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Supplementary Material

A1. Proof of Theorem 1
By Corollary A.41 of Bai and Silverstein (2010), we have
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where z ∈ C+. Then by Bai and Silverstein (2010, chap. 4) or the main theorem in Pan

(2010), as n → ∞, F
1
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F1, whose Stieltjes transform m1(z) satisfies
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It is easy to verify that Fy( 1
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p ) converges almost surely to a non-random distri-

bution F2, whose Stieltjes transform is m2(z) = 1
y m1(

z
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Similarly, by Corollary A.41 of Bai and Silverstein (2010), we can prove that
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p have the same LSDs. Here we also use the fact
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that the support of F1 or F2 is bounded by Bai and Silverstein (1998) or the extreme

eigenvalues of Sn is bounded by Pan and Zhou (2011).

Altogether, we have that, as n → ∞, F
1
nYY

T+λΣ−1
p converges almost surely to a non-

random distribution F2, whose Stieltjes transform m2(z) satisfies
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∫ 1

λ
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dH(t). (2)

Finally, Theorem A.43 of Bai and Silverstein (2010) yields
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where ∥ f∥= supx | f (x)|. The proof is completed.

A2. Proof of Lemma 1
First, m0(−λ ) is the solution of Equation (2.7). Added to this, almost surely,

1
p

tr(
1
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Sn + Ip)
−1 → λm0(−λ ).

Then, λm0(−λ )≥ min(0,1− 1
y ). Hence, 1− y+ yλm0(−λ )≥ 0.

Next, suppose we have two solutions M1, M2 of Equation (2.7) and 1−y+yλM j ≥
0, j = 1,2. Then

M1 =
∫ dH(t)

t(1− y+ yλM1)+λ
,

M2 =
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.

Hence,
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−1 =
∫ ytλdH(t)

(t(1− y+ yλM1)+λ )(t(1− y+ yλM2)+λ )
,

which is in contradiction with ytλ
(t(1−y+yλM1)+λ )(t(1−y+yλM2)+λ ) ≥ 0. Therefore, Equation

(2.7) has a unique solution.
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A3. Proof of Theorem 2
To proof Theorem 2, we need the following lemma.

Lemma 1 Under the conditions of Theorem 1, almost surely,
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Proof: By the definition of ESD and Helly-Bray theorem,
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This finishes the proof of Lemma 1.

Now we prove Theorem 2. By Lemma 1, we have

m0(−λ ) =
∫ dH(t)

t(1− y+ yλm0(−λ ))+λ
.

In Lemma 1, writing
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v(λ ) =
∫ dH(t)

t(1− y+ yλv(λ ))+λ
,

which is the same as Euqation (2.7). In addition,

1− y+ yλv(λ ) = 1− y+ y(1− R1(λ )
1+ yR1(λ )
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then ∫ 1
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By (4), we have
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This finishes the proof of Theorem 2.

A4. Proof of Theorem 3
Lemma 1 implies that

R1(β ) =
∫ 1

β
t +

1
1+yR1(β )

dH(t),

R2(β ) =
∫ 1+ yR2(β )

(1+yR1(β ))2

(β
t +

1
1+yR1(β ))

2
dH(t).

Moreover, 1
1+yR1(β ) = 1−y(1−βm0(−β )) where m0(−z) is the Stieltjes transform

of LSD of Sn. Denoting the LSD of Sn as F(0)(x), then

m0(−β ) =
∫ 1

x+β
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Further, if we define another distribution function as
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we have 1− y(1−βm0(−β )) = βm1(−β ). Writing γ = γ(β ) = 1/m1(−β ), we have

R1(β ) =
γ
β

∫ t
t + γ

dH(t),
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γ2

β 2
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For γ(β ), we have
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1∫ 1
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,

which is a strictly increasing function on β . Therefore, γ and β are one-to-one mapping.

Specially, when y ≤ 1 that is F(1)(x) has a point mass 1− y at the origin, the function

γ(β ) : (0,∞) 7−→ (0,∞). When y ≥ 1, the function γ(β ) : (0,∞) 7−→ (γ0,∞) where

γ0
∫

1/xdF(1)(x) = 1. Altogether, we have
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When H(x) is a degenerate distribution at σ 2,
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σ 2
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)2.

Obviously, LH(γ) achieves its minimum value L0 = 0 at γ∗ = ∞. Moreover, βopt → ∞
and

1
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which means the theoretical optimal estimator is Ω̂p = σ−2Ip.

For general distribution H(x), denoting fk(x) =
∫
( t

t+x)
kdH(t),k = 1,2,3, we have

dLH(x)
dx

=
f1(x)

( f2(x))2 ( f1(x) f ′2(x)−2(1− y f2(x)) f ′1(x) f2(x))

=
2 f1(x)

x( f2(x))2 ( f1(x)( f3(x)− f2(x))− (1− y f2(x))( f2(x)− f1(x)) f2(x))

=
2 f1(x)( f2(x)− f1(x))

x
(y− f1(x) f3(x)− f2(x) f2(x)

f2(x) f2(x)( f1(x)− f2(x))
),

where we use the facts that f ′k(x) =−k
∫ tk

(t+x)k+1 dH(t) and x f ′k(x) = k( fk+1(x)− fk(x)).

Writing g(x)= f1(x) f3(x)− f2(x) f2(x)
f2(x) f2(x)( f1(x)− f2(x))

, it is easy to show limx→0+ g(x)= 0 and limx→+∞ g(x)=

+∞. Therefore, LH(γ) can achieve its global minimum value at γ∗ which satisfies

f1(γ∗) f3(γ∗)− f2(γ∗) f2(γ∗)
f2(γ∗) f2(γ∗)( f1(γ∗)− f2(γ∗))

= y.

Thus, by the definition of γ(β ), when y≤ 1, βopt satisfies the equation γ∗= βopt
1−y(1−βoptm0(−βopt))

.

The proof is finished.

A5. Proof of Theorem 4
By Theorem 3, almost surely, as n → ∞,

R̂1(λ )→ R1(λ ),

R̂2(λ )→ R2(λ ).

By the continuous mapping theorem, almost surely, we have

Ln(λ ) = 1− (R̂1(λ ))2

R̂2(λ )
→ L(λ ).

By the definition of β ∗
n , we have

Ln(β ∗
n )≤ Ln(βopt)

a.s.−→ L(βopt) = L0. (11)

Noting that R̂k,k = 1,2 are decreasing functions, it is straightforward to show that

R̂1, R̂2 are uniformly convergent on the bounded interval [C1,C2]. That is, for any ε > 0,

when n is large enough, for all β ∈ [C1,C2], we have,

|R̂1(β )−R1(β )| ≤ ε, a.s.

|R̂2(β )−R2(β )| ≤ ε, a.s.
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which can guarantee the uniformly convergence of Ln(β ). Therefore, we can claim for

any ε > 0, when n is large enough, almost surely,

|Ln(β )−L(β )| ≤ ε , for any β ∈ [C1,C2]. (12)

Specially, we have, almost surely,

Ln(β ∗
n )≥ L(β ∗

n )− ε ≥ L0 − ε . (13)

Together with (11), we get Ln(β ∗
n )

a.s.−→ L0.

Similarly, denoting

R1n(β ) =
1
p

tr(Σ1/2
p (Sn +β Ip)

−1Σ1/2
p ),

R2n(β ) =
1
p

tr(Σ1/2
p (Sn +λ Ip)

−1Σ1/2
p )2,

we have, for any ε > 0, when n is large enough, for all β ∈ [C1,C2],

|R1n(β )−R1(β )| ≤ ε, a.s.

|R2n(β )−R2(β )| ≤ ε, a.s,

and

|R̂1(β )−R1n(β )| ≤ 2ε, a.s.

|R̂2(β )−R2n(β )| ≤ 2ε, a.s..

Then, we have

1
p

tr(α∗
n (Sn +β ∗

n Ip)
−1Σp − Ip)

2 = (α∗
n )

2R2n(β ∗
n )−2α∗

n R1n(β ∗
n )+1

= R2n(β ∗
n )(α∗

n −
R1n(β ∗

n )

R2n(β ∗
n )

)2 +1−
R2

1n(β ∗
n )

R2n(β ∗
n )

= R2n(β ∗
n )(

R̂1(β ∗
n )

R̂2(β ∗
n )

− R1n(β ∗
n )

R2n(β ∗
n )

)2 +1−
R2

1n(β ∗
n )

R2n(β ∗
n )

.

Moreover, for any β ∈ [C1,C2], almost surely, R1(β ) and R2(β ) are bounded which

ensure there are constants C3,C4 that 0<C3 < R̂1(β ), R̂1(β ),R1n(β ),R2n(β )<C4. Then,

almost surely,

|1
p

tr(α∗
n (Sn +β ∗

n Ip)
−1Σp − Ip)

2 −Ln(β ∗
n )|<C0ε . (14)
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Together with Ln(β ∗
n )

a.s.−→ L0, we have

1
p

tr(α∗
n (Sn +β ∗

n Ip)
−1Σp − Ip)

2 a.s.−→ L0. (15)

The proof is completed.
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