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Supplementary Material

Al. Proof of Theorem 1
By Corollary A.41 of Bai and Silverstein (2010), we have
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Condition S2 implies that

1
—1r(Z,?) <C.
p P
Noting p/n — y, we have L*(F o JF I ) — 0. Therefore, the Stieltjes transform of
the LSD of F7 > is

ma (@) = [ 5—dH(0),

where z € C*. Then by Bai and Silverstein (2010, chap. 4) or the main theorem in Pan
1 nA y—
(2010), as n —> oo, F PV, converges almost surely to a non-random distribution

Fy, whose Stieltjes transform m; (z) satisfies

1
m(z) = [ 3 aH(). (1)

y T y(I+my(z))

(AyyT iyt -
g » =7/ converges almost surely to a non-random distri-

bution F>, whose Stieltjes transform is my(z) = %ml (i)

Similarly, by Corollary A.41 of Bai and Silverstein (2010), we can prove that
y(%YYT + %Z;l) and %YYT + kZ;l have the same LSDs. Here we also use the fact

It is easy to verify that F”
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that the support of F; or F, is bounded by Bai and Silverstein (1998) or the extreme
eigenvalues of §,, is bounded by Pan and Zhou (2011).
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Altogether, we have that, as n — oo, » converges almost surely to a non-

random distribution F,, whose Stieltjes transform m;(z) satisfies

1
ma(z) = / aH(). @)
T z+ 1+yms (2)
Finally, Theorem A.43 of Bai and Silverstein (2010) yields
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where || f|| = sup, |f(x)|. The proof is completed.

A2. Proof of Lemma 1
First, my(—A) is the solution of Equation (2.7). Added to this, almost surely,

1 1 _
;tr(zsn +Ip) ! — lmo(—?t)
Then, Amo(—A) > min (0,1 — —) Hence, 1 —y+yAmy(—2) > 0.
Next, suppose we have two solutions My, M, of Equation (2.7) and 1 —y+yAM; >
0, j=1,2. Then

M, =
/ 1—y+y7LM1)+k’

_ dH (1)
Mo _/t(l—y+y7LM2)+),'

Hence,
B - ytdH (1)
M, — M, = (M, Ml)/ (t(1 =y +yAM) +A)(t(1 —y+yAM,y) +A)°

If M| # M>, we have

_1_/ VtAdH (t)
) (1 =y +yAM) +A)(t (1 —y+yAMy) +A)’

. .. . VIA
which is in contradiction with Ty DM ) (T AMR) £A)

> 0. Therefore, Equation

(2.7) has a unique solution.
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A3. Proof of Theorem 2
To proof Theorem 2, we need the following lemma.

Lemma 1 Under the conditions of Theorem 1, almost surely,

1
Sir(T) 22 (S + A1) 5% 5 Ri(A),

;tr( 22 (S0 + A1) "2 5 Ry(R),

where Ry (A) and Ry(A) satisfy
1

Ri(A) = [ ———dH(1), (3)
Tt Em
1+ )RZ( )

Ro(A) = [ 2 an ), )

P
(F+ 1+y1£|(l))

Proof: By the definition of ESD and Helly-Bray theorem,

1 1 - - as. 1 .
,tr(zll/z(sn_i_llp)—lzll)h) _ /7dF2171/2(Sn+A«II))Zp1/2 (x) Bk N /7dF(x) — hmm(z)’
P X z—0
1 a.s. 1 .
p X z—0
That is,
1
Rl(l):/—dF( ) = limm(z),
X z—0
1 . ,
Rz(l)—/x—zdF(x)—lg%m(z).
Equation (2.5) yields

1+
m/(z):/ R gh (). (5)
(% =2+ )

For both sides of Equation (2.5) and (5), letting z — 0, we can get

1

Rih) = [ g ——dH)
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L+ Tk
+
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This finishes the proof of Lemma 1.

Now we prove Theorem 2. By Lemma 1, we have

_ dH(t)
mo(—A) = / t(1—y+yAmy(=A))+ A~

In Lemma 1, writing

1 Ri(A)
=0 TR
thus
_1-Av(4)
Ri(A) = Ty (1= Av(A))’
and
1-2Av(A) 1
)
Y TS {T=Av(2))

Further, we can show that

B dH (1)
v(/l)_/t(l—y+ylv(7t))—|—l’

which is the same as Euqation (2.7). In addition,

Ri(A) 1
1-— Av(A) =1— 1-— = > 0.
YRR SR ) T ThR@
Hence, v(A) = myp(—A) and
1—11’110(—2,)
R(A) = . 6
)= 0 amo(-2)) ©
Further,
oy _ ARI(A) _ mo(=A) —Amy(—A)
R == = (= Zmo(-2))® @
By the formula of (3),
1 yRﬁ(l/% ;
t 1+yR
Ri(2) = — [ 2 an o),

A
&+ mrm)
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then

! _ (L+yRi(A))*(Ri(A) + AR{ (A))

——dH(t) =
Er T T TORG) AR )

By (4), we have
J (Mlilde (1)

TR )
Rz(}b) _ 1-+yR| (4)
1 1+yR] 2 f

2dH (1)

+W)
= (1 +yR1(7t)) (Ri(A) + AR\ (1))
Finally, by (6) and (7) we have

1 — Amo(—2) Amo(—2) — A2ml(=2)

Ry(2) =
This finishes the proof of Theorem 2.

A4. Proof of Theorem 3

Lemma 1 implies that

1

RiB) = [ —an()
T THRB)
1+ }’1?2(!3)

Rz(ﬁ): (1+yR:(B))? dH([)

B 1
(¢ + mor)?

Moreover
of LSD of S,,. Denoting the LSD of S, as F(%)(x), then

mo(—)= [ — SAF ).

Further, if we define another distribution function as

FO(x) = (1= 3)(0.) () + yF O (),

and

(I=y(1=2mo(=2)))* (1 =y(1=Amo(=A)))*’

, m =1—y(1 —Bmo(—P)) where my(—z) is the Stieltjes transform

®)

€))

(10
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we have 1 —y(1— Bmo(—B)) = Bmi(—B). Writing y=y(B) = 1/m(—B), we have

=5/
t—l—}/ ),

pf(m)de(f)

Rolb) =12 T yany
Therefore,
2
p) 1~ lE)
T 2 ! _
- 1= O
= Ly(y).
For y(B), we have
1

which is a strictly increasing function on f3. Therefore, ¥ and f are one-to-one mapping.
Specially, when y < 1 that is F(!) (x) has a point mass 1 —y at the origin, the function
Y(B): (0,00) — (0,00). When y > 1, the function y(f) : (0,00) —— (,0) where
% [ 1/xdF((x) = 1. Altogether, we have

minL(f) =minLy(y), y <1,

B>0 >0
L = L > 1.
min (B) =minLy(y), y >

When H (x) is a degenerate distribution at 62,

2

RY
L =y(——)°.
H (7) y ( o2 + },)
Obviously, Ly(y) achieves its minimum value Ly = 0 at y* = oo. Moreover, Bop — oo
and
64
1 _ RZ(Bopt) — lim (02+7)? -0
Olopt Ry (BOPt) Yo ng_y ?

ot
@ — lim 1 (62+7) _ 62

aopt }/ y

)

62+V
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which means the theoretical optimal estimator is & p = o’ -
For general distribution H (x), denoting fi(x) = [(; ix)de (t),k=1,2,3, we have
W) A WA ~20 A0 ()
= AL W)~ ()~ (1 =30 i (0) ()
2f1(x)(f2(x) — f1(x)) [i@)f3(x) — fa(x) f2(x)

= x O S ADT — 0

where we use the facts that f}(x) = —k [ WdH (1) and xf; (x) = k( frr1(x) — fi(x)).

Writing g(x) = fzf 1()(;)‘}5 3()(;)‘2;1%)‘_);; 8) , itis easy to show lim,_,o+ g(x) =0and lim,_, ;.. g(x) =

~+oo. Therefore, Ly (y) can achieve its global minimum value at y* which satisfies

Hh)BY) =LA
L)L) (fi(r) = (7))
Bopt

),

Thus, by the definition of y(), when y < 1, B, satisfies the equation y* = TS T Bopmo (P
The proof is finished.

AS. Proof of Theorem 4

By Theorem 3, almost surely, as n — oo,

By the continuous mapping theorem, almost surely, we have

LA)=1- R@)” L(A).

Ry(2)
By the definition of 3,°, we have
Ly (ﬁ:) <L, (ﬁOpt) L2 L(BOpt) = Lo. (11)

Noting that R,k = 1,2 are decreasing functions, it is straightforward to show that
R, ,Iéz are uniformly convergent on the bounded interval [C},C,|. That is, for any € > 0,

when 7 is large enough, for all 8 € [C},C;], we have,

A

IRi(B)—Ri(B)| <&, as.
R2(B) —R2(B)| <&, as.
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which can guarantee the uniformly convergence of L, (). Therefore, we can claim for

any € > 0, when n is large enough, almost surely,
ILn(B) —L(B)| <&, forany B €[Cy,C]. (12)
Specially, we have, almost surely,

Ly(B,) = L(B,) —€= Lo —&. (13)

Together with (11), we get L,,(B;") <% L.

Similarly, denoting

1
Rin(B) = ;rr(z}/%sn + 1)),

1
Ran(B) = tr(Z}/(80-+ 20p) 15}/,
we have, for any € > 0, when 7 is large enough, for all 8 € [C},C3],

|[Rin(B)—Ri1(B)| <e, as.
IR (B) —R2(B)| < &, a.s,

and

IR1(B) —Rin(B)| < 2¢, as.

A

|R2(B) — Raun(B)] < 26, as..

Then, we have

;W(Oﬂfi(Sn +Bilp) 'S —1p)* = (o) Raa(B,) — 20 Ria(By) + 1

= R B R ) Rl

Ri(By) _ Ru(By) _ RL(BY)
Iéz (B Ron(Byy) Rou(By) .
Moreover, for any f3 € [Cy,C,], almost surely, R;(f3) and R»(f3) are bounded which

ensure there are constants C3,Cy that 0 < C3 < R1 (B),R1(B),R1.(B),R2:(B) < C4. Then,
almost surely,

¥+l

= Rau(B,)( ) +1

) _
)

1 * * — *
I?r(an (Sn+Bilp) "Ep = 1p)* = La(By)| < Coe. (14)
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Together with L, (B;") <% Ly, we have
L0 (Su+ BT Ey 1) <5 L 15
;”(O‘n( wtBilp) Xp—1Ip) 0- (15)

The proof is completed.

References

Bai, Z. and Silverstein, J. (1998). No eigenvalues outside the support of the limit-
ing spectral distribution of large-dimensional sample covariance matrices. Annals of
Probability 26, 316-345.

Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random
Matrices. Springer, New York.

Pan, G. (2010). Strong convergence of the empirical distribution of eigenvalues of sam-
ple covariance matrices with a perturbation matrix. Journal of Multivariate Analysis
101, 1330-1338.

Pan, G. and Zhou, W. (2011). Central limit theorem for Hotelling’s T? statistic under
large dimension. Annals of Applied Probability 21, 1860-1910.

Cheng Wang

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

E-mail: cescwang@gmail.com

Guangming Pan
School of Physical and Mathematical Sciences, Nanyang Technological University, Sin-
gapore

E-mail: gmpan@ntu.edu.sg

Tiejun Tong
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
E-mail: tongt@hkbu.edu.hk

Lixing Zhu



10 Cheng Wang, Guangming Pan, Tiejun Tong and Lixing Zhu

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
E-mail: Izhu@hkbu.edu.hk



