligned}
$$

where $\|f\|=\sup _{x}|f(x)|$. The proof is completed.

A2. Proof of Lemma 1

First, $m_{0}(-\lambda)$ is the solution of Equation (2.7). Added to this, almost surely,

$$
\frac{1}{p} \operatorname{tr}\left(\frac{1}{\lambda} S_{n}+I_{p}\right)^{-1} \rightarrow \lambda m_{0}(-\lambda) .
$$

Then, $\lambda m_{0}(-\lambda) \geq \min \left(0,1-\frac{1}{y}\right)$. Hence, $1-y+y \lambda m_{0}(-\lambda) \geq 0$.
Next, suppose we have two solutions M_{1}, M_{2} of Equation (2.7) and $1-y+y \lambda M_{j} \geq$ $0, j=1,2$. Then

$$
\begin{aligned}
M_{1} & =\int \frac{d H(t)}{t\left(1-y+y \lambda M_{1}\right)+\lambda}, \\
M_{2} & =\int \frac{d H(t)}{t\left(1-y+y \lambda M_{2}\right)+\lambda} .
\end{aligned}
$$

Hence,

$$
M_{1}-M_{2}=\left(M_{2}-M_{1}\right) \int \frac{y t d H(t)}{\left(t\left(1-y+y \lambda M_{1}\right)+\lambda\right)\left(t\left(1-y+y \lambda M_{2}\right)+\lambda\right)}
$$

If $M_{1} \neq M_{2}$, we have

$$
-1=\int \frac{y t \lambda d H(t)}{\left(t\left(1-y+y \lambda M_{1}\right)+\lambda\right)\left(t\left(1-y+y \lambda M_{2}\right)+\lambda\right)}
$$

which is in contradiction with $\frac{y t \lambda}{\left(t\left(1-y+y \lambda M_{1}\right)+\lambda\right)\left(t\left(1-y+y \lambda M_{2}\right)+\lambda\right)} \geq 0$. Therefore, Equation (2.7) has a unique solution.

A3. Proof of Theorem 2

To proof Theorem 2, we need the following lemma.
Lemma 1 Under the conditions of Theorem 1, almost surely,

$$
\begin{aligned}
& \frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\lambda I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right) \rightarrow R_{1}(\lambda) \\
& \frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\lambda I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right)^{2} \rightarrow R_{2}(\lambda)
\end{aligned}
$$

where $R_{1}(\lambda)$ and $R_{2}(\lambda)$ satisfy

$$
\begin{align*}
& R_{1}(\lambda)=\int \frac{1}{\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}} d H(t) \tag{3}\\
& R_{2}(\lambda)=\int \frac{1+\frac{y R_{2}(\lambda)}{\left(1+y R_{1}(\lambda)\right)^{2}}}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t) \tag{4}
\end{align*}
$$

Proof: By the definition of ESD and Helly-Bray theorem,

$$
\begin{gathered}
\frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\lambda I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right)=\int \frac{1}{x} d F^{\Sigma_{p}^{-1 / 2}\left(S_{n}+\lambda I_{p}\right) \Sigma_{p}^{-1 / 2}}(x) \xrightarrow{\text { a.s }} \int \frac{1}{x} d F(x)=\lim _{z \rightarrow 0} m(z), \\
\frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\lambda I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right)^{2}=\int \frac{1}{x^{2}} d F^{\Sigma_{p}^{-1 / 2}\left(S_{n}+\lambda I_{p}\right) \Sigma_{p}^{-1 / 2}}(x) \xrightarrow{\text { a.s. }} \int \frac{1}{x^{2}} d F(x)=\lim _{z \rightarrow 0} m^{\prime}(z) .
\end{gathered}
$$

That is,

$$
\begin{aligned}
& R_{1}(\lambda)=\int \frac{1}{x} d F(x)=\lim _{z \rightarrow 0} m(z) \\
& R_{2}(\lambda)=\int \frac{1}{x^{2}} d F(x)=\lim _{z \rightarrow 0} m^{\prime}(z)
\end{aligned}
$$

Equation (2.5) yields

$$
\begin{equation*}
m^{\prime}(z)=\int \frac{1+\frac{y m^{\prime}(z)}{(1+y m(z))^{2}}}{\left(\frac{\lambda}{t}-z+\frac{1}{1+y m(z)}\right)^{2}} d H(t) \tag{5}
\end{equation*}
$$

For both sides of Equation (2.5) and (5), letting $z \rightarrow 0$, we can get

$$
\begin{aligned}
& R_{1}(\lambda)=\int \frac{1}{\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}} d H(t) \\
& R_{2}(\lambda)=\int \frac{1+\frac{y R_{2}(\lambda)}{\left(1+y R_{1}(\lambda)\right)^{2}}}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t)
\end{aligned}
$$

This finishes the proof of Lemma 1.

Now we prove Theorem 2. By Lemma 1, we have

$$
m_{0}(-\lambda)=\int \frac{d H(t)}{t\left(1-y+y \lambda m_{0}(-\lambda)\right)+\lambda}
$$

In Lemma 1, writing

$$
v(\lambda)=\frac{1}{\lambda}\left(1-\frac{R_{1}(\lambda)}{1+y R_{1}(\lambda)}\right)
$$

thus

$$
R_{1}(\lambda)=\frac{1-\lambda v(\lambda)}{1-y(1-\lambda v(\lambda))}
$$

and

$$
\frac{1-\lambda v(\lambda)}{1-y(1-\lambda v(\lambda))}=\int \frac{1}{\frac{\lambda}{t}+\frac{1}{1+y \frac{1-\lambda v(\lambda)}{1-y(1-\lambda v(\lambda))}}} d H(t)
$$

Further, we can show that

$$
v(\lambda)=\int \frac{d H(t)}{t(1-y+y \lambda v(\lambda))+\lambda}
$$

which is the same as Euqation (2.7). In addition,

$$
1-y+y \lambda v(\lambda)=1-y+y\left(1-\frac{R_{1}(\lambda)}{1+y R_{1}(\lambda)}\right)=\frac{1}{1+y R_{1}(\lambda)} \geq 0
$$

Hence, $v(\boldsymbol{\lambda})=m_{0}(-\boldsymbol{\lambda})$ and

$$
\begin{equation*}
R_{1}(\lambda)=\frac{1-\lambda m_{0}(-\lambda)}{1-y\left(1-\lambda m_{0}(-\lambda)\right)} \tag{6}
\end{equation*}
$$

Further,

$$
\begin{equation*}
R_{1}^{\prime}(\lambda)=\frac{d R_{1}(\lambda)}{d \lambda}=-\frac{m_{0}(-\lambda)-\lambda m_{0}^{\prime}(-\lambda)}{\left(1-y\left(1-\lambda m_{0}(-\lambda)\right)\right)^{2}} \tag{7}
\end{equation*}
$$

By the formula of (3),

$$
R_{1}^{\prime}(\lambda)=-\int \frac{\frac{1}{t}-\frac{y R_{1}^{\prime}(\lambda)}{\left(1+y R_{1}(\lambda)\right)^{2}}}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t)
$$

then

$$
\int \frac{1}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t)=\frac{\left(1+y R_{1}(\lambda)\right)^{2}\left(R_{1}(\lambda)+\lambda R_{1}^{\prime}(\lambda)\right)}{1+y R_{1}(\lambda)+y \lambda R_{1}^{\prime}(\lambda)}
$$

By (4), we have

$$
\begin{aligned}
R_{2}(\lambda) & =\frac{\int \frac{1}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t)}{1-\frac{1}{\left(1+y R_{1}(\lambda)\right)^{2}} \int \frac{1}{\left(\frac{\lambda}{t}+\frac{1}{1+y R_{1}(\lambda)}\right)^{2}} d H(t)} \\
& =\left(1+y R_{1}(\lambda)\right)^{2}\left(R_{1}(\lambda)+\lambda R_{1}^{\prime}(\lambda)\right)
\end{aligned}
$$

Finally, by (6) and (7) we have

$$
R_{2}(\lambda)=\frac{1-\lambda m_{0}(-\lambda)}{\left(1-y\left(1-\lambda m_{0}(-\lambda)\right)\right)^{3}}-\frac{\lambda m_{0}(-\lambda)-\lambda^{2} m_{0}^{\prime}(-\lambda)}{\left(1-y\left(1-\lambda m_{0}(-\lambda)\right)\right)^{4}}
$$

This finishes the proof of Theorem 2.

A4. Proof of Theorem 3

Lemma 1 implies that

$$
\begin{aligned}
& R_{1}(\beta)=\int \frac{1}{\frac{\beta}{t}+\frac{1}{1+y R_{1}(\beta)}} d H(t) \\
& R_{2}(\beta)=\int \frac{1+\frac{y R_{2}(\beta)}{\left(1+y R_{1}(\beta)\right)^{2}}}{\left(\frac{\beta}{t}+\frac{1}{1+y R_{1}(\beta)}\right)^{2}} d H(t)
\end{aligned}
$$

Moreover, $\frac{1}{1+y R_{1}(\beta)}=1-y\left(1-\beta m_{0}(-\beta)\right)$ where $m_{0}(-z)$ is the Stieltjes transform of LSD of S_{n}. Denoting the LSD of S_{n} as $F^{(0)}(x)$, then

$$
\begin{equation*}
m_{0}(-\beta)=\int \frac{1}{x+\beta} d F^{(0)}(x) \tag{8}
\end{equation*}
$$

Further, if we define another distribution function as

$$
\begin{equation*}
F^{(1)}(x)=(1-y) I_{(0, \infty)}(x)+y F^{(0)}(x) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}(-\beta)=\int \frac{1}{x+\beta} d F^{(1)}(x) \tag{10}
\end{equation*}
$$

we have $1-y\left(1-\beta m_{0}(-\beta)\right)=\beta m_{1}(-\beta)$. Writing $\gamma=\gamma(\beta)=1 / m_{1}(-\beta)$, we have

$$
\begin{aligned}
& R_{1}(\beta)=\frac{\gamma}{\beta} \int \frac{t}{t+\gamma} d H(t) \\
& R_{2}(\beta)=\frac{\frac{\gamma^{2}}{\beta^{2}} \int\left(\frac{t}{t+\gamma}\right)^{2} d H(t)}{1-y \int\left(\frac{t}{t+\gamma}\right)^{2} d H(t)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& L(\beta)=1-\frac{\left(R_{1}(\beta)\right)^{2}}{R_{2}(\beta)} \\
= & 1-\left(\int \frac{t}{t+\gamma} d H(t)\right)^{2}\left(\frac{1}{\int \frac{t^{2}}{(t+\gamma)^{2}} d H(t)}-y\right) \\
= & L_{H}(\gamma) .
\end{aligned}
$$

For $\gamma(\beta)$, we have

$$
\gamma(\beta)=\frac{1}{\int \frac{1}{x+\beta} d F^{(1)}(x)}
$$

which is a strictly increasing function on β. Therefore, γ and β are one-to-one mapping. Specially, when $y \leq 1$ that is $F^{(1)}(x)$ has a point mass $1-y$ at the origin, the function $\gamma(\beta):(0, \infty) \longmapsto(0, \infty)$. When $y \geq 1$, the function $\gamma(\beta):(0, \infty) \longmapsto\left(\gamma_{0}, \infty\right)$ where $\gamma_{0} \int 1 / x d F^{(1)}(x)=1$. Altogether, we have

$$
\begin{aligned}
& \min _{\beta>0} L(\beta)=\min _{\gamma>0} L_{H}(\gamma), y \leq 1 \\
& \min _{\beta>0} L(\beta)=\min _{\gamma>\gamma_{0}} L_{H}(\gamma), y \geq 1
\end{aligned}
$$

When $H(x)$ is a degenerate distribution at σ^{2},

$$
L_{H}(\gamma)=y\left(\frac{\sigma^{2}}{\sigma^{2}+\gamma}\right)^{2}
$$

Obviously, $L_{H}(\gamma)$ achieves its minimum value $L_{0}=0$ at $\gamma^{*}=\infty$. Moreover, $\beta_{\text {opt }} \rightarrow \infty$ and

$$
\begin{aligned}
& \frac{1}{\alpha_{\mathrm{opt}}}=\frac{R_{2}\left(\beta_{\mathrm{opt}}\right)}{R_{1}\left(\beta_{\mathrm{opt}}\right)}=\lim _{\gamma \rightarrow \infty} \frac{\frac{\sigma^{4}}{\left(\sigma^{2}+\gamma\right)^{2}}}{\frac{\sigma^{2}}{\sigma^{2}+\gamma}}=0, \\
& \frac{\beta_{\mathrm{opt}}}{\alpha_{\mathrm{opt}}}=\lim _{\gamma \rightarrow \infty} \frac{1}{\gamma} \frac{\frac{\sigma^{4}}{\left(\sigma^{2}+\gamma\right)^{2}}}{\frac{\sigma^{2}}{\sigma^{2}+\gamma}}=\sigma^{2},
\end{aligned}
$$

which means the theoretical optimal estimator is $\hat{\Omega}_{p}=\sigma^{-2} I_{p}$.
For general distribution $H(x)$, denoting $f_{k}(x)=\int\left(\frac{t}{t+x}\right)^{k} d H(t), k=1,2,3$, we have

$$
\begin{aligned}
\frac{d L_{H}(x)}{d x} & =\frac{f_{1}(x)}{\left(f_{2}(x)\right)^{2}}\left(f_{1}(x) f_{2}^{\prime}(x)-2\left(1-y f_{2}(x)\right) f_{1}^{\prime}(x) f_{2}(x)\right) \\
& =\frac{2 f_{1}(x)}{x\left(f_{2}(x)\right)^{2}}\left(f_{1}(x)\left(f_{3}(x)-f_{2}(x)\right)-\left(1-y f_{2}(x)\right)\left(f_{2}(x)-f_{1}(x)\right) f_{2}(x)\right) \\
& =\frac{2 f_{1}(x)\left(f_{2}(x)-f_{1}(x)\right)}{x}\left(y-\frac{f_{1}(x) f_{3}(x)-f_{2}(x) f_{2}(x)}{f_{2}(x) f_{2}(x)\left(f_{1}(x)-f_{2}(x)\right)}\right),
\end{aligned}
$$

where we use the facts that $f_{k}^{\prime}(x)=-k \int \frac{t^{k}}{(t+x)^{k+1}} d H(t)$ and $x f_{k}^{\prime}(x)=k\left(f_{k+1}(x)-f_{k}(x)\right)$.
Writing $g(x)=\frac{f_{1}(x) f_{3}(x)-f_{2}(x) f_{2}(x)}{f_{2}(x) f_{2}(x)\left(f_{1}(x)-f_{2}(x)\right)}$, it is easy to show $\lim _{x \rightarrow 0^{+}} g(x)=0$ and $\lim _{x \rightarrow+\infty} g(x)=$ $+\infty$. Therefore, $L_{H}(\gamma)$ can achieve its global minimum value at γ^{*} which satisfies

$$
\frac{f_{1}\left(\gamma^{*}\right) f_{3}\left(\gamma^{*}\right)-f_{2}\left(\gamma^{*}\right) f_{2}\left(\gamma^{*}\right)}{f_{2}\left(\gamma^{*}\right) f_{2}\left(\gamma^{*}\right)\left(f_{1}\left(\gamma^{*}\right)-f_{2}\left(\gamma^{*}\right)\right)}=y .
$$

Thus, by the definition of $\gamma(\beta)$, when $y \leq 1, \beta_{\text {opt }}$ satisfies the equation $\gamma^{*}=\frac{\beta_{\text {opt }}}{1-y\left(1-\beta_{\text {opp }} m_{0}\left(-\beta_{\text {opt }}\right)\right)}$. The proof is finished.

A5. Proof of Theorem 4

By Theorem 3, almost surely, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \hat{R}_{1}(\lambda) \rightarrow R_{1}(\lambda), \\
& \hat{R}_{2}(\lambda) \rightarrow R_{2}(\lambda) .
\end{aligned}
$$

By the continuous mapping theorem, almost surely, we have

$$
L_{n}(\lambda)=1-\frac{\left(\hat{R}_{1}(\lambda)\right)^{2}}{\hat{R}_{2}(\lambda)} \rightarrow L(\lambda) .
$$

By the definition of β_{n}^{*}, we have

$$
\begin{equation*}
L_{n}\left(\beta_{n}^{*}\right) \leq L_{n}\left(\beta_{\mathrm{opt}} \xrightarrow{\text { a.s. }} L\left(\beta_{\mathrm{opt}}\right)=L_{0} .\right. \tag{11}
\end{equation*}
$$

Noting that $\hat{R}_{k}, k=1,2$ are decreasing functions, it is straightforward to show that \hat{R}_{1}, \hat{R}_{2} are uniformly convergent on the bounded interval $\left[C_{1}, C_{2}\right]$. That is, for any $\varepsilon>0$, when n is large enough, for all $\beta \in\left[C_{1}, C_{2}\right]$, we have,

$$
\begin{aligned}
& \left|\hat{R}_{1}(\beta)-R_{1}(\beta)\right| \leq \varepsilon, \text { a.s. } \\
& \left|\hat{R}_{2}(\beta)-R_{2}(\beta)\right| \leq \varepsilon, \text { a.s. }
\end{aligned}
$$

which can guarantee the uniformly convergence of $L_{n}(\beta)$. Therefore, we can claim for any $\varepsilon>0$, when n is large enough, almost surely,

$$
\begin{equation*}
\left|L_{n}(\beta)-L(\beta)\right| \leq \varepsilon, \quad \text { for any } \beta \in\left[C_{1}, C_{2}\right] \tag{12}
\end{equation*}
$$

Specially, we have, almost surely,

$$
\begin{equation*}
L_{n}\left(\beta_{n}^{*}\right) \geq L\left(\beta_{n}^{*}\right)-\varepsilon \geq L_{0}-\varepsilon \tag{13}
\end{equation*}
$$

Together with (11), we get $L_{n}\left(\beta_{n}^{*}\right) \xrightarrow{\text { a.s. }} L_{0}$.
Similarly, denoting

$$
\begin{aligned}
& R_{1 n}(\beta)=\frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\beta I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right) \\
& R_{2 n}(\beta)=\frac{1}{p} \operatorname{tr}\left(\Sigma_{p}^{1 / 2}\left(S_{n}+\lambda I_{p}\right)^{-1} \Sigma_{p}^{1 / 2}\right)^{2}
\end{aligned}
$$

we have, for any $\varepsilon>0$, when n is large enough, for all $\beta \in\left[C_{1}, C_{2}\right]$,

$$
\begin{aligned}
& \left|R_{1 n}(\beta)-R_{1}(\beta)\right| \leq \varepsilon, \text { a.s. } \\
& \left|R_{2 n}(\beta)-R_{2}(\beta)\right| \leq \varepsilon, \text { a.s. }
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\hat{R}_{1}(\beta)-R_{1 n}(\beta)\right| \leq 2 \varepsilon, \text { a.s. } \\
& \left|\hat{R}_{2}(\beta)-R_{2 n}(\beta)\right| \leq 2 \varepsilon, \text { a.s.. }
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\frac{1}{p} \operatorname{tr}\left(\alpha_{n}^{*}\left(S_{n}+\beta_{n}^{*} I_{p}\right)^{-1} \Sigma_{p}-I_{p}\right)^{2} & =\left(\alpha_{n}^{*}\right)^{2} R_{2 n}\left(\beta_{n}^{*}\right)-2 \alpha_{n}^{*} R_{1 n}\left(\beta_{n}^{*}\right)+1 \\
& =R_{2 n}\left(\beta_{n}^{*}\right)\left(\alpha_{n}^{*}-\frac{R_{1 n}\left(\beta_{n}^{*}\right)}{R_{2 n}\left(\beta_{n}^{*}\right)}\right)^{2}+1-\frac{R_{1 n}^{2}\left(\beta_{n}^{*}\right)}{R_{2 n}\left(\beta_{n}^{*}\right)} \\
& =R_{2 n}\left(\beta_{n}^{*}\right)\left(\frac{\hat{R}_{1}\left(\beta_{n}^{*}\right)}{\hat{R}_{2}\left(\beta_{n}^{*}\right)}-\frac{R_{1 n}\left(\beta_{n}^{*}\right)}{R_{2 n}\left(\beta_{n}^{*}\right)}\right)^{2}+1-\frac{R_{1 n}^{2}\left(\beta_{n}^{*}\right)}{R_{2 n}\left(\beta_{n}^{*}\right)} .
\end{aligned}
$$

Moreover, for any $\beta \in\left[C_{1}, C_{2}\right]$, almost surely, $R_{1}(\beta)$ and $R_{2}(\beta)$ are bounded which ensure there are constants C_{3}, C_{4} that $0<C_{3}<\hat{R}_{1}(\beta), \hat{R}_{1}(\beta), R_{1 n}(\beta), R_{2 n}(\beta)<C_{4}$. Then, almost surely,

$$
\begin{equation*}
\left|\frac{1}{p} \operatorname{tr}\left(\alpha_{n}^{*}\left(S_{n}+\beta_{n}^{*} I_{p}\right)^{-1} \Sigma_{p}-I_{p}\right)^{2}-L_{n}\left(\beta_{n}^{*}\right)\right|<C_{0} \varepsilon . \tag{14}
\end{equation*}
$$

Together with $L_{n}\left(\beta_{n}^{*}\right) \xrightarrow{\text { a.s. }} L_{0}$, we have

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr}\left(\alpha_{n}^{*}\left(S_{n}+\beta_{n}^{*} I_{p}\right)^{-1} \Sigma_{p}-I_{p}\right)^{2} \xrightarrow{\text { a.s. }} L_{0} . \tag{15}
\end{equation*}
$$

The proof is completed.

References

Bai, Z. and Silverstein, J. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Annals of Probability 26, 316-345.

Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices. Springer, New York.

Pan, G. (2010). Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix. Journal of Multivariate Analysis 101, 1330-1338.

Pan, G. and Zhou, W. (2011). Central limit theorem for Hotelling's T^{2} statistic under large dimension. Annals of Applied Probability 21, 1860-1910.

Cheng Wang

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
E-mail: cescwang@gmail.com

Guangming Pan
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
E-mail: gmpan@ntu.edu.sg
Tiejun Tong
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong E-mail: tongt@hkbu.edu.hk

Lixing Zhu

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
E-mail: lzhu@hkbu.edu.hk

