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Abstract: Modern scientific studies often involve complex quantum systems, and

scientists need to learn the systems from experimental data. As density matrices

are usually employed to characterize the quantum states of the systems, this paper

investigates estimation of density matrices. We propose statistical methodologies

to construct density matrix estimators and establish an asymptotic theory for the

estimation methods. We show that the proposed density matrix estimators are

consistent and have good convergence rates. A numerical study is conducted to

demonstrate the finite sample performances of the proposed estimators.
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1. Introduction

Learning and manipulating quantum systems plays an important role in such

scientific studies as quantum computation and quantum information. A quan-

tum system is generally characterized by its state and the time evolution of the

state, and it is important, but difficult, to know its state. We often conduct

experiments in a laboratory to perform measurements on the quantum system

and then infer the quantum state from the experimental data. Mathematically

the quantum state can be described by a matrix called the density matrix of

the quantum system. The problem can be formulated as a statistical problem

of estimating the density matrix based on repeated measurements on quantum

systems that are identically prepared in the state to be estimated. After obtain-

ing measurements on some identical quantum systems we can make statistical

inference about the probability distribution of the measurements, and thus in-

directly about the density matrix of the quantum system. In the literature of

quantum physics and quantum information science, this is referred to as quantum

state tomography, the reconstruction of the density matrix by probing identically

prepared quantum systems.

Density matrix estimation methods in physics usually focus on estimating

individual matrix elements without studying the accuracy of a density matrix

estimator as a whole matrix. With the introduction of quantum statistics by
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Barndorff-Nielsen, Gill, and Jupp (2003) Artiles, Gill, and Guţă (2005) proposed

a sieve estimator of the density matrix and proved its consistency under trace

and Frobenius norms. Guţă and Artiles (2007) and Butucea, Guţă, and Artiles

(2007) investigated minimax estimation of the Wigner function (which charac-

terizes a density matrix via a transformation) for noiseless data and noisy data,

respectively, and proposed kernel estimators to achieve optimality. This paper

investigates density matrix estimation for an infinite dimensional quantum sys-

tem. Using the relationship between a density matrix and its corresponding

density function of measurements we construct unbiased estimators of the en-

tries of the density matrix; employing a regularization methodology developed

for large matrix estimation we propose new estimators of the density matrix and,

under a matrix sparsity assumption, we establish asymptotic theory for the pro-

posed estimators. We show that the estimators are consistent and achieve high

convergence rates under the spectral norm. We conduct a simulation study to

illustrate the finite sample performances of the proposed estimators.

The rest of the paper proceeds as follows. Section 2 briefly reviews quan-

tum mechanics. Section 3 presents density matrix estimation and establishes an

asymptotic theory for the proposed density matrix estimators. Section 4 provides

a simulation study to illustrate the finite sample performances of the proposed

density matrix estimators. Section 5 features concluding remarks. The proofs

are collected in Web Appendix.

2. Brief Review on Quantum Mechanics

Quantum mechanics describes phenomena at microscopic level. The theory

of quantum mechanics provides a mathematical description of the states and

the time evolutions of physical particle systems. Quantum theory is intrinsically

stochastic in that we can only statistically predict quantum measurement results.

Mathematically the theory is described by a Hilbert space H and Hermitian (or

self-adjoint) operators on H.

A quantum system of particles is described by its state and the time evolution

of the state. The quantum state can be characterized by a density matrix (or

density operator) ρ on H, which is self-adjoint, semi-positive, and unit trace.

Thus, (1) ρ is equal to its adjoint (ρ∗)†, where we denote by ∗ and † conjugate

and transpose operations, respectively; (2) ⟨u, ρu⟩ ≥ 0 for u ∈ H; (3) Tr(ρ) = 1.

Here we follow the convention in quantum information science to reserve notation

ρ for a state or density matrix.

Measurements for a quantum system are obtained by laboratory experiments

performed on the system. They are described through observables as follows,

where an observable X is defined as a self-adjoint operator on H. Assume that

X has a spectral decomposition with real eigenvalues Xa and the corresponding
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eigen-spaces Qa, where a belongs to some index set (which may be a discrete set

or a continuous interval). When a laboratory experiment performs measurements

on the observable X for the quantum system prepared in state ρ, the resulting

measurements are random and take values from the eigenvalues of X, and the

probability of observing a particular eigenvalue Xa as a measurement is equal to

Tr(ρQa). See Holevo (1982), Sakurai (1995) and Wang (2012).

3. Density Matrix Estimation

3.1. Density matrix

An important quantum study involves measurements on position and mo-

mentum (or electric and magnetic fields) of a particle. Two central observables

in the study are described by self-adjoint operators U and V, respectively, on

Hilbert space H = L2(IR),

[U f ](x) = x f(x), [V g](x) = −i d g(x)
dx

,

where L2(IR) denotes the space of square integrable complex valued functions

on IR, i =
√
−1, and f(x) and g(x) are two arbitrary functions in H. The

quantum system is described by H and a state ρ, which is represented by a

semi-positive, unit trace, infinite matrices, with elements ρjℓ = ⟨ej , ρ eℓ⟩, j, ℓ =
1, 2, . . ., where e = {e1, e2, . . .} is an orthonormal basis in H. The quantum

system has a long history and is extremely important in quantum physics, and

a technique called quantum homodyne tomography in quantum optics has been

developed to perform measurements on observables U and V. Such physical

quantum systems are typically light pulses, and the goal of quantum engineering

experiments is often to create some interesting states of light for the research and

application studies in quantum computation, quantum information and quantum

cryptography. To verify the creation of a state experimentalists need to perform

measurements on observables U and V for the quantum system. However, U and

V do not commute, in fact, U and V satisfy Heisenberg’s commutation relation

UV −VU = i I, thus they cannot be measured simultaneously. The quantum

homodyne detection technique produces samples from the marginal of U and V

along various chosen directions. For this reason the state reconstruction is known

as quantum homodyne tomography.

Quantum homodyne tomography is able to measure the so-called quadrature

observables Xϕ = U cosϕ + V sinϕ for any phase directions ϕ. Once perform-

ing measurements on Xϕ for a sufficient number of quantum systems identically

prepared under the state ρ, we estimate ρ from the acquired random measure-

ment data. In the experiment ϕ is chosen to be uniformly distributed on the

interval [0, π] and independent of (U,V). For n quantum systems prepared in
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the same state ρ, we measure quadratures Xϕk
on the k-th system with phase ϕk

selected independently from a uniform distribution on [0, π] and obtain indepen-

dent identically distributed random variables (Xϕ1 , ϕ1), . . . , (Xϕn , ϕn), quantum

measurement results of observables Xϕ. Our goal is to estimate density matrix

ρ based on (Xϕ1 , ϕ1), . . . , (Xϕn , ϕn).

Following the literature we take the Hermite polynomials normalized by

exp(−x2/2) as an orthonormal basis e = {e1, e2, . . .} in H and obtain an in-

finite density matrix ρ = (ρjℓ) for the quantum system. Denote by hρ(x, ϕ) the

joint probability density function (pdf) of (Xϕk
, ϕk). We obtain measurements

(Xϕk
, ϕk) performing on Xϕ with probability dictated by the eigen-structure of

Xϕ and the state ρ of the quantum system. Thus, the pdf hρ(x, ϕ) of the mea-

surements on observables Xϕk
must be related to state ρ. Indeed, we have deep

relationship between hρ(x, ϕ) and ρ = (ρjℓ),

hρ(x, ϕ) =
1

π

∞∑
j,ℓ=1

ρjℓ ej(x) eℓ(x) e
−i (j−ℓ)ϕ, (3.1)

ρjℓ =

∫ ∞

−∞
dx

∫ π

0

dϕ

π
hρ(x, ϕ) fjℓ(x) e

−i (j−ℓ)ϕ, (3.2)

where fjℓ(x) are known bounded real-valued functions called pattern functions.

The pattern functions fjℓ(x) have oscillatory parts concentrating around zero

with the lengths of the oscillatory parts and the numbers of oscillations increasing

with j and ℓ, and their tails decaying like x−2−|j−ℓ|. See D’Ariano, Leonhardt,

and Paul (1995) Leonhardt, Paul, and D’Ariano (1995) and Leonhardt et al.

(1996) for details on deriving the relationship.

3.2. Estimation

Since hρ(x, ϕ) is the joint pdf of random variable (ϕ,Xϕ), we can rewrite

(3.2) as

ρjℓ = E[Fjℓ(Xϕ, ϕ)], Fjℓ(x, ϕ) = fjℓ(x) e
−i (j−ℓ)ϕ, (3.3)

where the expectation is taken with respect to the pdf hρ(x, ϕ) of (Xϕ, ϕ). This

leads to an unbiased estimator of each entry ρjℓ as

ρ̄jℓ =
1

n

n∑
k=1

Fjℓ(Xϕk
, ϕk), j, ℓ ≥ 1. (3.4)

The true density matrix ρ is a semi-positive definite, unit trace matrix of infinite

size, with entries ρjℓ that must decay as j and/or ℓ go to infinity. To estimate ρ

based on finite observations, we need to truncate the infinity matrix ρ by its first

p rows and columns for some integer p and construct a density matrix estimator

of size p to estimate (ρjℓ)1≤j,ℓ≤p.
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For each entry, ρ̄jℓ can consistently estimate ρjℓ. However, as a matrix

estimator of (ρjℓ)1≤j,ℓ≤p, (ρ̄jℓ)1≤j,ℓ≤p performs poorly for large p even when n gets

very large, let alone give consistent estimation of the infinite matrix (ρjℓ)j,ℓ≥1.

It is well documented that matrix estimators like (ρ̄jℓ)1≤j,ℓ≤p are inconsistent

when n and p both go to infinity (see Bickel and Levina (2008), Cai and Zhou

(2012), Tao, Wang, and Zhou (2013), and Wang and Zou (2010). Fortunately

large matrices often have some structures, such as sparsity, and we can regularize

matrix estimator (ρ̄jl)1≤j,ℓ≤p to yield a consistent matrix estimator of (ρjℓ)1≤j,ℓ≤p.

Under some proper bases density matrices often have sparse representations in

a sense that each row (or column) has a relatively small portion of entries with

large magnitude. Our strategy is to identify and estimate these large entries and

ignore the small entries. We use the threshold method to construct a matrix

estimator of ρ as

ρ̂ = (ρ̂jℓ), ρ̂jℓ = Tϖ[ρ̄jℓ] for j, ℓ ≤ p and ρ̂jℓ = 0 for j > p or ℓ > p, (3.5)

where for the soft threshold rule,

Tϖ[ρ̄jℓ] = sign(ρ̄jℓ) max(0, |ρ̄jℓ| −ϖ),

and for the hard threshold rule,

Tϖ[ρ̄jℓ] = ρ̄jℓ1(|ρ̄jℓ| ≥ ϖ).

Here 1(·) is the indictor function, sign(·) is the sign function, and ϖ denotes a

threshold value that will be specified later.

Methods for estimating a density matrix in physics are often considered

by estimating individual matrix elements without studying important matrix

properties such as eigenvalues of the estimated density matrix. Artiles, Gill,

and Guţă (2005) proposed a sieve estimator by projecting a density matrix onto

a finite matrix subspace and finding the MLE in the subspace and proved its

consistency under trace and Frobenius norms. Butucea, Guţă, and Artiles (2007)

investigated estimation of the Wigner function, a transformation of the density

matrix, by smoothing method and established the asymptotic optimality for the

Wigner function estimator. Also see Kerns and Székely (2006) and Székely (2005)

for some probability phenomenon analogous to the Wigner function.

3.3. Asymptotic theory

We fix some notation. Given a p-dimensional vector x = (x1, . . . , xp)
† and a

p by p matrix U = (Ujℓ), let

∥x∥d =
( p∑

j=1

|xj |d
)1/d

, ∥U∥d = sup{∥Ux∥d, ∥x∥d = 1}, d = 1, 2,∞.
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Here we can take p = ∞ for an infinite-dimensional vector or matrix, and then

∥U∥2 is the square root of the largest eigenvalue of U (U†)∗,

∥U∥1 = max
1≤ℓ≤p

p∑
j=1

|Ujℓ|, ∥U∥∞ = max
1≤j≤p

p∑
ℓ=1

|Ujℓ|,

and ∥U∥22 ≤ ∥U∥1 ∥U∥∞. For symmetric or self-adjoint U, ∥U∥2 is equal to its

largest absolute eigenvalue, and ∥U∥2 ≤ ∥U∥1 = ∥U∥∞.

We need to impose some technical conditions for the asymptotic theory.

A1. For α > 0 and a constant C1 free of p,

max
1≤j≤p

∑
ℓ>p

|ρjℓ| ≤ C1 p
−α, max

j>p

∑
ℓ≥1

|ρjℓ| ≤ C1 p
−α.

A2. For all 1 ≤ j ≤ p,
∑p

ℓ=1 |ρjℓ|
δ ≤ C2 π(p), where 0 ≤ δ < 1, C2 is a constant

free of p, and π(p) is a function of p with slow growth such as π(p) = 1 or

log p.

Since ρ is an infinite matrix, we need to control its entries at rows and columns

going to infinity as well as to assume sparsity so that it can be consistently

estimated. Condition A1 imposes a decay condition on the size of entries as

rows and columns go to infinity. As ρ is semi-positive with unit trace, its entries

at large rows and columns must be small. Assumption A1 is a mathematical

formulation that controls entries at large rows and columns. Condition A2 is a

usual sparse condition in the large matrix estimation literature that assumes a

small portion of entries with significantly large magnitude.

Assumptions A1 and A2 are reasonable. Consider the standard quantum

states: vacuum state, single photon state, thermal state, coherent state and

squeezed state (see Artiles, Gill, and Guţă (2005)). For vacuum state and single

photon state, the density matrices have respective elements ρ11 = 1 and ρ22 =

1, zero elsewhere; for thermal state, the density matrix is a diagonal matrix

with diagonal elements ρjj = (1 − e−β)e−jβ for some parameter β > 0; for

coherent state, the density matrix has elements ρjℓ = e−bbj+ℓ(j!ℓ!)−1/2 for some

parameter b > 0; for squeezed state, the density matrix has elements ρjℓ =

c0c
j+ℓ
1 hj(c2)hℓ(c2)(j!ℓ!)

−1/2, where c0, c1, c2 are some constants, and hj and hℓ
are the Hermite polynomials. It is easy to see that vacuum state, single photon

state, and thermal state obey A1 and A2. For coherent state, by Stirling’s formula

we obtain

ρjℓ ∼ e−bbj+ℓ(2πjℓ)−1/4(
j

e
)−j/2(

ℓ

e
)−ℓ/2 = e−b(2πjℓ)−1/4

(
b

√
e

j

)j (
b

√
e

ℓ

)ℓ

,



DENSITY MATRIX ESTIMATION IN QUANTUM HOMODYNE TOMOGRAPHY 959

which decays faster than ςj+ℓ for large j and ℓ, where ς is any positive num-

ber in (0, 1). Thus, it satisfies A1 and A2. As hj(c2) and hℓ(c2) are bounded

by cj3 and cℓ3 for some positive constant c3, for squeezed state we have |ρjℓ| ≤
c0(c1c3)

j+ℓ(j!ℓ!)−1/2, where the upper bound has the same expression as the el-

ements of the density matrix for coherent state, and hence satisfies A1 and A2.

The following theorem establishes the convergence rate for ρ̂.

Theorem 1. Under A1 and A2, we have

∥ρ̂− ρ∥2 ≤ ∥ρ̂− ρ∥1 = OP (p
−α + π(p)ϖ1−δ),

where ϖ = ζ p1/4(log p/n)1/2 for some constant ζ. In particular for π(p) ≤ log p,

if we take p = c0n
2(1−δ)/(4α+1−δ) with constants c0 > 0, then

∥ρ̂− ρ∥2 ≤ ∥ρ̂− ρ∥1 = OP (n
−2α(1−δ)/(4α+1−δ)[log n](3−δ)/2).

Theorem 1 shows that the proposed estimator ρ̂ with the given threshold

can be consistent with convergence rate n−2α(1−δ)/(4α+1−δ)[log n](3−δ)/2. In par-

ticular, for the case of δ = 0, ρ̂ has a convergence rate n−2α/(4α+1) log3/2 n under

the matrix norms. Estimation of density matrices and the corresponding Wigner

functions are studied by, for example, Artiles, Gill, and Guţă (2005), Guţă and

Artiles (2007), and Butucea, Guţă, and Artiles (2007) under trace and Frobenius

norms. Matrix estimation under these norms is essentially the same as func-

tion or vector estimation in nonparametric regression and density estimation,

which can be quite different from that under matrix spectral norm (see Cai and

Zhou (2012)). Guţă and Artiles (2007) proved that for estimating a supersmooth

Wigner function, the minimax convergence rate is n−1/2 log3/2 n, which matches

the convergence rate of sparse density matrix estimation only in the case of δ = 0

and α → ∞. The model setting in Guţă and Artiles (2007) is the same as in

this paper, but the loss used for Wigner function estimation in Guţă and Artiles

(2007) corresponds to the Frobenius norm for density matrix estimation. While

the convergence of a density matrix estimator to the true density matrix in the

Frobenius norm is unable to characterize their eigen-behaviors, our asymptotic

result in the spectral norm indicates that the eigenvalues of ρ̂−ρ approach to

zero, which implies that the eigenvalues of ρ̂ are close to the true eigenvalues of ρ.

As discussed in Section 3.2, we estimate the infinite density matrix ρ through

truncating and thresholding. The first part of the convergence rate p−α +

π(p)ϖ1−δ in Theorem 1 is due to truncating, while the other part is attributed to

the sparsity imposed on ρ and the thresholding strategy used in the estimation

method. The truncation size p plays a role in determining the convergence rate

similar to function smoothing estimation with orthogonal bases where we select
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truncation size to balance the squared bias and variance in order to minimize the
mean square error.

In quantum information the closeness of two quantum states is often de-
scribed by trace-based measures such as trace distance and fidelity. For two
Hermitian matrices U and V, the trace distance and fidelity are defined by,
respectively,

D(U,V) = Tr

(√
(U−V)†(U−V)

)
, F (U,V) = Tr

(√
U1/2VU1/2

)
.

The matrix norms ∥ · ∥d used are induced d-norms. For example, spectral norm
∥ · ∥2 corresponds to an induced norm with d = 2. Trace distance D(U,V) is
equal to the trace norm (or nuclear norm) of U − V, denoted by ∥U − V∥∗.
Both spectral norm ∥ · ∥2 and trace norm ∥ · ∥∗ are the Schatten q-norms with
corresponding q = ∞ and q = 1, where the Schatten q-norm is

∥U∥q =
( p∑

j=1

|λj |q
)1/q

,

with λj the eigenvalues of U. The Schatten 2-norm is the Frobenius norm or the
Hilbert chmidt norm. We have

2[1− F (U,V)] ≤D(U,V) ≤ 2
√

1− F 2(U,V), (3.6)

D(U,V) = ∥U−V∥∗ ≤ p∥U−V∥2. (3.7)

(3.6) indicates that both trace distance and fidelity can be used to measure
statistical loss in density matrix estimation. For the density matrix estimator ρ̂
of ρ, using (3.7) we obtain

D(ρ̂, ρ) ≤ D(ρ̂, ρp) +D(ρp, ρ) ≤ p∥ρ̂− ρp∥2 +D(ρp, ρ),

where ρp is the truncation of ρ that retains only its first p rows and columns. As
in Theorem 1 (and its proof) the main part D(ρ̂, ρp) can be bounded through
∥ρ̂ − ρp∥2, which has convergence rate π(p)ϖ1−δ, while the bias part D(ρp, ρ)
caused by the truncation may be controlled through some decaying property
of ρ.

3.4. Semi-positive definite estimator of density matrix

True density matrix ρ is semi-positive with unit trace, but the estimator ρ̂
in (3.5) may not be. Denote by Γ the set of all semi-positive definite matrices
with unit trace. We consider the projection of ρ̂ onto Γ to yield a density matrix
estimator ρ̃ that is semi-positive definite and has unit trace: take ρ̃ to be the
matrix in Γ that minimizes the spectral distance to ρ̂,

∥ρ̃− ρ̂∥2 = min{∥ρ̌− ρ̂∥2, ρ̌ ∈ Γ}. (3.8)

The following theorem provides the characterization of ρ̃.
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Theorem 2. If ρ̂ has an eigen-decomposition

ρ̂ = Odiag
(
λ̂1, λ̂2, . . . , λ̂p

)
O†, (3.9)

with eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p, and O a unitary matrix, then

ρ̃ = Odiag
(
λ̃1, λ̃2, . . . , λ̃p

)
O†, (3.10)

where (λ̃1, . . . , λ̃p) is a solution to the following minimization problem

min
ν1,...,νp

{
max
1≤j≤p

|νj − λ̂j |, ν1, . . . , νp ≥ 0,

p∑
j=1

νj = 1
}
. (3.11)

Moreover, ∥ρ̃− ρ∥2 ≤ 2∥ρ̂− ρ∥2, and ρ̃ has the same convergence rate as ρ̂.

The optimization problem (3.11) may have multiple solutions, and there are

no simple closed forms for its solutions, the eigenvalues λ̃j of ρ̃. Theorem 2

shows that ρ̃ defined by any solution of (3.11) has the same convergence rate

as ρ̂. Moreover, the proof of Theorem 2 indicates that ∥ρ̃ − ρ̂∥2 ≤ ∥ρ − ρ̂∥2.
As Theorem 1 implies that ρ̂ converges to ρ at the rate n(1−δ)/2[log n](3−δ)/2,

asymptotically ρ̃ and ρ̂ are very close.

4. A Simulation Study

We conducted a simulation study to demonstrate the finite sample perfor-

mances of the proposed density matrix estimators. From (3.1), given a density

matrix ρ = (ρjl) we simulated (Xϕ, ϕ) from a distribution with joint pdf

hρ(x, ϕ) =
1

π

∞∑
j,l=1

ρjl ej(x) el(x) cos((j − l)ϕ), x ∈ (−∞,∞), ϕ ∈ [0, π].

We truncated infinite density matrix ρ by a matrix of size p = 16, 64, 128, 256 to

evaluate the joint density function and carry out the simulation. For a given p,

we considered three scenarios:

(i) ρ = γγ†, γ = (2−1/2, 2−1, . . . , 2(1−p)/2, 2(1−p)/2)†;

(ii) ρjl = γmax(j,l)2
|j−l|, γ = (2−1, 2−2, . . . , 21−p, 21−p)†;

(iii)ρ = diag(1/2, 1/4, . . . , 2−p+1, 2−p+1).

As described in Section 3.1, the marginal distribution of ϕ is a uniform distribu-

tion on [0, π]. Given ϕ, the conditional density function of Xϕ is

gρ(x|ϕ) =
p∑

j,l=1

ρjl ej(x) el(x) cos((j − l)ϕ), x ∈ (−∞,∞). (4.1)
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Figure 1. The plots of conditional density function gρ(x|ϕ) for five values
of ϕ in Scenario (i). The five plots from bottom to top correspond to ϕ =
0, π/4, π/2, 3π/4, π, respectively.

We found that numerically gρ(x|ϕ) was effectively zero outside the interval [−15,

15], and on interval [−15, 15] we evaluated gρ(x|ϕ) at equally-spaced grid points

with step size 0.001. The plots of the conditional density functions for the three

cases are displayed in Figures 1−3. The plots show that the conditional density

functions are bimodal and numerically negligible outside the interval [−4, 4] for all

three cases, and Xϕ and ϕ are independent for case (iii), but correlated for cases

(i) and (ii). The shape patterns in cases (i) and (ii) change along with ϕ, which

indicates that the quantum systems exhibit some phase change phenomenon.

To generate random variable (Xϕ, ϕ) from the joint pdf hρ(x, ϕ), we first

generated ϕ from the uniform distribution on [0, π], and with a simulated ϕ,

we then simulated Xϕ from the computed conditional density function gρ(x|ϕ).
Repeating the procedure we simulated i.i.d. observations (Xϕ1 , ϕ1), . . . , (Xϕn , ϕn)

from the bivariate density function hρ(x, ϕ) with n =2,000, 5,000. Figure 4

provides the scatter plots of the 2,000 simulated data for the three cases. The

plots show that the simulated Xϕk
mostly range from −4 to 4 for the three cases,
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Figure 2. The plots of conditional density function gρ(x|ϕ) for five values
of ϕ in Scenario (ii). The five plots from bottom to top correspond to
ϕ = 0, π/4, π/2, 3π/4, π, respectively.

Figure 3. The plot of conditional density function gρ(x|ϕ) for any ϕ in
Scenario (iii).
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(a) Scenario (i) (b) Scenario (ii) (c) Scenario (iii)

Figure 4. The scatter plots of 2,000 i.i.d. observations generated from the
distribution with pdf hρ(x, ϕ). Plots (a), (b) and (c) correspond to Scenarios
(i), (ii), (iii), respectively.

and data patterns indicate the dependence of Xϕ and ϕ for cases (i) and (ii).
With simulated data (Xϕ1 , ϕ1), . . . , (Xϕn , ϕn), according to (3.4) we evalu-

ated each ρ̄jl as

ρ̄jl =
1

n

n∑
k=1

fjl(Xk) cos((j − l)ϕk), (4.2)

where we calculated fjl(x) by a procedure described in Leonhardt et al. (1996,
Sec. 5),

fjl(x)=flj(x)=2xψj(x)φl(x)−
√

2(j + 1)ψj+1(x)φl(x)−
√

2(l + 1)ψj(x)φl+1(x),

with the procedure for computing ψj(x) and φl(x) described below.
With

ψ0(x) = π−1/4 exp
(
− x2

2

)
, ψ1(x) = π−1/4

√
2x exp

(
− x2

2

)
,

we computed ψj(x) from ψ0(x) and ψ1(x) by the forward recursive formula

ψj(x) =
1√
j

[√
2xψj−1(x)−

√
j − 1ψj−2(x)

]
.

We then used a backward recursive formula,

φl(x) =
1√
l + 1

[√
2xφj+1(x)−

√
j + 2ψj+2(x)

]
,

from 4β and 4β − 1 backward to compute φl(x) for |x| < a4β − (2a4β)
−1/3,

al =
√
2 l + 1, where β = 4p, and for l = 4β and 4β − 1,

φl =

(
2

π al sin(tl)

)1/2

sin

[
a2l
4

{sin(2 tl)− 2 tl}+
π

4

]
, tl = arccos(

x

al
);
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outside the region |x| < a4β − (2a4β)
−1/3, we computed φl(x) by the forward

recursion,

φ0(x) = π−3/4x−1 exp
(x2
2

)
, φl(x) =

( l
2

)1/2
x−1φl−1(x).

With p by p matrix estimator ρ̄ = (ρ̄jl), we applied threshold methodology

to ρ̄ and obtained hard and soft threshold density matrix estimators,

ρ̂
(hard)
jl = ρ̄jl 1(|ρ̄jl| ≥ ϖ(hard)), ρ̂

(soft)
jl = sign(ρ̄jl) max(0, |ρ̄jl| −ϖ(soft)), (4.3)

with ϖ(hard) and ϖ(soft) as the threshold values. Threshold ϖ is a tuning pa-

rameter, and we proposed a threshold selection method based on ten-fold cross-

validation, as follows.

1. Partition the data randomly into 10 equal-size subsamples, and label the sub-

samples as k = 1, . . . , 10.

2. For k from 1 to 10, use the k-th subsample as the validation sample and the

remaining subsamples as training data.

(a) Calculate the density matrix estimator ρ̄
(valid)
k according to (4.2) using the

validation sample.

(b) Calculate the density matrix estimator ρ̄
(train)
k according to (4.2) using

the training data; and then, according to (4.3), threshold it to obtain the

threshold estimator ρ̂
(train)
ϖ,k with a candidate threshold value ϖ for either

hard or soft threshold rules.

(c) Calculate the spectral norm of the difference between ρ̂
(train)
ϖ,k and ρ̄

(valid)
k

for each candidate ϖ and k = 1, . . . , 10.

(d) For each candidate ϖ, evaluate the average objective function for the ten-

fold cross-validation

Λ̄(ϖ) =

10∑
k=1

∥ρ̂(train)ϖ,k − ρ̄
(valid)
k ∥2. (4.4)

3. Select ϖ to minimize Λ̄(ϖ), and use it as a threshold value for the threshold

estimator in (4.3) with the corresponding threshold rule.

For the three scenarios, we ran the ten-fold cross-validation procedure and

computed Λ̄(ϖ). We also used the true density matrix ρ instead of ρ̄
(valid)
k in

the cross-validation algorithm to evaluate the corresponding average objective

function, which is denoted by Λ∗(ϖ). Note that as a counterpart of Λ̄(ϖ), Λ∗(ϖ)

involves the true density matrix ρ. Thus we referred Λ∗(ϖ) to as the true average

objective function and called the cross-validation procedure that selects a thresh-

old by minimizing Λ∗(ϖ) instead of Λ̄(ϖ) the oracle cross-validation threshold
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selection, and the resulting threshold an oracle cross-validation threshold. We

compared the selected threshold values based on Λ̄(ϖ) and its true counterpart

Λ∗(ϖ) to check the performance of the proposed cross-validation selection. Fig-

ures 5-7 plot the average objective function Λ̄(ϖ) and the corresponding true

average objective function Λ∗(ϖ) against tuning parameter ϖ for various com-

binations of (n, p) with soft and hard threshold rules. We computed Λ̄(ϖ) and

Λ∗(ϖ) and plotted them over many repetitions, and found their shapes and pat-

terns remained similar from repetition to repetition. The plots show that the

two curves of Λ̄(ϖ) and Λ∗(ϖ) have global minimizers close to each other. Since

the tuning parameter ϖ is selected by the minimizers, the close minimizers of

the two curves indicate the effectiveness of the proposed threshold selection by

cross validation. From the figures we see that the curves first drop dramatically

to reach their minimal values and then start to rise; as p increases, the curves

tend to be less steep; and when sample size n increase, the curves become more

steep. Since for more steep curves, it is easier to find their minimizers and select

the tuning parameters, the plots imply that the performance of the threshold

selection method is enhanced for larger n and worsened for larger p. Regarding

the hard and soft threshold rules, they both work. However, as in the wavelet

literature, the curves are much more smooth and sharp around the minima for

the soft threshold rule than the hard threshold rule and, as a result, the thresh-

old selection procedure is more stable for the soft threshold rule than the hard

threshold rule. In fact, the curves for the hard threshold rule may be non-smooth

or even have flat parts. When Λ̄ and Λ∗ have flat parts around their minima,

there are multiple global minimizers, and the tuning parameter is not unique. It

indicates the existence of multiple threshold values for the hard threshold rule.

Indeed, when there is a gap between those significantly large ρ̄jℓ (which will be

retained by thresholding) and those negligible ρ̄jℓ (which will be replaced by zero

by thresholding), any value in the gap used as a threshold will yield the same

estimator ρ̂(hard) and thus the same MSE.

We evaluated the finite sample performances of the proposed density ma-

trix estimators. For each of the three density matrix cases, we took n =2,000,

5,000 and p = 16, 64, 128, 256 and computed ρ̂ according to (3.5) with the

cross-validation threshold and the oracle cross-validation threshold. We used the

spectral norm of ρ̂− ρ to define the mean square error (MSE). We repeated the

whole simulation procedure 200 times and evaluated the MSE of ρ̂ based on 200

repetitions. Tables 1 and 2 report the MSE of ρ̂ for n =2,000, 5,000, p = 16, 64,

128, 256, and three scenarios of density matrices for the cross-validation thresh-

old and oracle cross-validation threshold cases, respectively. The simulation re-

sults illustrate that for both cross-validation threshold and oracle cross-validation

threshold cases, the MSEs of the three estimators all increase as p increases and
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Table 1. The MSEs with standard errors (se) of density matrix estimators
given by (4.2) and (4.3) for n =2,000, 5,000, p =16, 64, 128, 256, and
Scenarios (i), (ii) and (iii), where the thresholds are selected by the ten-fold
cross-validation threshold selection procedure that minimizes the average
objective function Λ̄(ϖ) defined in (4.4).

n =2,000 and Scenario n =5,000 and Scenario
p Estimator (i) (ii) (iii) (i) (ii) (iii)
16 ρ̄ 0.19 0.18 0.18 0.12 0.11 0.11

se 0.02 0.02 0.02 0.01 0.01 0.01
ρ̂(soft) 0.17 0.12 0.09 0.12 0.08 0.06
se 0.03 0.02 0.02 0.02 0.01 0.01
ρ̂(hard) 0.17 0.11 0.08 0.11 0.08 0.05
se 0.03 0.03 0.03 0.02 0.02 0.02

64 ρ̄ 0.45 0.42 0.41 0.29 0.26 0.26
se 0.03 0.02 0.02 0.02 0.01 0.01
ρ̂(soft) 0.32 0.20 0.14 0.21 0.13 0.09
se 0.04 0.03 0.04 0.03 0.02 0.02
ρ̂(hard) 0.27 0.17 0.13 0.17 0.11 0.07
se 0.05 0.06 0.06 0.03 0.02 0.03

128 ρ̄ 0.72 0.65 0.64 0.45 0.40 0.40
se 0.04 0.03 0.03 0.03 0.02 0.02
ρ̂(soft) 0.46 0.27 0.20 0.31 0.18 0.12
se 0.06 0.04 0.05 0.03 0.03 0.03
ρ̂(hard) 0.37 0.24 0.17 0.23 0.13 0.09
se 0.08 0.07 0.08 0.04 0.04 0.04

256 ρ̄ 1.17 1.02 1.01 0.73 0.64 0.62
se 0.05 0.04 0.04 0.03 0.02 0.02
ρ̂(soft) 0.66 0.39 0.29 0.42 0.27 0.18
se 0.06 0.07 0.08 0.04 0.04 0.04
ρ̂(hard) 0.52 0.34 0.19 0.32 0.16 0.12
se 0.12 0.13 0.10 0.07 0.06 0.06

decrease as n increases; both ρ̂(soft) and ρ̂(hard) have much smaller MSEs than

ρ̄ for p = 64, 128, 256, while most of their MSEs are comparable for p = 16;

the MSE improvements of ρ̂(soft) and ρ̂(hard) over ρ̄ get larger as p increases;

ρ̂(hard) is better than ρ̂(soft) in terms of MSE. Comparing Tables 1 and 2, we

found that, as expected, the oracle cross-validation threshold yields smaller and

slightly more stable MSE than the cross-validation threshold, and the ratios of

MSEs with the oracle cross-validation threshold and the corresponding MSEs

with the cross-validation threshold increase in n but decrease in p, with the MSE

ratios ranging from about 95% to 70% for the considered cases. The MSE sim-

ulation results further show the reasonably good performance of the proposed

cross-validation threshold selection procedure indicated by Figures 5−7. We also
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Table 2. The MSEs with standard errors (se) of density matrix estimators
given by (4.2) and (4.3) for n =2,000, 5,000, p = 16, 64, 128, 256, and
Scenarios (i), (ii) and (iii), where the thresholds are selected by the ora-
cle cross-validation threshold selection procedure that minimizes the true
average objective function Λ∗(ϖ).

n =2,000 and Scenario n =5,000 and Scenario
p Estimator (i) (ii) (iii) (i) (ii) (iii)

16 ρ̂
(soft)
∗ 0.16 0.11 0.07 0.11 0.08 0.05

se 0.02 0.02 0.01 0.01 0.01 0.01

ρ̂
(hard)
∗ 0.16 0.10 0.06 0.10 0.07 0.04

se 0.02 0.02 0.02 0.01 0.01 0.01

64 ρ̂
(soft)
∗ 0.29 0.18 0.10 0.20 0.12 0.07

se 0.03 0.02 0.02 0.02 0.01 0.01

ρ̂
(hard)
∗ 0.24 0.14 0.09 0.16 0.10 0.06

se 0.03 0.03 0.03 0.02 0.01 0.01

128 ρ̂
(soft)
∗ 0.37 0.22 0.13 0.26 0.16 0.08

se 0.03 0.02 0.02 0.02 0.01 0.01

ρ̂
(hard)
∗ 0.30 0.18 0.12 0.19 0.11 0.07

se 0.04 0.03 0.02 0.02 0.01 0.02

256 ρ̂
(soft)
∗ 0.48 0.27 0.16 0.33 0.19 0.10

se 0.03 0.02 0.02 0.02 0.01 0.01

ρ̂
(hard)
∗ 0.37 0.21 0.13 0.25 0.13 0.09

se 0.04 0.02 0.03 0.03 0.03 0.03

checked the finite sample performances of semi-positive definite estimator ρ̃ de-
fined in (3.8). The procedure described by (3.9)−(3.11) was applied to threshold
estimators ρ̂(soft) and ρ̂(hard) in (4.3) and obtain, respectively, ρ̃(soft) and ρ̃(hard),
which are semi-positive estimators with unit trace. Here the threshold values for
ρ̃(soft) and ρ̃(hard) were selected by the ten-fold cross-validation method with ρ̂
replaced by ρ̃. As in Table 1, for each combination of the three density matrix
cases, n =2,000, 5,000 and p =16, 64, 128, 256, the MSEs of ρ̃(soft) and ρ̃(hard)

were computed and reported in Table 3. Tables 1 and 3 indicate that ρ̃(soft)

and ρ̃(hard) have, respectively, comparable performances with or slightly better
performances than ρ̂(soft) and ρ̂(hard) in terms of MSE. Overall the simulation
study conforms with the theoretical findings. For small p, the density matrices
are of small size, ρ̄ is a very good estimator, and there may not be much room for
improvement. As p gets large, we need to estimate density matrices of large size.
Like sample covariance matrix estimator, ρ̄ is no longer consistent and performs
poorly for large p. The proposed estimators ρ̂ and ρ̃ are consistent, and their
finite sample performances are much better than that of ρ̄. Moreover, while ρ̂
and ρ̃ are comparable, ρ̃ has an advantage of being a semi-positive definite matrix
with unit trace.
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Figure 5. The plots of curves Λ̄(ϖ) and Λ∗(ϖ) in Scenario (i) for various
combinations of n, p, and threshold rules. The solid and dot curves in all
plots stand for the soft and hard threshold rules, respectively; the plots in
the three columns are for p = 64, 128, 256, respectively; and the plots in the
four rows correspond to the combinations of (Λ∗, n =2,000), (Λ̄, n =2,000),
(Λ∗, n =5,000), and (Λ̄, n =5,000), respectively.

5. Concluding Remarks

Homodyne detection has been developed to produce data measurements for

physical systems in quantum optics, and quantum homodyne tomography is used

to confirm certain states of light for the study of quantum computation, quantum

information and quantum cryptography. We have proposed statistical method-

ologies to directly estimate density matrices for the quantum systems. The es-

timation methods can be implemented by the following procedure: (i) construct

(ρ̄jℓ) as described by (3.4); (ii) threshold (ρ̄jℓ) to compute ρ̂ according to (3.5);

(iii) evaluate ρ̃ by (3.10) and (3.11). We have obtained the convergence rates of

the proposed density matrix estimators under the spectral norm and conducted

simulations to illustrate the finite sample performances of the estimators.

While the proposed methodologies yield new density matrix estimators with
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Figure 6. The plots of curves Λ̄(ϖ) and Λ∗(ϖ) in Scenario (ii) for various
combinations of n, p, and threshold rules. The solid and dot curves in all
plots stand for the soft and hard threshold rules, respectively; the plots in
the three columns are for p = 64, 128, 256, respectively; and the plots in the
four rows correspond to the combinations of (Λ∗, n =2,000), (Λ̄, n =2,000),
(Λ∗, n =5,000), and (Λ̄, n =5,000), respectively.

good theoretical and numerical properties, we leave some open issues and topics

for future research. For example, in Section 3.1 we consider quantum homodyne

tomography in an idealized set-up by assuming that there is no loss in the de-

tection process. In experiments we may need to take into account such losses

as mode mismatching and failure of detectors in the detection process. In other

words, the quantum homodyne detectors have efficiency smaller than one. We

need to modify the model set-up and the distribution results (3.1) and (3.2)

through a single efficiency coefficient (see Alquier, Meziani, and Peyré (2013)

Artiles, Gill, and Guţă (2005), Aubry, Butucea, and Meziani (2009), Butucea,

Guţă, and Artiles (2007), and Leonhardt (1997)), then study the density matrix

estimation problem for noisy data in quantum homodyne tomography. In step

(ii) of above implementation procedure we may choose a threshold value by the
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Figure 7. The plots of curves Λ̄(ϖ) and Λ∗(ϖ) in Scenario (iii) for various
combinations of n, p, and threshold rules. The solid and dot curves in all
plots stand for the soft and hard threshold rules, respectively; the plots in
the three columns are for p = 64, 128, 256, respectively; and the plots in the
four rows correspond to the combinations of (Λ∗, n =2,000), (Λ̄, n =2,000),
(Λ∗, n =5,000), and (Λ̄, n =5,000), respectively.

cross-validation method described in Section 4, but a method for selecting trun-

cation size is needed. As discussed in Section 3.3, we may theoretically select

the truncation size to minimize the mean square error. However it is desirable to

have a data dependent method for the truncation size selection. One theoretical

problem is to investigate optimal density matrix estimation. This paper consid-

ers density matrix estimators with a universal threshold. Although the proposed

density matrix estimators enjoy good convergence rates, it is not clear that they

are optimal. For a decay density matrix, we may need to threshold entries more

harshly as rows and columns increase. Perhaps the adaptive approach consid-

ered in Cai and Liu (2011) for large covariance matrix estimation can be adopted

to construct density matrix estimators with individual thresholds to account for

heterogeneity among the entries of the true density matrix, and to study the
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Table 3. The MSEs with standard errors (se) of semi-positive definite density
matrix estimators defined in (3.8) for n =2,000, 5,000, p =16, 64, 128, 256,
and Scenarios (i), (ii) and (iii).

n =2,000 and Scenario n =5,000 and Scenario
p Estimator (i) (ii) (iii) (i) (ii) (iii)

16 ρ̃(soft) 0.17 0.11 0.07 0.12 0.08 0.05
se 0.03 0.02 0.02 0.02 0.01 0.01
ρ̃(hard) 0.17 0.11 0.07 0.11 0.07 0.05
se 0.03 0.02 0.03 0.02 0.02 0.02

64 ρ̃(soft) 0.34 0.19 0.13 0.23 0.13 0.08
se 0.03 0.02 0.03 0.02 0.01 0.02
ρ̃(hard) 0.27 0.15 0.12 0.18 0.10 0.07
se 0.04 0.04 0.05 0.03 0.02 0.03

128 ρ̃(soft) 0.44 0.24 0.17 0.33 0.17 0.11
se 0.03 0.02 0.03 0.03 0.02 0.02
ρ̃(hard) 0.35 0.21 0.15 0.24 0.13 0.09
se 0.06 0.05 0.06 0.04 0.03 0.04

256 ρ̃(soft) 0.52 0.28 0.21 0.40 0.22 0.15
se 0.02 0.02 0.04 0.02 0.02 0.03
ρ̃(hard) 0.45 0.27 0.17 0.32 0.15 0.12
se 0.06 0.06 0.07 0.05 0.04 0.05

optimal convergence rate in density matrix estimation.
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