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S1 Discussion of Simulation Studies

Setting 1 is a setting where there is no second-stage treatment effect, as ψT20S2(2) = 0
for all values of S2(2). The hard-max estimator will incur asymptotic biases for all the

four terms |f1|, |f2|, |f3| and |f4|, all four at about the same order of
√

2/(nπ) = 0.036,
as in this case {|fi|}4i=1 = 0. As shown in (13), the biases in the estimation of |f1|,
|f2|, |f3| and |f4| will be almost completely canceled out in the estimation of β0

12 and
ψ0
12, due to the fact that the sum of the coefficients are zero. These biases of estimating
|f1|, |f2|, |f3| and |f4| are largely canceled out in the estimation of ψ0

11, as the sum of
the coefficients are close to zero. The hard-max estimator of β0

11 has a significant bias
because the coefficients of the four absolute value terms, q1, q2, 0.5− q1 and 0.5− q2, are
all positive and sum to 1.

The simulation results of Setting 1 are consistent with the theoretical observations
in terms of the hard-max estimation. The oracle estimator automatically sets ψ̂2 = 0. It
has no significant bias, with standard errors accurately predicted by the theory and 95%
confidence interval coverage close to the nominal value. The penalized Q-learning based
estimator’s performance is actually identical to the oracle estimator. The hard-max
estimator has a significant bias and inferior mean square error in β̂11 while remaining
consistent for estimation of the other three stage-1 parameters.

Setting 2 is regular but very close to Setting 1 with ψT20S2(2) all equal to 0.01 for all
values of S2(2). The hard-max estimator’s performance is very similar to setting 1. Its
95% confidence interval shows poor coverage for β0

11 and ψ0
11. As the value of ψT20S2(2)

is nonzero, the oracle estimator reduces to the hard-max in this setting. Although the
penalized Q-learning based estimator demonstrates a small bias (-0.009) in the estimation
of β0

11, the bias is less than one fifth of that of the oracle estimator and the mean square
error is less than half of the oracle estimator. Its standard error estimate remains close
to the empirical values.

Setting 3 is another setting where there is no second-stage treatment effect. The
value of ψT20S2(2) is equal to 0 when A1 = −1 with probability one half. The hard-max

estimator incurs bias on the order of O(n−1/2) in the estimation of |f2| and |f4|, but
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not |f1| and |f3|, as f2 = f4 = 0 and f1 = f3 = 1. As seen from (13), the hard-max
estimation of β0

12 and ψ0
12 is still approximately unbiased, due to the canceling-out of the

coefficients of the four absolute value terms. The estimation of β0
11 is biased from the

true value at approximately half of the bias of Setting 1, due to the values of the |fi|’s and
their coefficients. The estimation of ψ0

11 is also biased, with similar magnitude of bias

as in β̂11 but with reversed sign. The simulation study exactly confirms the theoretical
observations of the hard-max estimator. The oracle estimator has no statistically sig-
nificant bias and its standard error is precisely predicted by the theoretical calculation.
The penalized Q-learning based estimator has a bias in ψ̂11 but the bias is still three
times smaller than that of the hard-max estimator. Otherwise, the penalized Q-learning
based estimator has almost exactly the same performance as the oracle estimator.

Setting 4 is a regular setting but very close to Setting 3. The hard-max estimator’s
performance is similar to Setting 3. The oracle estimator reduces to the hard-max
estimator. The penalized Q-learning based estimator outperforms the oracle estimator,
with both a smaller bias (5 times smaller), and a correctly predicted standard error.
This phenomena is consistent with findings in Setting 2.

In Setting 5, the term ψT20S2(2) is equal to zero when (O2, A1) = (−1,−1) with
probability one fourth. The hard-max estimator will incur bias in the estimation of |f4|,
since f4 = 0. Consequently, all the four stage-1 parameter estimators will be biased. The
bias in β̂11 will be approximately a quarter of that in Setting 1. The bias in β̂12 is about
half of that of β̂11, with reversed sign. The bias in ψ̂11 is about the same magnitude
as that of β̂11, with reversed sign. The bias in ψ̂12 is about half of that of β̂11. In this
setting, the oracle estimator has the best performance, with no significant bias and well
predicted standard errors. The penalized Q-learning based estimator has a bias in ψ̂11

but the bias is much smaller than the hard-max estimator. The penalized Q-learning
based estimator has no noticeable bias in the other three parameter estimations and the
standard error calculations are accurate when compared to Monte-Carlo errors.

Setting 6 is a completely regular setting with values of ψT20S2(2) well above zero.
The penalized Q-learning based estimator has almost identical performance as the oracle
estimator, which is the same as the hard-max estimator. Both estimators are unbiased
with accurately calculated standard errors.

In summary, the behavior of the PQ-estimator, including its bias, mean square
error, theoretically computed standard error and coverage probability of theoretically
computed 95% confidence intervals, are consistent in all six settings.

[1] proposed several bootstrapped confidence intervals for the hard-max estimator as
well as hard-threshold estimators with α in Step 2’ set to be 0.08 (HT0.08) or 0.20 (HT0.20)
and the soft-threshold estimator (ST). In order to compare the proposed PQ-estimator
confidence intervals with these bootstrapped methods, we re-ran the simulations with
the PQ-estimator with sample size n = 300 and 1000 replications. The simulation results
from different inferential methods in the six settings are compared in Table 3, where the
results from the hard-max, hard threshold and soft threshold methods based on hybrid
bootstrapping for variance estimation are shown. Overall, the other competing methods
cannot provide consistent coverage rates across all six settings while our PQ-method
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always gives coverage probabilities which are not significantly different from the nominal
level.

S2 The Analysis of a Real Example

We here present the analysis of the mental health study data described in [2] using penal-
ized Q-learning. The study is a prospective multi-site randomized clinical trial designed
to determine the comparative effectiveness of different multi-level treatment options for
patients with major depressive disorder. A total of 4041 patients with nonpsychotic
major depressive disorder were enrolled and initially treated with citalopram for a mini-
mum of 8 weeks, with strong encouragement to complete 12 weeks in order to maximize
benefit. During this and all subsequent treatment levels, patients have clinic visits at
weeks 0, 2, 4, 6, 9 and 12.

During all clinic visits, symptomatic status is measured by the 16-item Quick Inven-
tory of Depressive Symptomatology Clinician-Rating scores. Patients who did not have
a satisfactory response to treatment, defined as either < 50% reduction in the scores or
the scores> 5, are eligible for Level 2 treatment. Seven treatment options are available
at Level 2, which can be classified into two classes, (1) Medication or Psychotherapy
Switch: sertraline, venlafaxine, bupropion or Cognitive Psychotherapy; and (2) Medi-
cation or Psychotherapy Augmentation: citalopram+bupropion, citalopram+buspirone
or citalopram+Cognitive Psychotherapy. Patients who were assigned to Cognitive Psy-
chotherapy or citalopram+Cognitive Psychotherapy in Level 2 and did not have a satis-
factory response would be eligible for Level 2A, during which they would be treated with
either venlafaxine or bupropion. Patients who did not respond satisfactorily at Level 2
and Level 2A, if applicable, would continue to Level 3 treatment. Level 3 includes four
options: Medical Switch to mirtazapine or nortriptyline, and Medical augmentation with
either lithium or thyroid hormone added to level 2 or 2A treatments. Patients who did
not respond satisfactorily to Level 3 treatments would continue to Level 4 treatments,
which include two options: switch to tranylcypromine or mirtazapine+venlafaxine. For
a complete description of the study, see [2] and [4].

In this analysis, for demonstration purpose, we consider a subgroup of patients,
the 112 patients who were randomized to either bupropion or sertraline in Level 2, had
no satisfactory response at the end of Level 2, and were then randomized to either
mirtazapine or nortriptyline in Level 3. The analysis focuses on selecting the optimized
treatment regimen at Level 2 and Level 3, out of the 4 unique treatment combinations.
Since the higher the score is, the more severe the symptom is, we define the clinical
outcome as the negative of the score collected at the end of Level 3. Similarly as discussed
in [3], the state variable used to tailor individual treatment is the changing rate of the
score during the previous treatment level. We dichotomize the changing rates at zero.
Two patients were further removed due to missing values in the clinical outcome or the
tailoring variables. The tuning parameter λ = 4 under five-fold cross validation. The
parameter φ in the adaptive lasso penalty takes value 2.
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Table 1: Summary statistics and empirical coverage probability of 95% nominal per-
centile CIs for ψ0

11 using the hard max (HM) estimator, the hard threshold estimator
with α = 0.08 (HT0.08) and α = 0.20 (HT0.20), and the soft-threshold estimator quoting
the simulation results from [1]. Specifically, “MSE” refers to the mean squares error,
“Std-MC” refers to the standard deviation of 1000 estimates, “Std” refers to the average
of the 1000 standard error estimates and “CP” refers to the empirical coverage proba-
bility of the 95% nominal percentile confidence interval. A “*” indicates a significantly
different coverage rate from the nominal rate. “PB”, “HB” and “DB” denote percentile
bootstrap, hybrid bootstrap and double bootstrap, respectively.

Setting Estimator Bias MSE Std-MC Std CP(PB HB DB)
1 HM .0003 .0045 .066 − 96.8∗ 93.5∗ 93.6

HT.08 .0017 .0044 .066 − 97.0∗ 95.0 −
HT.20 .0002 .0050 .071 − 97.4∗ 92.8∗ −
ST .0009 .0036 .060 − 95.3 96.1 −
oracle -.0015 .0034 .058 .058 94.6 − −
PQ -.0013 .0036 .060 .061 95.1 − −

2 HM .0003 .0045 .065 − 96.7∗ 93.4∗ 93.6
HT.08 .0010 .0044 .066 − 97.1∗ 95.3 −
HT.20 .0003 .0050 .071 − 97.3∗ 93.5∗ −
ST .0008 .0036 .060 − 95.4 95.9 −
oracle -.0025 .0043 .065 .075 97.5∗ − −
PQ -.0026 .0035 .059 .060 94.0 − −

3 HM -.0401 .0075 .075 − 88.4∗ 92.7∗ 94.8
HT.08 -.0083 .0059 .076 − 94.3 94.3 −
HT.20 -.0179 .0065 .079 − 93.5∗ 93.5∗ −
ST -.0185 .0058 .074 − 93.4∗ 94.9 −
oracle -.0032 .0050 .071 .071 95.3 − −
PQ -.0182 .0057 .073 .076 95.2 − −

4 HM -.0353 .0072 .076 − 89.6∗ 93.1∗ 94.4
HT.08 -.0037 .0058 .076 − 94.6 94.1 −
HT.20 -.0130 .0064 .079 − 93.9 92.8∗ −
ST -.0138 .0057 .074 − 94.1 95.0 −
oracle -.0330 .0069 .076 .079 94.9 − −
PQ -.0073 .0055 .074 .075 95.5 − −

5 HM -.0209 .0074 .077 − 92.7∗ 93.1∗ 94.2
HT.08 -.0059 .0071 .084 − 93.9 93.2∗ −
HT.20 -.0101 .0073 .084 − 93.3∗ 93.0∗ −
ST -.0065 .0069 .083 − 93.8 94.6 −
oracle -.0002 .0056 .075 .079 95.7 − −
PQ -.0188 .0066 .079 .080 95.3 − −

6 HM .0009 .0067 .082 − 95.0 93.8 95.0
HT.08 .0003 .0081 .090 − 95.1 88.5∗ −
HT.20 .0011 .0074 .086 − 94.8 91.2∗ −
ST .0052 .0074 .086 − 94.8 91.7∗ −
oracle .0003 .0061 .078 .080 95.4 − −
PQ -.0012 .0062 .079 .080 95.3 − −
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Table 2: Level 3 regression model coefficient estimates using both unpenalized least
squares estimation and individual penalized least squares estimation.

Variable unpenalized penalized
Coefficient 95% CI Coefficient 95% CI

Intercept -13.165 (-14.349, -11.981) -13.185 (-14.330, -12.039)
O1 -1.202 (-2.348, -0.057) -1.124 (-2.233, -0.015)
A1 0.004 (-0.945, 0.954) -0.046 (-0.967, 0.874)
O2 -0.587 (-1.605, 0.431) -0.554 (-1.533, 0.425)
A2 -1.276 (-2.460, -0.092) -1.266 (-2.239, -0.292)
O1A2 -1.621 (-2.766, -0.475) -1.300 (-2.410, -0.191)
A1A2 0.535 (-0.414, 1.484) 0.052 (-0.775, 0.880)
O2A2 0.278 (-0.740, 1.297) 0.017 (-0.748, 0.783)

Following the notations in the simulation study, let O1 and O2 be the indicator of
whether the score changing rate is greater than zero in Level 1 and Level 2 respectively.
Let A1 = 1 if Level 2 treatment is sertraline and A1 = −1 if it is bupropion. Let A2 = 1
if Level 3 treatment is nortriptyline and A2 = −1 if it is mirtazapine, and R2 = the
negative score collected at the end of Level 3. The Level 3 regression model is:

R2 = β21 + β22O1 + β23A1 + β24O2 + ψ21A2 + ψ22A2O1 + ψ23A2A1 + ψ24A2O2 + ε2.

Since the main effects of A1 and O2 are not statistically significant, we did not include
additional interaction terms in the Level 3 model.

Table 2 shows the Level 3 regression model coefficient estimation using both unpe-
nalized standard least squares estimation and individual penalized least squares estima-
tion. Qualitatively, the unpenalized and penalized estimators are consistent. Patients
whose symptoms worsened (i.e., O1 = 1 or the score increased) during Level 1 would
have a worse outcome. Level 2 treatments (sertraline versus bupropion) as well as the
changing rate of the score during Level 2 show no differential effect on the final out-
come. However, the two Level 3 treatment options show significantly different effects on
patients with O1 = 1 versus patients with O1 = −1. Among patients whose symptoms
worsened in Level 1, nortriptyline further worsened their symptom when compared to
mirtazapine. Among patients whose symptom improved in Level 1, nortriptyline and
mirtazapine show no obvious difference for the final outcome.

Quantitatively, the penalized estimator has smaller standard errors in the coefficient
estimation of ψ2 = (ψ21, ψ22, ψ23, ψ24)T than the unpenalized estimator. In addition, the
penalized estimator dramatically shrinks coefficients of the two unimportant predictors
A1A2 and O2A2 toward zero. On the other hand, these two estimators are similar in the
coefficient estimation of β2 = (β21, β22, β23, β24)T , which is expected since the penalty
is imposed only on ψ2. In order to shrink coefficients of the unimportant predictors A1

and O2, one can further impose a penalty on |β2|, which will not be implemented in
this work. The lack of effect of A1 and O2 is actually expected since we include in this
analysis only patients eligible for Level 3 treatment, in other words, only patients who
did not respond satisfactorily to Level 2 treatment. This inclusion criteria is imposed
because our current framework is built on the situation where all patients will be treated
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Table 3: Values of |ψ̂T2 S2(2)| in the data example.

|ψ̂T2 S2(2)|
O1 A1 O2 Unpenalized Penalized
-1 -1 -1 0.468 0.035
-1 -1 1 0.088 0.000
-1 1 -1 0.601 0.070
-1 1 1 1.158 0.105
1 -1 1 3.153 2.601
1 1 -1 2.640 2.531
1 -1 -1 3.710 2.636
1 1 1 2.083 2.496

Table 4: Level 2 regression model coefficient estimation using both the Hard-max and
the penalized Q-learning. PQ-learning: penalized Q-learning; CI: confidence interval.

Hard-Max PQ-learning
Variable Coefficient Hybrid 95% CI Coefficient 95% CI

Intercept -11.063 (-12.482, -10.095) -11.612 (-13.076, -10.149)
O1 0.263 (-0.764, 1.547) 0.313 (-1.114, 1.740)
A1 -0.119 (-1.120, 0.884) -0.038 (-1.115, 1.039)

O1A1 -0.448 (-1.079, 0.251) -0.085 (-0.830, 0.661)

in both stages. The extension to cases where patients may be cured during intermediate
stages and hence not eligible for subsequent treatment stages is not trivial and will be
considered in future work.

Table 3 shows the estimated values of |ψT2 S2(2)|, where S2(2) = (1, O1, A1, O2)T .
When O1 = −1, the Level 3 treatment effect is small but the unpenalized estimator
shows significant bias from zero. On the other hand, the penalized estimator successfully
shrinks the value of |ψT2 S2(2)| in all groups close to zero. Due to the limitation of the
current local quadratic approximation algorithm, the penalized estimator cannot exactly
set |ψT2 S2(2)| to zero, but the bias is significantly smaller than that of the unpenalized
estimator. When (O1, A1, O2) = (−1,−1, 1), the penalized estimation of |ψT2 S2(2)| falls
below the preselected cutoff of 0.001 and is shown as 0 in Table 3. When O1 = 1, the
treatment option mirtazapine can significantly improve the symptoms. Since A1 and O2

have no important effect on the outcome, we expect similar treatment effects among the
four groups with O1 = 1. From this point of view, the unpenalized estimator is inferior
since it shows much bigger variation than the penalized estimator.

We next consider the Level 2 regression model. The pseudo-outcome Ŷ is defined
as Ŷ = βT2 S2(1) + |ψT2 S2(2)| and we impose the following Level 2 model:

Ŷ = β11 + β12O1 + β13A1 + β14O1A1.

Table 4 shows the Level 2 model coefficient estimation using both the hard-max esti-
mator and the penalized Q-learning based estimator. The coefficient estimation for the
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intercept and O1 are similar from two different estimation methods. In the estimation of
coefficients for A1 and O1A1, the penalized Q-learning based estimators are substantially
closer to zero. Based on the 95% confidence intervals from penalized Q-learning, O1 and
A1 have no effect on the pseudo-outcome. Since A1 shows no effect in Level 3 regression
either, it is easy to interpret its lack of effect on the pseudo-outcome. In contrast, O1

is a strong predictor in Level 3 treatment. Its lack of effect in Level 2 regression may
be explained as follows. In Level 3 regression, the O1 = 1 group’s clinical outcome is
smaller than the O1 = −1 group’s clinical outcome by 2β22 ≈ 2.24. However, the optimal
Level 3 treatment can increase the O1 = 1 group’s clinical outcome by |ψT2 S2(2)| ≈ 2.6
but cannot increase the O1 = −1’s clinical outcome. Hence O1 has no net effect on the
pseudo-outcome.

Our analysis found that the optimal Level 2 and Level 3 treatment regimen in this
subgroup of patients is the following. In Level 2, there is no difference in choosing sertra-
line or bupropion. If a patient’s symptom worsens in Level 1 and remains unsatisfactory
in Level 2, mirtazapine is a better option for Level 3 treatment when compared to nor-
triptyline. If a patient’s symptom improves in Level 1 and remains unsatisfactory in
Level 2, mirtazapine or nortriptyline have a similar effect as a Level 3 treatment.

S3 Proofs

Proof of Theorem 1.

Let αn = C(1/
√
n+ an), where C is a constant to be determined later. We aim to

show that for any given ε > 0, there exists a large constant C such that

P ( inf
‖u‖=1

W2(θ20 + αnu) > W2(θ20)) ≥ 1− ε, (S3.1)

where u = (uT1 , u
T
2 )T , u1 ∈ Rp, u1 ∈ Rq with ‖u‖ = 1, and

W2(θ2) =

n∑
i=1

(R2i −Q2(S2i, A2i; θ2))2 +

n∑
i=1

pλn(|ψT2 S2i(2)|).

Let Gn2(θ2) =
∑n
i=1(R2i −Q2(S2i, A2i; θ2))2. Using pλn

(0) = 0, we have

Dn(u) = W2(θ20 + αnu)−W2(θ20)

= Gn2(θ20 + αnu)−Gn2(θ20) +

n∑
i=1

pλn(|(ψ20 + αnu2)TS2i(2)|)−
n∑
i=1

pλn(|ψT20S2i(2)|)

≥ Gn2(θ20 + αnu)−Gn2(θ20) +

K1∑
k=1

nkpλn
(|(ψ20 + αnu2)T vk|)−

K1∑
k=1

nkpλn
(|ψT20vk|).

By Taylor expansion of W2 and noting that ∇2
θ2θ2

Gn2(θ20) ≥ 1/2I20 by condition
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B3 for large n, we obtain

Dn(u) ≥ αnG
′
n2(θ20)u+ n/2I20α

2
n{1 + op(1)}

−c0n
K1∑
k=1

nk
n
αnu

T
2 p
′
λn

(|ψT20vk|)− c20n
K1∑
k=1

nk
n
α2
nu

T
2 p
′′
λn

(|ψT20vk|)u2{1 + o(1)},

where c0 is a finite upper bound for ‖S2(2)‖.

Since θ20 minimizes the limit of Gn2(θ2), it is easy to see that

G′n2(θ20) = −2n(Pn − P) [∇θ2Q2(S2, A2; θ20)(Y2 −Q2(S2, A2; θ20))] = Op(n
1/2),

where Pf is limn Pnf for a function f and Pnf = 1/n
∑n
i=1 f(Xi) is the empirical

function for independent identically distributed random variable Xi, i = 1, . . . , n. Thus,

−αnG′n2(θ20)u ≤ n/4I20α2
n +O(1).

Moreover, according to the property of the penalty function,

K1∑
k=1

nk
n
αnu

T
2 p
′
λn

(|ψT20vk|) ≤ O(1)anαn,

and
K1∑
k=1

nk
n
α2
nu

T
2 p
′′
λn

(|ψT20vk|)u2 = o(α2
n).

We conclude that

Dn(u) ≥ n(1/8I20α
2
n −O(n−1)−O(an)αn).

Therefore, if we choose the constant C large enough in αn = C(1/
√
n + an), the right-

hand side of the above inequality is strictly positive, which implies that there exists a
local minimizer θ̂2 such that ‖θ̂2 − θ20‖ = O(n−1/2 + an). This concludes the proof of
Theorem 1. �

Proof of Theorem 2.

We consider the sets in the probability space:

Ck = {ψT20vk = 0, ψ̂T2 vk 6= 0}, k = K1 + 1, ...,K.

We will show that for any ε > 0, when n is large enough, P (Ck) < ε.

Since ψ̂T2 vk = Op(n
−1/2) by Theorem 1, for any ε > 0, there exists some M such

that for sufficiently large n,

P (Ck) < ε/2 + P (ψT20vk = 0, ψ̂T2 vk 6= 0, |ψ̂T2 vk| < Mn−1/2).
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After differentiating Wn2(θ2) with respect to ψ2, we obtain

n−1/2∇ψ2
Gn2(θ̂2) + n−1/2

n∑
i=1

p′λn
(|ψ̂T2 S2i(2)|)sgn(ψ̂T2 S2i(2))S2i(2) = 0, (S3.2)

where ∇ψ2
Gn2 is the score equation of Gn2(θ2) with respect to ψ2. Multiplying ψ̂T2 on

both sides of (S3.2) yields that

n−1/2ψ̂T2 ∇ψ2
Gn2(θ̂2) + n−1/2

n∑
i=1

p′λn
(|ψ̂T2 S2i(2)|)|ψ̂T2 S2i(2)| = 0.

Since S2i(2) takes values v1, ..., vK , the above equation can be rewritten as

n−1/2ψ̂T2 ∇ψ2Gn2(θ̂2) +
√
n

K∑
k=1

[nk
n
p′λn

(|ψ̂T2 vk|)|ψ̂T2 vk|
]

= 0, (S3.3)

where nk =
∑n
i=1 I(S2i(2) = vk). From the consistency of ψ̂2, it is easy to verify that

the first term in the left-hand side of (S3.3) is Op(1). Moreover, for k = 1, ...,K1, since

ψ̂T2 vk converges to ψT20vk, which is bounded away from zero, we conclude from property
A1 that

nk
n
p′λn

(|ψ̂T2 vk|)|ψ̂T2 vk| → 0.

Therefore, from (S3.3), there exists a constant m such that P (Dm) > 1− ε/4, where the
set Dm is defined as

Dm =

{
√
n

K∑
k=K1+1

nk
n
p′λn

(|ψ̂T2 vk|)|ψ̂T2 vk| < m

}
.

Consequently,

P (Ck) ≤ ε/2 + P (Dcm) + P (Dm ∩
{
ψ̂T2 vk 6= 0, ψ̂T2 vk < Mn−1/2

}
)

≤ 3ε/4 + P (
√
np′λn

(|ψ̂T2 vk|)|ψ̂T2 vk| < 2m/pk, ψ̂
T
2 vk 6= 0, ψ̂T2 vk < Mn−1/2).

However, from property A2 of the penalty function, the second probability on the right-
hand side will eventually be zero for n large enough. We thus conclude that when n is
large enough, P (Ck) < ε. This proves Theorem 2. �

Proof of Theorem 3.

We perform Taylor expansion for the left-hand side of (S3.2) and also for the equa-

tion for β̂2: ∇β2
Gn2(θ̂2) = 0. Note that from Theorem 2, with probability tending to

one, sgn(ψ̂T2 S2i(2)) = sgn(ψT20S2i(2)). Thus,

p′λn
(|ψ̂T2 S2i(2)|)sgn(ψ̂T2 S2i(2))S2i(2) = p′λn

(|ψT20S2i(2)|)sgn(ψT20S2i(2))S2i(2)
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+(p′′λn
(|ψT20S2i(2)|)S2i(2)S

T
2i(2) + op(1))(ψ̂2 − ψ20).

Hence, it holds that

0 = ∇θ2Gn2(θ20) +∇2
θ2θ2Gn2(θ20)T (θ̂2 − θ20) +

n∑
i=1

p′λn
(|ψT20S2i(2)|)sgn(ψT20S2i(2))S2i(2)

+
( n∑
i=1

p′′λn
(|ψT20S2i(2)|)S2i(2)S

T
2i(2) + op(1)

)
(ψ̂2 − ψ20).

Theorem 3 then follows from Slutsky’s theorem and the central limit theorem. It also
yields that θ̂2 is an asymptotically linear estimator for θ20 with influence function

F2(θ20) = (F21(β20)T , F22(ψ20)T )T = (I20+Σ)−1∇θ2Q2(S2, A2; θ20)(R2−Q2(S2, A2; θ20)).�

Proof of Theorem 4.

Utilizing the same expansion used in proving Theorem 3, we obtain

√
nI10(θ̂1 − θ10) =

√
n(Pn − P)

[
∇θ1Q1(S1, A1; θ10)(Ŷ1 −Q1(S1, A1; θ10))

]
−
√
nPn

[
∇θ1Q1(S1, A1; θ10)(Ŷ1 − Y1)

]
+ op(1),

where Ŷ1 = R1 + β̂T20S2(1) + |ψ̂T2 S2(2)| and Y1 = R1 + βT20S2(1) + |ψT20S2(2)|.

On the other hand, with probability tending to one, ψ̂T2 S2(2) has the same sign as
ψT20S2(2) from Theorem 2. Thus,

|ψ̂T2 S2(2)| − |ψT20S2(2)| = sgn(ψT20S2(2))(ψ̂2 − ψ20)TS2(2).

Combining these results and using the fact that
{
|ψTS2(2)|

}
is a Donsker class, we

obtain

√
n(θ̂1 − θ10)

=
√
nI−110 (Pn − P) {∇θ1Q1(S1, A1; θ10)(R1 −Q1(S1, A1; θ10))}

−
√
nI−110 P

[
∇θ1Q1(S1, A1; θ10)ST2(1)

]
(Pn − P)F21(β20)

−
√
nI−110 P

[
∇θ1Q1(S1, A1; θ10)sgn(ψT20S2(2))S

T
2(2)

]
(Pn − P)F22(ψ20) + op(1),

where F21(β20) and F22(ψ20) are the respective influence functions for β̂2 and ψ̂2 as given

in Theorem 3. The asymptotic normality of θ̂1 thus follows. �

References



Penalized Q-learning S11

[1] Chakraborty, B., Murphy, S. & Strecher, V. (2010). Inference for non-
regular parameters in optimal dynamic treatment regimes. Statistical Methods in
Medical Research 19, 317–343.

[2] Fava, M., Rush, A., Trivedi, M., Nierenberg, A., Thase, M., Sackeim, H.,
Quitkin, F., Wisniewski, S., Lavori, P., Rosenbaum, J., Kupfer, D. &
STAR D Invest Grp (2003). Background and rationale for the Sequenced Treat-
ment Alternatives to Relieve Depression (STAR*D) study. Psychiatric Clinics of
North America 26, 457–494.

[3] Pineau, J., Bellernare, M. G., Rush, A. J., Ghizaru, A. & Murphy, S. A.
(2007). Constructing evidence-based treatment strategies using methods from
computer science. Drug and Alcohol Dependence 88, S52–S60.

[4] Rush, A., Fava, M., Wisniewski, S., Lavori, P., Trivedi, M., Sackeim, H.,
Thase, M., Nierenberg, A., Quitkin, F., Kashner, T., Kupfer, D., Rosen-
baum, J., Alpert, J., Stewart, J., McGrath, P., Biggs, M., Shores-
Wilson, K., Lebowitz, B., Ritz, L., Niederehe, G. & STAR D Inves-
tigators Grp (2004). Sequenced treatment alternatives to relieve depression
(STAR*D): rationale and design. Controlled Clinical Trials 25, 119–142.


