Statistica Sinica: Supplement

REGULARIZING LASSO: A CONSISTENT
VARIABLE SELECTION METHOD

Quefeng Li and Jun Shao

University of Wisconsin, Madison,
FEast China Normal University and University of Wisconsin, Madison

Supplementary Material

The supplementary material is organized as the follows. In Section S1, we provide
additional information regarding the simulation studies in Section 5.1. In Section S2,
we give lemmas for establishing asymptotic results when the precision matrix is sparse.
The proofs of all lemmas and theorems are given in Section S3.

S1 Additional Tables of Simulation Results

Table 1 provides the average computational time (in minutes) for the eight methods under
the simulation settings. SIS clearly requires the least computational effort, whereas
RLASSO as well as Scout require much longer computational time. But all methods
except RLASSO(CLIME) can be computed under a reasonable amount of time for p =
5000 and n = 100. RLASSO(CLIME) takes much longer because of inverting a matrix
of 5000 dimension. However, 790.8 minutes of computation may still be acceptable.
In an unreported simulation with p = 2000 and the same other settings, the average
computational time for RLASSO(CLIME) is 46.7 minutes.

Finally, because the estimation of 3 is an important step in RLASSO, we provide
the average Frobenius norms of estimated X and € in the simulation in Table 2. It
is clear that S is not a good estimator of 3 in terms of the Frobenius norm, b3 by
thresholding (or © by CLIME) is a good estimator when 3 (or £2) is sparse but not so
good when X (or Q) is not sparse.

S2 Lemmas

Lemma S1. Assume conditions (C1)-(C2) and (C3"), for any A\, — 0, there exist
positive constants Cr4,C15,Clg such that

P (||B = Blloo > t) < 8exp (—Cl4n[t/shrq]l%q) + 4p? exp (—Cwntz/si) + 8pexp(—Cint?)

for any 0 <t < 8M'~"s),.
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Table 1: Average computational time of various methods (in minutes)
p = 5000 and n = 100

Model 1 Model 2 Model 3 Model 4

RLASSO(AT) 6.6 2.1 11 3.6
RLASSO(CLIME) 790.8 700.1 651.8 758.6
RLASSO(GLASSO) 11.0 1.7 7.6 8.2
Scout(1,1) 9.6 1.5 5.8 6.3
LASSO 1.5 0.6 1.2 14
LASSO+T 2.8 0.8 1.2 1.9
SLSE+T 4.2 1.5 2.3 2.0
SIS 0.6 0.4 0.6 0.5

Table 2: The average Frobenius norms of estimated 3 and

Model 1 Model 2 Model 3 Model 4

1S—=[r S=XX/n 618.17 2877.25 249543  570.22
|- 2|l RLASSO(AT) 5088 40.71  385.38  40.17
| — Q|| RLASSO(CLIME) 41.02  273.01 49.99  42.03
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Lemma S2. Assume conditions (C1'), (C2) and (C8"), for any A\, — 0, there exist

positive constants Ca1, Coo, Coz and Cay such that

P (H,@ = Blloo > t) < Oy [exp (—ngn [t/rqsh]%q) + n‘Li}ZiT}
4 ngpQSilt_an_l + C24pt_2ln_l,

for any 0 <t < 8M'~"s),

S3 Proofs

Proof of Lemma 1. From (1),
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Under condition (C1), applying Lemma 1 of Cai and Liu (2011) to (2 — E(zi;2k))
gives that there exist D1 > 0 and Dy > 0 such that

1 & )
H}%XP (‘n 2xija:ik — E(zjzi)| > t> < 2exp(—Dyint?),
i

for all 0 < t < Dg. Then, under condition (C2), it follows by Bonferroni inequality that
there exist C; > 0 and C3 > 0 such that, for any 1 < j < p,

P n
1 t
P - g L
(32 | S B 1> £
k=1 =1
< P M'"s, max lixxk —E(zijzi)| > 2
— k n gt (k] (k] 3 (83.2)

1< t
<p- H}%XP < - ;xijxik — E(zjzy)| > M)
< 2pexp(—Cynt?/s?),
for all 0 < t < C3sp. Similarly,
1< t
lréljaécpP ( - ;Uixijq > 3) < 2exp(—Cant?), (53.3)
1< t
121;2{;;]3 ( - ;uzzj > 3) < 2exp(—Cynt?), (S3.4)
for some Cy > 0. Therefore,
P (|BMj — B, | > t) < 2pexp(—Cynt?/s7) + dexp(—Cont?). (S3.5)

Then, Lemma 1 follows by

P (”BM — Bulloe > t) < ZP (\BMJ» — B | > t) ~

Jj=1

O

Proof of Lemma 2. By Karush-Kuhn-Tucker conditions, the solution B to (8) satisfies
that

8- By =-\Z, (S3.6)
where Z has the form of ~
1, if Bj > 0;
Z=1-1, if B; < 0; (S3.7)

€[-1,1], ifB;=0.

S3
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Simple algebra from (S3.6) yields

B-B=""Bu—Bu—-MZ—-(E-%)8-(£-%)B-B). (S3.8)
Hence,
18— Blloo < vp([1Bar — Butlloo + M Z oo + [(Z = 2)Blloc + [[(E — 2)(B — B)|oo)-

Equivalently,
1 - . - R .
@Hﬁ —Blls = Z=)(B =Bl <11Bm = Bulloo + A Z || + (X — 2) B

Then, by (2 = 2)(8 = 8)]l < % = Z[1[I8 = Bllsc, it holds that

P(IB = Bl > 1
~ . 1 ~ - 1
P (16l > 12 -2 < 5 )+ P (18- Bl > 12 -2 > 1)

P

R . t - 1
< P (1B~ Brrllo + [0l + (S = B)Bloc > 5[5 -2l < 5 )
p

2vp

. 1

+P(2mh>)
21}p

<P (1w = Burle > g ) + P (2l > 5 ) + P (18- DBl > 51 )
p

6vp 6vp
o 1
+p(IE-2h > 5-)
2vp
=I+I1T+ 1T +1V

By Lemma 1, there exist positive constants C4 and C5 such that
I < 2p* exp(—Cynt?/(spvp)?) + 4p exp(—C5nt2/v12,). (S3.9)

By the choice of A, IT = 0, when n is sufficiently large. For I1I, under condition (C2),
(2 =2)8|lee <IE = Z1]|B]loc < M||E — 2||;. Then, it follows from Theorem 1(i) of
Cai and Liu (2011) that,

- t
IIT+1V < 2P (||2 — 3| > 6MU> < Cen V2D (p 0, /)Y 7D (S3.10)
p

for some Cg > 0. This completes the proof of the lemma. O
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Proof of Theorem 1. Note that M\g = Mﬁ,tn and
P (M,B,antn C ﬂg)

=1-P (Uj;|5j\>antn {|BJ‘ < tn})

>1-P (Uj:|/5’j\>antn {|BJ - 5J| > (an — 1)tn})

>1=P (I8 -8l > (@ = tn)

—2 1—201—203—27 5—2 129y as—n 1/(1—q)
> 1= 0 |exp (~Cr(logn)~2n! ~207203-20) 4 (1/p)72 ((log n)(1/n) 3 )

by Lemma 2 and the choice of a,, and t,. Similarly,
P(Mp C Mgy, /a,)

=P (ﬂj:w,-@n/a" {\le < tn})

>1-p (Ujilﬁj\étn/an {|5j —Bil > (- aﬁl)tn})

>1- P (18- Bl > (1 a3}t

=1-0 [exp (—Cx(logn) 2! 201 =205=2n) 4 (1 /p)d=2 ((logn)(l /n)%—az—aa—n)” “‘q)] .

This completes the proof of the first part of Theorem 1. In particular, if we choose h = 0,

P(Mg C Mp)
—1-P (UjEMg {IBJ‘\ < tn})
> 1—P(ujeMB{|ﬁj\ —1B; - ;] Stn}) (S3.11)
>1- P (Uienms {18 = 651 = ta/2})
= 1= O [exp (~Cyn! =202 205720) . (1/p)7=2(1 /) (7"~ s/ ()]

since under (C5), by the choice of t,, minje i, |8;] > 2t, for large enough n.

On the other hand,

—

P(Mp C Mp)

(Ujgmﬁ {Iﬁj\ > tn})

(Uj€M5 {|BJ - Bj > tn})

[exp (—Cgn! 20120520y 4 (1/p)0=2(1/n) (5 —e2mea=m/(0-0)|

(S3.12)

1-P
1-P
1-0

(S3.11) and (S3.12) together prove the theorem. O
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Proof of Lemma 3. The proof is analogous to that of Lemma 1. Under condition
(C1’), it holds that

E ‘xijxik — E(szk)\zl < 92—1 {E|1‘ij1‘ik|2l + (E|$Z‘j$ik|)2l} = O(l)

Then, by Chebyshev Inequality and Theorem 2 in Whittle (1960).

21

1 I
H}%XP <|n ;xijxik —E(zjzi)| > t) <t?2E - ;zmzzk —E(zjz)| = O(tlenfl).
Therefore, by replacing (S3.2) with
P n
P (Z szzzk - .Z’Jl'k-) ‘/Bk| > )
k= i=1
< p Z o) >
p- max Lijlik — .%‘jl’k 3M17h8h
S 09173%% 2ln 9
for some Cy > 0 and replacing (S3.3) and (S3.4) with
1 i t C]_O —921 —1
wax P ( n 2| > 3> <5t
Cro, -1, 1
o P ( Zﬂ% ) SR
for some C1p > 0, the rest of proof follows from (S3.1). O
Proof of Lemma 4. From Lemma 3, it holds that
- t
P <||ﬁM — Bulleo > 61)) < C'up2silv§lt72ln71 + C’12pv§lt72ln71, (S3.13)
P

for some Cq7; > 0 and Cq2 > 0.

Under condition (C3), it follows from Theorem 1(ii) of Cai and Liu (2011) that,
there exists C3 > 0 that

t 1
(nz 2l > )gclg (72~ D gy )70 4 =TT L (58.19)

Replacing (S3.9) and (S3.10) with (S3.13) and (S3.14) and observing that by the
choice of A\,, P(\,Z > 6—) = 0, when n is sufficiently large, the rest of the proof

resembles the proof of Lemm 2. O

Proof of Theorem 2. The proof is the same as the proof of Theorem 1 by replacing
results in Lemma 2 with results in Lemma 4. O
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Proof of Lemma S1. From (S3.6),
B =08y — \QZ.
Recall that, 8 = Q3,,. Hence,
B-B =08y — By — \QZ.
Then,
P(|B =Bl > t) < P(I92B8x — 2Baslloo > /2) + P(|\RZ o > 1/2).  (S3.15)

Since o R R R
QBy — QB = (2 — Q)Bun + Q2B — Bur),
it holds that
P(I281 — Bl > t/2) < P(|(Q2 — )Burlloc > t/4) + P(IQ(Bar — Bur)lloc > t/4).

(S3.16)
The first item in (S3.16) is bounded by

P (11€2 = QU1 1Bo o > t/4)
< P (2= QUl1Burll > /40 1Bar = Barllow < 1/8) + PI1Bar = Bl > 1/8)
< P (1192~ QU 1Burlloe > ¢/8 0 1Bas — Basloc < 1/8)

+ P (11€2 = @118y~ Barlloo > /801 1Bar — Bl < 1/8)

+ P (183 = Burllow > 1/3)

< P (I~ 2l > t/18M's1]) + P (192 = Qs > 1) + P (1Bar — Bl > 1/8)

For the second item in (S3.16), it follows from the assumption |Q||; < M that
P(IRBu — Bar)lloe > t/4) < P (I92011]18ar — Barloe > t/4)
< P (118y — Bulloo > t/[4M]) .
Without loss of generality, assume M > 2. Then, for any 0 < t < 8M '~ "),
P (||5~ — Bl > t) <op (||fz — Q) > t/[SMl_hsh})

) (S3.17)
+2P (1B — Burloo > ¢/[4M])

of A\, when n is sufficiently large, P(||\nQ2Z]|o > t/2) = 0.
Under (C1), it follows by Theorem 1(a) of Cai, Liu, and Luo (2011) that

since [ An2Z]lco < AllQ111Z]l0e < AallI]1 < 2/A0l|R2]]1 < 2M|A,|. By the choice

P (||(z — Q> t/[SMl’hsh]) < dexp <7C’14n[t/shrq]2/(17q)) : (93.18)

S7
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for some Cy4 > 0.

From Lemma 1, it holds that
P(||BN1 — Butlloo > t/(4M)) < 2p* exp (fclsntZ/si) + 4pexp (fcmntQ) . (S3.19)

(S3.17), (S3.18) together with (S3.19) proves the lemma. O

Proof of Lemma S2. Under conditions (C1’) and (C3"), by Theorem 1(ii) of Cali,
Liu, and Luo (2011).

t Co
)« e
8M1_h8h) - 2

P <||fzn|1 > [exp <7022n [t/shrq]%q> +n*“f]

From Lemma 3, it holds that

A O B B C - -
P18y — Burlloo > t/(4M)) < %p%ilt 2, l—f—%pt 20,1

The rest of proof follows by (S3.17). O

Proof of Theorem 3 and Theorem /. By using results in Lemma S1 and Lemma
S2, the proof is the same as that of Theorem 1. O

Proof of (15). Decompose X as

where 221 = (B/ 0)/
Sngﬁl = So1 (S;ll —1TI 0) + (Sgl — 221)150 + 3. (8320)

It is well known (e.g. see Bickel and Levina (2008)) that for normally distributed covari-

ates,
max |s;; — pij| = Op (v n-! logp) ;
1<i,j<p
where s;; is the (4, 7)th element of S. Then,
S

0
||S21 — 221”00 = max |3ij — p”| = OP (50\/ TL71 10gp> .
1

s0<t<p “
j=

Hence, [|(Sa1 — S21) s, oo = Op (sow/n*1 1ogp).
Moreover, ;! — I, = S;i* (I, — S11). Then,

”Sﬁ1 - ISOHOO < HSﬁIHOOHISU - 511”00 < (1 + ”‘5’1711 - ISOHOO)HISO - SIIHOO'

S8
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Hence, 817"~ Lol < 113, = Suallo/(1 ~ [, = S11llc) = Op (s0/n T Togp). Then,
||S21(51711 - ISO)HOO < ||S21‘|00“Sf11 - ISUHOO
< (||E21Hoo + ”521 - 221”00)”‘5’1711 - ISOHOO
=0Op (50 + sp/n~1t logp) -Op (.90\/7r1 logp)
=Op (sg\/n—llogp)

Since [|Za1looc > ||Blloc = 1+ 27, under the assumptions that n=1logp — 0 and sq is

fixed, it follows from (S3.20) that P(||S2187; | > 1+7) — 1. O
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