Web-Appendix

Density Matrix Estimation in Quantum Homodyne Tomography Yazhen Wang and Chenliang Xu University of Wisconsin-Madison

This appendix provides proofs of Theorems 1 and 2 in Section 3 of the paper entitled "Density Matrix Estimation in Quantum Homodyne Tomography" by Wang and Xu.

Denote by C a generic constant whose value is free of n and p and may change from appearance to appearance. O_{P} and o_{P} denote orders in probability as both n and p go to infinity.

Proof of Theorem 1. Let $\rho_{p}=\left(\rho_{j l}\right)_{1 \leq j, l \leq p}$. Using the triangle inequality and the relationship between $\ell_{2^{-}}$and ℓ_{1}-norms we have

$$
\begin{align*}
& \left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\rho\right\|_{2} \leq\left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{2}+\left\|\mathcal{T}_{\varpi}\left[\rho_{p}\right]-\rho_{p}\right\|_{2}+\left\|\rho_{p}-\rho\right\|_{2} \\
& \leq\left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{1}+\left\|\mathcal{T}_{\varpi}\left[\rho_{p}\right]-\rho_{p}\right\|_{1}+\left\|\rho_{p}-\rho\right\|_{1} \tag{16}
\end{align*}
$$

Condition A1 implies that

$$
\begin{equation*}
\left\|\rho_{p}-\rho\right\|_{1}=\max \left\{\max _{1 \leq j \leq p} \sum_{l=p+1}^{\infty}\left|\rho_{j l}\right|, \max _{j \geq p+1} \sum_{l=1}^{\infty}\left|\rho_{j l}\right|\right\} \leq C p^{-\alpha} . \tag{17}
\end{equation*}
$$

Denote by \mathcal{I}_{ϖ} the threshold procedure with threshold value ϖ. From Lemma 5.1 below we have

$$
\begin{equation*}
\left\|\mathcal{T}_{\varpi}\left[\rho_{p}\right]-\rho_{p}\right\|_{1}=\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\rho_{i j}\right| \leq \varpi\right)=O_{P}\left(\pi(p) \varpi^{1-\delta}\right) \tag{18}
\end{equation*}
$$

To complete the proof we need to derive the order of the first term, $\left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{1}$, on the right hand side of (16). We simply manipulate algebras regarding the hard thresholding rule to find

$$
\begin{align*}
& \left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\| \|_{1} \leq \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right| \geq \varpi\right) \\
& +\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\bar{\rho}_{i j}\right| 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right)+\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\bar{\rho}_{i j}\right|<\varpi,\left|\rho_{i j}\right| \geq \varpi\right) \\
& \leq \max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq \varpi\right)+\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\rho_{i j}\right|<\varpi\right) \\
& +\max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right)+\varpi \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq \varpi\right) . \tag{19}
\end{align*}
$$

As the orders of all terms on the right side of (19) are given by Lemmas 5.1 and 5.2 below, we immediately obtain that $\left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{1}$ is of order

$$
\begin{aligned}
& O_{P}(\varpi) O_{P}\left(\pi(p) \varpi^{-\delta}\right)+O_{P}\left(\pi(p) \varpi^{1-\delta}\right)+O_{P}(\varpi) O_{P}\left(\pi(p) \varpi^{-\delta}\right)+\varpi O_{P}\left(\pi(p) \varpi^{-\delta}\right) \\
& =O_{P}\left(\pi(p) \varpi^{1-\delta}\right) .
\end{aligned}
$$

Similarly for the soft thresholding rule, we have

$$
\begin{aligned}
& \left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{1} \leq \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left[\left|\bar{\rho}_{i j}-\rho_{i j}\right|+2 \varpi\right] 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right| \geq \varpi\right) \\
& +\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left[\left|\bar{\rho}_{i j}\right|+\varpi\right] 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right)+\max _{1 \leq i \leq p} \sum_{j=1}^{p}\left[\left|\rho_{i j}\right|+\varpi\right] 1\left(\left|\bar{\rho}_{i j}\right|<\varpi,\left|\rho_{i j}\right| \geq \varpi\right) \\
& \leq \max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq \varpi\right)+2 \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\rho_{i j}\right|<\varpi\right) \\
& +2 \max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right)+2 \varpi \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq \varpi\right)
\end{aligned}
$$

which has the same order as the right hand side of (19). Thus, $\left\|\mathcal{T}_{\varpi}[\bar{\rho}]-\mathcal{T}_{\varpi}\left[\rho_{p}\right]\right\|_{1}$ is also of order $\pi(p) \varpi^{1-\delta}$ for the soft thresholding rule.

Lemma 5.1 If ρ satisfies A1-A2 and ϖ is chosen as in Theorem 1, then for any fixed $a>0$,

$$
\begin{align*}
& \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\rho_{i j}\right| \leq a \varpi\right) \leq a^{1-\delta} C \pi(p) \varpi^{1-\delta}=O_{P}\left(\pi(p) \varpi^{1-\delta}\right) \tag{20}\\
& \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq a \varpi\right) \leq a^{-\delta} C \pi(p) \varpi^{-\delta}=O_{P}\left(\pi(p) \varpi^{-\delta}\right) \tag{21}
\end{align*}
$$

Proof. Simple algebraic manipulation shows that

$$
\begin{aligned}
& \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right| 1\left(\left|\rho_{i j}\right| \leq a \varpi\right) \leq(a \varpi)^{1-\delta} \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right|^{\delta} 1\left(\left|\rho_{i j}\right| \leq a \varpi\right) \\
& \leq a^{1-\delta} \varpi^{1-\delta} C \pi(p)=O_{P}\left(\pi(p) \varpi^{1-\delta}\right),
\end{aligned}
$$

which proves (20). (21) follows from

$$
\begin{aligned}
& \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right| \geq a \varpi\right) \leq \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left[\left|\rho_{i j}\right| /(a \varpi)\right]^{\delta} 1\left(\left|\rho_{i j}\right| \geq a \varpi\right) \\
& \leq(a \varpi)^{-\delta} \max _{1 \leq i \leq p} \sum_{j=1}^{p}\left|\rho_{i j}\right|^{\delta} \leq(a \varpi)^{-\delta} C \pi(p)=O_{P}\left(\pi(p) \varpi^{-\delta}\right) .
\end{aligned}
$$

Lemma 5.2 If ρ satisfies A1-A2 and ϖ is chosen as in Theorem 1, then

$$
\begin{gather*}
\max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right|=O_{P}\left(p^{1 / 4} \sqrt{\frac{\log p}{n}}\right)=O_{P}(\varpi) . \tag{22}\\
\max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right) \leq 2^{\delta} M \pi(p) \varpi^{-\delta}+o_{P}(1)=O_{P}\left(\pi(p) \varpi^{-\delta}\right) . \tag{23}
\end{gather*}
$$

Proof. For $1 \leq i \leq j \leq p$, the pattern functions $f_{i j}(x)$ satisfy

$$
\sup _{x}\left|f_{i j}(x)\right| \leq C p^{1 / 4}
$$

where the inequality is from the proof of Lemma 3.1 in Gill and Guţă(2003, Equation (3.14)) [which is the early version of Artiles, Gill and Guţă(2005, Lemma 1)]. Thus $F_{i j}$ in (4) are bounded by $C p^{1 / 4}$ uniformly for $1 \leq i, j \leq p$. Applying Bernstein inequality to $\bar{\rho}_{i j}$ we have for $1 \leq i, j \leq p$ uniformly

$$
P\left(\left|\bar{\rho}_{i j}-\rho_{i j}\right|>h\right) \leq C_{1} \exp \left(-C_{2} n h^{2} p^{-1 / 2}\right)
$$

Taking $h=h_{0} n^{-1 / 2} p^{1 / 4} \log ^{1 / 2} p$ we immediately show

$$
\begin{equation*}
P\left(\max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right|>h\right) \leq p^{2} C_{1} \exp \left(-C_{2} n h^{2}\right)=C_{1} p^{2-C_{2} h_{0}^{2}} \rightarrow 0 \tag{24}
\end{equation*}
$$

if $h_{0}^{2}>2 / C_{2}$, as $n, p \rightarrow \infty$. Thus,

$$
\max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right|=O_{P}\left(p^{1 / 4} \sqrt{\frac{\log p}{n}}\right) .
$$

To show (23), we have

$$
\begin{aligned}
& \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right|<\varpi\right) \leq \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi,\left|\rho_{i j}\right| \leq \varpi / 2\right) \\
& +\max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}\right| \geq \varpi, \varpi / 2<\left|\rho_{i j}\right|<\varpi\right) \\
& \leq \max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\bar{\rho}_{i j}-\rho_{i j}\right| \geq \varpi / 2\right)+\max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left(\left|\rho_{i j}\right|>\varpi / 2\right) .
\end{aligned}
$$

For the two terms on the right hand side of this equation, (21) shows that the second term is of order

$$
2^{\delta} C \pi(p) \varpi^{-\delta} \sim \pi(p) \varpi^{-\delta}
$$

and (25) below implies that the first term is negligible. This proves (23).
We need to show

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left\{\left|\bar{\rho}_{i j}-\rho_{i j}\right| \geq \varpi / 2\right\}>0\right)=o(1) . \tag{25}
\end{equation*}
$$

From (24) we get

$$
\begin{aligned}
& P\left(\max _{1 \leq i \leq p} \sum_{j=1}^{p} 1\left\{\left|\bar{\rho}_{i j}-\rho_{i j}\right| \geq \varpi / 2\right\}>0\right) \leq P\left(\max _{1 \leq i, j \leq p}\left|\bar{\rho}_{i j}-\rho_{i j}\right| \geq \varpi / 2\right) \\
& \leq p^{2} C_{1} \exp \left(-C_{2} n \varpi^{2} p^{-1 / 2} / 4\right) \\
& =C_{1} p^{2-\zeta^{2} C_{2} / 4} \rightarrow 0,
\end{aligned}
$$

if $\zeta^{2}>8 / C_{2}$, as $n, p \rightarrow \infty$, which proves (25).

Proof of Theorem 2. Since ρ is semi-positive and has unit trace, then it is in the cone Γ, and by definition we have $\|\tilde{\rho}-\hat{\rho}\|_{2} \leq\|\rho-\hat{\rho}\|_{2}$. Thus,

$$
\|\tilde{\rho}-\rho\|_{2} \leq\|\tilde{\rho}-\hat{\rho}\|_{2}+\|\hat{\rho}-\rho\|_{2} \leq 2\|\hat{\rho}-\rho\|_{2} .
$$

From

$$
\|\tilde{\rho}-\hat{\rho}\|_{2}=\left\|O^{\dagger}(\tilde{\rho}-\hat{\rho}) O\right\|_{2}=\left\|O^{\dagger} \tilde{\rho} O-\operatorname{diag}\left(\hat{\lambda}_{1}, \hat{\lambda}_{2}, \cdots, \hat{\lambda}_{p}\right)\right\|_{2},
$$

it is easy to see that the projection of diagonal matrix $\operatorname{diag}\left(\hat{\lambda}_{1}, \hat{\lambda}_{2}, \cdots, \hat{\lambda}_{p}\right)$ onto Γ is the solution of the minimization problem (11). Hence $\tilde{\rho}$ is the projection of $\hat{\rho}$ onto Γ.

