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Abstract: A dynamic treatment regimen incorporates both accrued information and

long-term effects of treatment from specially designed clinical trials. As these trials

become more and more popular in conjunction with longitudinal data from clinical

studies, the development of statistical inference for optimal dynamic treatment

regimens is a high priority. In this paper, we propose a new machine learning

framework called penalized Q-learning, under which valid statistical inference is

established. We also propose a new statistical procedure: individual selection and

corresponding methods for incorporating individual selection within penalized Q-

learning. Extensive numerical studies are presented which compare the proposed

methods with existing methods, under a variety of scenarios, and demonstrate that

the proposed approach is both inferentially and computationally superior. It is

illustrated with a depression clinical trial study.

Key words and phrases: Dynamic treatment regimen, individual selection, multi-

stage, penalized Q-learning, Q-learning, shrinkage, two-stage procedure.

1. Introduction

Developing effective therapeutic regimens for diseases is one of the essential

goals of medical research. Two major design and analysis challenges in this effort

are taking accrued information into account in clinical trial designs and effectively

incorporating long-term benefits and risks of treatment due to delayed effects.

One of the most promising approaches to dealing with these challenges has been

recently referred to as dynamic treatment regimens or adaptive treatment strate-

gies (Murphy (2003)), and has been used in a number of settings, such as drug

and alcohol dependency studies.

Reinforcement learning, one of the primary tools used in developing dynamic

treatment regimens, is a sub-area of machine learning, where the learning behav-

ior is through trial-and-error interactions with a dynamic environment (Kael-

bling, M. and Moore (1996)). Because reinforcement learning techniques have

been shown to be effective in developing optimal dynamic treatment regimens,

the area is attracting increased attention among statistical researchers. As a re-

cent example, a new approach to cancer clinical trials, based on the specific area
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of reinforcement learning called Q-learning, has been proposed by Zhao, Kosorok

and Zeng (2009) and Zhao et al. (2011). Extensive statistical estimating methods

have also been proposed for optimal dynamic treatment regimens, including, for

example, Chakraborty, Murphy and Strecher (2010), who developed a Q-learning

framework based on linear models. Other related literature includes likelihood-

based methods (Thall, Millikan and Sung (2000); Thall, Sung and Estey (2002);

Thall et al. (2007)) and semiparametric methods (Murphy (2003); Robins (2004);

Lunceford, Davidian and Tsiatis (2002); Wahed and Tsiatis (2004, 2006); Moodie,

Platt and Kramer (2009)).

In contrast to the substantial body of estimating methods, the development

of statistical inference for optimal dynamic treatment regimens is very limited.

This sequential, multi-stage decision making problem is at the intersection of ma-

chine learning, optimization and statistical inference and is thus quite challeng-

ing. As discussed in Robins (2004), and recognized by many other researchers,

the challenge arises when the optimal last stage treatment is non-unique for at

least some subjects in the population, causing estimation bias and failure of

traditional inferential approaches. There have been a number of proposals to

correct this. For example, Moodie and Richardson (2010) proposed a method

called Zeroing Instead of Plugging In. This is referred to as the hard-threshold

estimator by Chakraborty, Murphy and Strecher (2010), who also proposed a

soft-threshold estimator and implemented several bootstrap methods. There is,

however, a lack of theoretical support for these methods. Moreover, simulations

indicate that neither hard-thresholding nor soft-thresholding, in conjunction with

their bootstrap implementation, works uniformly well. We are therefore moti-

vated to develop improved, asymptotically valid inference for optimal dynamic

treatment regimens.

In this paper, we develop a new reinforcement learning framework for dis-

covering optimal dynamic treatment regimens: penalized Q-learning. The major

distinction of penalized Q-learning from traditional Q-learning is in the form of

the objective Q-function at each stage. While the new method shares many of the

properties of traditional Q-learning, it has some significant advantages. Based

on penalized Q-learning, we propose effective inferential procedures for optimal

dynamic treatment regimens. In contrast to existing bootstrap approaches, our

variance calculations are based on explicit formulae and hence are much less

time-consuming. Theoretical studies and extensive empirical evidence support

the validity of the proposed methods. Since penalized Q-learning puts a penalty

on each individual, it automatically initiates another procedure, individual selec-

tion, which selects those individuals without treatment effects from the popula-

tion. Successful individual selection, i.e., correctly identifying individuals without

treatment effects, is the key to improved statistical inference.
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While the proposed individual selection procedure shares some similarities

with certain commonly used variable selection methods, the approaches differ

fundamentally in other ways. These issues will be addressed in greater detail

below.

2. Statistical Inference with Q-learning

2.1. Personalized dynamic treatment regimens

Consider data from a sequential multiple assignment randomized trial

(SMART), where treatments are randomized at multiple stages (Lavori and Daw-

son (2000); Murphy (2005)). The longitudinal data on each patient take the form

H = (HT
1 ,H

T
2 )

T , where H1 = (OT1 , A1, R1)
T , H2 = (OT2 , A2, R2)

T are sequences

of random variables collected at two stages, t = 1, 2. As components of H t,

At is the randomly assigned treatment to patients, Ot is the observed patient

covariates prior to the treatment assignment and Rt is the clinical outcome, each

at stage t. The observed data are treated as n independent and identically dis-

tributed copies of H, with the goal of estimating the best treatment decision for

different patients using the observed data at each stage. This is equivalent to

identifying a sequence of ordered rules, which we call personalized dynamic treat-

ment regimens, d = (d1, d2)
T , one rule for each stage, mapping from the domain

of the patient history, St, to the domain of treatment, At, where S1 = O1 and

S2 = (OT1 , A1, R1, O
T
2 )

T .

Denote the distribution of H by P and the expectations with respect to

this distribution by E. Let P d denote the distribution of H and the expecta-

tions with respect to this distribution by Ed, where the dynamic treatment regi-

men d(·) is used to assign treatments. Take the value function to be V (d) =

Ed(R1 + R2). Thus, an optimal dynamic treatment regimen, d0, is a rule

that maximizes V. We use upper case letters to denote random variables and

lower case letters to denote values of the random variables. In this two-stage

setting, if we take Q2(s2, a2) = E(R2|S2 = s2, A2 = a2) and Q1(s1, a1) =

E(R1+maxa2∈A2 Q2(S2, a2)|S1 = s1, A1 = a1), then the optimal decision rule at

time t is dt(st)=argmax at∈At
Qt(st, at), where Qt are the Q-functions at time t.

2.2. Q-learning for personalized dynamic treatment regimens

Q-learning is a backward recursive approach commonly used for estimating

the optimal personalized dynamic treatment regimens. Following Chakraborty,

Murphy and Strecher (2010), let the Q-function for time t = 1, 2 be modeled as

Qt(St, At;βt, ψt) = βTt St(1) + (ψTt St(2))At, (2.1)

where St is the full state information at time t introduced in the previous section

and St(1) and St(2) are given features as functions of St. For example, they can be
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subsets of St selected for the model, and can be identical or different. Moreover,

the constant 1 is included in St(1) and St(2). The action At takes value 1 or −1.

The parameters of the Q-function are θt = (βTt , ψ
T
t )

T , where βt reflects the main

effect of current state on outcome, and ψt reflects the interaction effect between

current state and treatment choice. The true values of these parameters are

denoted θt0, βt0, and ψt0 respectively. We note that the additive formulation of

rewards is not restrictive. In fact, we can always define the intermediate rewards

to be zeros with the final stage reward to as the final outcome of interest. This

does not change the value function we aim to maximize. The linear models

studied here are also general if we let state variables in the regression be basis

functions of historical variables (for instance, using kernel machine). One can

always perform model diagnostics to check the linearity assumption.

Suppose that the observed data consist of (Sti, Ati, Rti) for patients i =

1, . . . , n and t = 1, 2, from a sample of n independent patients. The two-stage

empirical version of the Q-learning procedure is summarized as follows.

Step 1. Start with a regular non-shrinkage estimator, based on least squares, for

the second stage:

θ̃2 = (β̃T2 , ψ̃
T
2 )

T = argmin
β2,ψ2

n∑
i=1

{R2i −Q2(S2i, A2i;β2, ψ2)}2

=
(
ZT2 Z2

)−1
ZT2 R2,

where θ̃2 is the least squares estimator, Z2 is the stage-2 design matrix with each

row of (ST2i(1), A2iS
T
2i(2)) and R2 = (R21, . . . , R2n)

T . We use Sti(k) to denote the

kth component of St for subject i, where k = 1, 2, t = 1, 2 and i = 1, . . . , n.

Step 2. Estimate the first-stage individual pseudo-outcome by Ŷ HM
1 = (Ŷ HM

11 , . . .,

Ŷ HM
1n )T , where

Ŷ HM
1i = R1i + max

a∈{−1,1}
Q2(S2i, a; θ̃2) = R1i + β̃T2 S2i(1) + |ψ̃T2 S2i(2)|, (2.2)

with HM as the index for the hard-max estimator.

Step 3. Estimate the first-stage parameters by least squares estimation:

θ̂HM
1 = argmin

β1,ψ1

n∑
i=1

{Ŷ HM
1i −Q1(S1i, A1i;β1, ψ1)}2 =

(
ZT1 Z1

)−1
ZT1 Ŷ

HM
1 ,

where Z1 is the stage-1 design matrix whose ith row is (ST1i(1), A1iS
T
1i(2)). The

corresponding estimator of ψ1, denoted by ψ̂HM
1 , is referred to as the hard max

estimator in Chakraborty, Murphy and Strecher (2010).
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2.3. Challenges in statistical inference

When the Q-function takes the form (2.1), the optimal dynamic treatment

regimen for patient i is

di(sti) = argmax
ai∈{−1,1}

(ψTt sti(2))ai = sgn(ψTt sti(2)), t = 1, 2, i = 1, . . . , n,

where sgn(x) = 1 if x > 0 and −1 otherwise. We use sti to denote the observed

value of St for patient i and sti(k) denotes the observed value of St(k) for stage

t = 1, 2, component k = 1, 2 and patient i. The parameters ψ2 are of particular

interest for inference on the optimal dynamic treatment regimen, as ψ2 is the

interaction effect of the treatment and covariates.

During the Q-learning procedure, when there is a positive probability that

ψT20S2(2) = 0, the first-stage hard max pseudo-outcome Ŷ HM
1 is a non-smooth

function of ψ̃2. As a linear function of Ŷ HM
1 , the hard max estimator ψ̂HM

1

is also a non-smooth function of ψ̃2. Consequently, the asymptotic distribu-

tion of n1/2(ψ̂HM
1 − ψ10) is neither normal nor any well-tabulated distributions

if Pr(ψT20S2(2) = 0) > 0. In this non-standard case, such tools as Wald-type

confidence intervals are no longer valid.

2.4. Review of existing approaches

To overcome the difficulty of inference for ψ1 in Q-learning, several methods

have been proposed, that we briefly review in the two-stage set-up. Since all the

methods are also nested in the Q-learning procedure, we update the two-stage

version of Q-learning as follows.

Step 1. Estimate the first-stage individual pseudo-outcome by shrinking the

second-stage regular estimators via hard-thresholding or soft-thresholding. The

hard-threshold pseudo-outcome, Ŷ HT
1 = (Ŷ HT

11 , . . . , Ŷ HT
1n )T , is

Ŷ HT
1i = R1i + β̃T2 S2i(1) + |ψ̃T2 S2i(2)|1

{ n1/2|ψ̃T2 S2i(2)|
(ST2i(2)Σ̂2S2i(2))1/2

> zα/2

}
, (2.3)

where Σ̂2/n is the estimated covariance matrix of ψ̃2, α is a pre-specified signifi-

cance level and zα/2 is the (1−α/2)-quantile of the standard normal distribution.

The soft-threshold pseudo-outcome, Ŷ ST
1 = (Ŷ ST

11 , . . ., Ŷ
ST
1n )T , is

Ŷ ST
1i = R1i + β̃T2 S2i(1) + |ψ̃T2 S2i(2)|

(
1− λi

|ψ̃T2 S2i(2)|

)
+
, i = 1, . . . , n, (2.4)

where x+ = xI{x > 0} and λi is a tuning parameter.
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Step 2. Estimate the first-stage parameters by least squares estimation:

θ̂◦1 = (β̂◦T1 , ψ̂◦T
1 )T = argmin

β1,ψ1

n∑
i=1

{Ŷ ◦
1i −Q1(S1i, A1i;β1, ψ1)}2 =

(
ZT1 Z1

)−1
ZT1 Ŷ

◦
1 ,

where Ŷ ◦
1 is either a hard-threshold or soft-threshold pseudo-outcome, as (2.3)

or (2.4). The corresponding estimator of ψ1, ψ̂
◦
1, can be the hard-threshold

estimator ψ̂HT
1 or the soft-threshold estimator ψ̂ST

1 .

The hard-thresholding and soft-thresholding methods can be viewed as up-

graded versions of the hard max methods in terms of reducing the degree of non-

differentiability of the absolute value function at zero. The first-stage pseudo-

outcome for these three existing methods can be viewed as shrinkage functionals

of certain standard estimators. Even if these estimators form shrinkage estima-

tors under certain conditions, they are not optimizers of reasonable objective

functions in general. Consequently, even if these estimators can successfully

achieve shrinkage, two drawbacks remain that negate their ability to be used for

statistical inference for optimal dynamic treatment regimens. First, their bias

can be large in finite samples, leading to further bias in the first stage estimator

of ψ1 in regular settings; see point has been demonstrated in the empirical studies

of Chakraborty, Murphy and Strecher (2010). More importantly, these shrinkage

functional estimators may not possess the oracle property that, with probability

tending to one, the set M⋆ = {i : |ψT20S2i(2)| > 0} can be correctly identified and

the resulting estimator performs as well as the estimator that knows the true set

M⋆ in advance.

3. Inference Based on Penalized Q-Learning

3.1. Estimation procedure

We focus on the two-stage setting as given in Section 2.2 and use the same

notation. As a backward recursive reinforcement learning procedure, our method

follows the three steps of the usual Q-learning method, except that it replaces

Step 1 of the standard Q-learning procedure with

Step 1p. We minimize the penalized objective function

W2(θ2) =
n∑
i=1

{R2i −Q2(S2i, A2i;β2, ψ2)}2 +
n∑
i=1

pλn(|ψT2 S2i(2)|), (3.1)

where pλn(·) is a pre-specified penalty function and λn is a tuning parameter.

Because of this penalized estimation, we call our approach penalized Q-

learning. Since the penalty is put on each individual, we also call Step 1p indi-

vidual selection.
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Using individual selection enjoys similar shrinkage advantages as do penal-

ized methods described by Frank and Friedman (1993), Tibshirani (1996), Fan

and Li (2001), Candes and Tao (2007), Zou (2006) and Zou and Li (2008). In the

first step of the proposed penalized Q-learning approach, penalized estimation

allows us simultaneously to estimate the second-stage parameters θ2 and select

individuals whose value functions are not affected by treatments, individuals

whose true values of ψT2 S2(2) are zero.

Statistical inference in the usual Q-learning is mainly challenged by difficul-

ties in obtaining the correct asymptotic distribution of n1/2(|ψ̂T2 S2(2)|−|ψT20S2(2)|),
where ψ̂2 is an estimator for ψ20. Via our penalized Q-learning method, we can

identify individuals whose ψ̂T2 S2(2) = ψT20S2(2) takes value zero; moreover, we

know that for all individuals, ψ̂T2 S2(2) has the same sign as ψT20S2(2) asymptoti-

cally. Then, n1/2(|ψ̂T2 S2(2)| − |ψT20S2(2)|) is equivalent to

n1/2(ψ̂2 − ψ20)
TS2(2)sgn(ψ

T
20S2(2)).

Hence, correct inference can be obtained following standard arguments, see Sec-

tion 3.3.

The choice of the penalty function pλn(·) can be that of popular variable

selection methods. Specifically, we require pλn(·) to possess the following prop-

erties.

A1. For non-zero fixed θ, limn→∞ n1/2pλn(|θ|) = 0, limn→∞ n1/2p′λn(|θ|) = 0,

and limn→∞ p′′λn(|θ|) = 0.

A2. For any M > 0, inf |θ|≤Mn−1/2 pλn(|θ|) → ∞, as n→ ∞.

Among penalty functions satisfying A1 and A2 are the smoothly clipped abso-

lute deviation penalty (Fan and Li (2001)) and the adaptive lasso penalty (Zou

(2006)), where pλn(θ) = λnθ/|θ(0)|ϕ with ϕ > 0 and θ(0) a root-n consistent esti-

mator of θ. To achieve both sparsity and oracle properties, the tuning parameter

λn in these examples should be taken correspondingly. The adaptive lasso method

will be implemented in this paper, where λn can be taken as scalars satisfying

n1/2λn → 0 and nλn → ∞, as n→ ∞.

3.2. Implementation

The minimization in Step 1p of the penalized Q-learning procedure has some

unique features which distinguish it from the optimization done in the variable

selection literature. The component to be shrunk, ψT2 S2i(2), is subject-specific,

and this component is a linear combination of the parameters.

To deal with these issues, in this section, we propose an algorithm for the

minimizing problem of (3.1) based on local quadratic approximation. Following
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Fan and Li (2001), we first calculate an initial estimator ψ̂2(0) via the standard

least squares estimation. We then obtain the following local quadratic approxi-

mation to the penalty terms in (3.1):

pλn(|ψT2 S2i(2)|)≈pλn(|ψ̂T2(0)S2i(2)|)+
1

2

p′λn(|ψ̂
T
2(0)S2i(2)|)

|ψ̂T2(0)S2i(2)|
{(ψT2 S2i(2))2−(ψ̂T2(0)S2i(2))

2}

for ψ2 close to ψ̂2(0). Thus, (3.1) can be locally approximated up to a constant

by

n∑
i=1

{Y2i −Q2(S2i, A2i;β2, ψ2)}2 +
1

2

n∑
i=1

p′λn(|ψ̂
T
2(0)S2i(2)|)

|ψ̂T2(0)S2i(2)|
(ψT2 S2i(2))

2. (3.2)

The updated estimators for ψ2 and β2 can be obtained by minimizing the above

approximation. When Q(·) is (3.2), this minimization problem has closed form

solution

ψ̂2 =
[
XT

22{I −X21(X
T
21X21)

−1XT
21 +D}X22

]−1
XT

22{I−X21(X
T
21X21)

−1XT
21}Y2,

and

β̂2 = (XT
21X21)

−1XT
21(Y2 −X22ψ̂2),

where X22 is a matrix with i-th row equal to ST2i(2)A2i, X21 is a matrix with i-th

row equal to ST2i(1), I is the n × n identity matrix, and D is an n × n diagonal

matrix with Dii = (1/2)p′λn(|ψ̂
T
2(0)S2i(2)|)/|ψ̂

T
2(0)S2i(2)|.

This minimization procedure can be continued until convergence. However,

as discussed in Fan and Li (2001), either the one-step or k-step estimator will

be as efficient as the fully iterative method as long as the initial estimators are

consistent. Since in practice, the local quadratic approximation algorithm shrinks

|ψ̂T2 S2i(2)| to a very small value instead of exactly zero even if the true value is

zero, we set |ψ̂T2 S2i(2)| = 0 once the value is below a pre-specified tolerance

threshold.

The choice of local quadratic approximation is mainly for convenience in

solving the penalized least squares estimation in (3.1). If least absolute deviation

estimation or some other quantile regression approach is used in place of least

squares, then the local linear approximation of the penalty function described in

Zou and Li (2008) can be used instead of local quadratic approximation, and the

resulting minimization problem can be solved by linear programming.

We use five-fold cross-validation to choose the tuning parameter, where we

partition data into five folds, perform the estimation on four folds, and validate

the least squares fitting on the other fold. We set ϕ = 2 as the parameter used

in adaptive lasso. We acknowledge the insufficient theory support for using this
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method. The general guideline for choosing tuning parameters and ϕ is of great

research interest but it is beyond the scope of the current paper.

3.3. Asymptotic results

In this section, we establish the asymptotic properties for the parameter

estimators in our penalized Q-learning method. We assume that the penalty

function pλn(x) satisfies A1 and A2, and that the following conditions hold.

B1. The support of S2(2) contains a finite number of vectors, say, v1, . . . , vK .

Moreover, ψT20vk ̸= 0 for k ≤ K1 and ψT20vk = 0 for k > K1. Let nk =

#|{i : S2i(2) = vk, i = 1, . . . , n}|, where for a set A, #|A| is defined as its

cardinality.

B2. The true value for θ2, θ20 = (ψT20, β
T
20)

T , minimizes

lim
n

n∑
i=1

n−1 {R2i −Q2(S2i, A2i;β2, ψ2)}2 ,

while the true value for θ1, θ10 = (ψT10, β
T
10)

T minimizes

lim
n
n−1

n∑
i=1

{
R1i + max

a∈{−1,1}
Q2(S2i, a;β20, ψ20)−Q1(S1i, A1i;β1, ψ1)

}2

,

limits existing.

B3. For t = 1, 2, with probability one, Qt(St, At; θt) is twice-continuously differ-

entiable with respect to θt in a neighborhood of θt0; the Hessian matrices

of the limiting functions in B2 are continuous and their values at θt = θt0,

denoted It0, are nonsingular.

B4. With probability one, nk/n = pk+Op(n
−1/2) for some constant pk in [0, 1].

Condition B2 says that θ10 and θ20 are the target values in the dynamic treatment

regimens. Condition B3 can be verified via the design matrix in the two-stage

setting: if Qt takes the form of (3.2), this condition is equivalent to linear inde-

pendence of [St(1), St(2)At] with positive probability. The numerical performance

for data from population with a small probability of linear independence is likely

to be unstable with small sample sizes.

Theorem 1. Under conditions A1−A2 and B1−B4, there exists a local mini-

mizer θ̂2 of W2(θ2) such that ∥θ̂2 − θ20∥ = OP (n
−1/2 + an), where an = maxK1

k=1{
p′λn(|ψ

T
20vk|)

}
.

According to the properties of pλn(·), θ̂2 is n1/2-consistent.
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Theorem 2. If Mc
⋆ =

{
i : i = 1, . . . , n, ψT20S2i(2) = 0

}
, then under conditions

A1−A2 and B1−B4, limn→∞ Pr(ψ̂T2 S2i(2) = 0, for any i ∈ Mc
⋆) = 1.

The set Mc
⋆ consists of those individuals whose true value functions at the

second stage have no effect from treatment. Thus Theorem 2 states that with

probability tending to one, we can identify these individuals in Mc
⋆. We need

the asymptotic distribution of θ̂2 in order to make inference.

Theorem 3. Under conditions A1−A2 and B1−B4, n1/2(I20 + Σ){θ̂2 − θ20 +

(I20 +Σ)−1b} converges in distribution to N(0, I20), where

b =
(
0Tp ,

K1∑
k=1

pkp
′
λn(|ψ

T
20vk|)sgn(ψT20vk)vk

)T
,

and

Σ = diag{0p×p,
K1∑
k=1

pkp
′′
λn(|ψ

T
20vk|)vkvTk }.

Theorem 4. Under conditions A1−A2 and B1−B4, if S̄1i = (ST1i(1), S
T
1i(2)A1i)

T

and S̄2i = (ST2i(1), S
T
2i(2)sgn(ψ

T
20S2i(2)))

T , then n1/2(θ̂1 − θ10) converges in distri-

bution to I−1
10 G, where

G ∼N
[
0,Cov

{
F1(θ10) + lim

n

1

n

n∑
i=1

S̄1iS̄
T
2iF2(θ20)

}]
,

with

F1(θ10) =∇θ1Q1(S1, A1; θ10)
{
Y1 −Q1(S1, A1; θ10)

}
,

F2(θ20) = (I20 +Σ)−1∇θ2Q2(S2, A2; θ20)(R2 −Q2(S2, A2; θ20)).

3.4. Variance estimation

The standard errors can be obtained directly since we are estimating parame-

ters and selecting individuals simultaneously. A sandwich type plug-in estimator

can be used as the variance estimator for θ̂2:

Ĉov (θ̂2) = (Î20 + Σ̂)−1Î20(Î20 + Σ̂)−1,

where Î20 = n−1
∑n

i=1[∇2
θ2θ2

{R2 − Q2(S2i, A2i; θ2)}2] is the empirical Hessian

matrix and Σ̂ = diag{0p×p, n−1
∑n

i=1 p
′′
λn
(|ψ̂T2 S2i(2)|)S2i(2)ST2i(2)}. As Σ̂ converges

to zero as n goes to infinity, hence often negligible, we use

Ĉov (θ̂2) = Î−1
20 (3.3)
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instead, and this performs well in practice. The estimated variance for θ̂1 is then

Ĉov (θ̂1) = Î−1
10 Ĉov

{
F1(θ̂1) + n−1

n∑
i=1

S̄1iS̄
T
2iF̂2(θ̂2)

}
, (3.4)

where Î10 is the empirical estimator for I10 and F̂2(θ̂2) = (Î20+Σ̂)−1∇θ2Q2(S2, A2;

θ̂2){R2−Q2(S2, A2; θ̂2)}. These variance estimators have good accuracy for mod-

erate sample sizes; see section 4. This success of direct inference for the estimated

parameters makes inference for optimal dynamic treatment regimens possible in

the multi-stage setting.

4. Numerical Studies

We apply the proposed method to the simulation study conditions of

Chakraborty, Murphy and Strecher (2010). A total of 500 subjects were gen-

erated for each dataset. We set R1 = 0 and (O1, A1, O2, A2, R2) was collected

on each subject, where (Ot, At) denotes the covariates and treatment status at

stage t (t = 1, 2). The binary covariates Ot’s and the binary treatments At’s

were generated as follows:

Pr(O1 = 1) = P (O1 = −1) =
1

2
,

Pr(At = 1) = P (At = −1) =
1

2
, t = 1, 2,

Pr(O2 = 1|O1, A1) = 1− Pr(O2 = −1|O1, A1) = expit(δ1O1 + δ2A1),

where expit(x) = exp(x)/{1 + exp(x)}.

R2 = γ1 + γ2O1 + γ3A1 + γ4O1A1 + γ5A2 + γ6O2A2 + γ7A1A2 + ε,

where ε ∼ N(0, 1). Under this setting, the true Q-functions for time t = 1, 2 are

Q2(S2, A2;β2, ψ2) =β21 + β22O1 + β23A1 + β24O1A1

+ ψ21A2 + ψ22O2A2 + ψ23A1A2, (4.1)

Q1(S1, A1;β1, ψ1) =β11 + β12O1 + ψ11A1 + ψ12O1A1. (4.2)

The true values β011, β
0
12, ψ

0
11 and ψ0

12 are

β011 = γ1 + q1|f1|+ q2|f2|+ (0.5− q1) |f3|+ (0.5− q2) |f4|,
β012 = γ2 + q′1|f1|+ q′2|f2| − q′1|f3| − q′2|f4|,

(4.3)
ψ0
11 = γ3 + q1|f1| − q2|f2|+ (0.5− q1)|f3| − (0.5− q2)|f4|,

ψ0
12 = γ4 + q′1|f1| − q′2|f2| − q′1|f3|+ q′2|f4|,
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Table 1. Values of ψT
20S2(2) in the six simulation settings. In Setting 1,

γ = (0, 0, 0, 0, 0, 0, 0)T , δ1 = δ2 = 0.5. In Setting 2, γ = (0, 0, 0, 0, 0.01,
0, 0)T , δ1 = δ2 = 0.5. In Setting 3, γ = (0, 0,−0.5, 0, 0.5, 0, 0.5)T , δ1 =
δ2 = 0.5. In Setting 4, γ = (0, 0,−0.5, 0, 0.5, 0, 0.49)T , δ1 = δ2 = 0.5. In
Setting 5, γ = (0, 0,−0.5, 0, 1, 0.5, 0.5)T , δ1 = 1, δ2 = 0. In Setting 6, γ =
(0, 0,−0.5, 0, 0.25, 0.5, 0.5)T , δ1 = δ2 = 0.1.

S2(2) = (1, O2, A1)
T

Setting (1,1,1) (1,1,-1) (1,-1,1) (1,-1,-1)
1 0 0 0 0
2 0.01 0.01 0.01 0.01
3 1 0 1 0
4 0.99 0.01 0.99 0.01
5 2 1 1 0
6 1.25 0.25 0.25 -0.75

where q1 = 0.25(expit(δ1 + δ2) + expit(−δ1 + δ2)), q2 = 0.25(expit(δ1 − δ2) +

expit(−δ1−δ2)), q′1 = 0.25(expit(δ1+δ2)−expit(−δ1+δ2)), q′2 = 0.25(expit(δ1−
δ2) − expit(−δ1 − δ2)), f1 = γ5 + γ6 + γ7, f2 = γ5 + γ6 − γ7, f3 = γ5 − γ6 + γ7,

f4 = γ5− γ6− γ7. Let γ = (γ1, . . . , γ7)
T . We consider six settings, with values of

ψT20S2(2) and γ for each setting listed in Table 1.

We applied penalized Q-learning with adaptive lasso to these settings. The

one-step local quadratic approximation algorithm was used with least squares

estimation for the initial values. The tuning parameter λ in the adaptive lasso

penalty was chosen by five-fold cross-validation. We took ϕ = 2 as the parameter

in the adaptive least absolute shrinkage and selection operator penalty. When

the estimated value |ψ̂T2 S2(2)| < 0.001, it was set as zero in the stage-1 estimation.

The simulation results shown in Tables 4.2 and 4.3 were summarized over 2,000

replications. We included the oracle estimator that knows the true M⋆ = {i :
|ψT20S2i(2)| > 0}, the hard max estimator, and the soft-threshold estimator for

comparison. Theoretical standard errors for the hard max estimator and the soft-

threshold estimator are not available. Results on average length of the confidence

intervals are presented in the Web Appendix.

The true values β011, β
0
12, ψ

0
11, and ψ

0
12 of stage-1 parameters are linear com-

binations of four absolute value functions |f1|, |f2|, |f3|, and |f4| from (4.3). It

can be shown that, with a bias of order o(n−1/2), the hard max estimators of

stage-1 parameters are linear combinations of four corresponding absolute value

functions, with stage-2 estimators rather than true values to plug into |f1|, |f2|,
|f3|, and |f4|. The performances are greatly affected by the estimation of each of

the four absolute value functions, especially as to bias.

Setting 1 is a setting where there is no second-stage treatment effect, as

ψT20S2(2) = 0 for all values of S2(2). The hard-max estimator incurs asymptotic
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biases for all the four terms |f1|, |f2|, |f3| and |f4|, all four at about the same order

of
√

2/(nπ) = 0.036, as in this case {|fi|}4i=1 = 0. As shown in (13), the biases

in the estimation of |f1|, |f2|, |f3| and |f4| are almost completely canceled out in

the estimation of β012 and ψ0
12, due to the fact that the sum of the coefficients

is zero. These biases are largely canceled out in the estimation of ψ0
11, as the

sum of the coefficients are close to zero. The hard-max estimator of β011 has a

significant bias because the coefficients of the four absolute value terms, q1, q2,

0.5− q1 and 0.5− q2, are all positive and sum to 1.

The simulation results of Setting 1 are consistent with the theoretical obser-

vations in terms of the hard-max estimation. The oracle estimator automatically

sets the estimator of ψ2 to be zero. It has no significant bias, with standard errors

accurately predicted by the theory and 95% confidence interval coverage close to

the nominal value. The penalized Q-learning based estimator’s performance is

actually identical to the oracle estimator’s. The hard-max estimator has a sig-

nificant bias and inferior mean square error in β̂11 while remaining consistent for

estimation of the other three stage-1 parameters.

Setting 2 is close to Setting 1, with ψT20S2(2) equal to 0.01 for all values of

S2(2). The hard-max estimator’s 95% confidence interval shows poor coverage for

β011 and ψ0
11. As the value of ψT20S2(2) is nonzero, the oracle estimator reduces to

the hard-max in this setting. Although the penalized Q-learning based estimator

demonstrates a small bias (-0.009) in the estimation of β011, the bias is less than

one fifth of that of the oracle estimator and the mean square error is less than

half of the oracle estimator. Its standard error estimate remains close to the

empirical values.

There is no second-stage treatment effect for a positive proportion of subjects

in the population in Setting 3. The value of ψT20S2(2) is equal to 0 when A1 = −1

with probability one half. The hard-max estimator incurs bias on the order of

O(n−1/2) in the estimation of |f2| and |f4|, but not |f1| and |f3|, as f2 = f4 = 0

and f1 = f3 = 1. The hard-max estimation of β012 and ψ0
12 is still approximately

unbiased, due to the canceling-out of the coefficients of the absolute value terms.

The estimation of β011 is biased from the true value at approximately half of

the bias of Setting 1, due to the values of the |fi|’s and their coefficients. The

estimation of ψ0
11 is also biased, with similar magnitude of bias as in β̂11 but with

reversed sign. The penalized Q-learning based estimator has a bias in ψ̂11 but the

bias is three times smaller than that of the hard-max estimator. Otherwise, the

penalized Q-learning based estimator has almost exactly the same performance

as the oracle estimator.

Setting 4 is close to Setting 3. The hard-max estimator’s performance is

similar to Setting 3, the oracle estimator reduces to the hard-max estimator, and

the penalized Q-learning based estimator outperforms the oracle estimator, with

both a smaller bias (5 times smaller), and a correctly predicted standard error.
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In Setting 5, the term ψT20S2(2) is zero when (O2, A1) = (−1,−1) with prob-

ability one fourth. The hard-max estimator incurs bias in the estimation of |f4|,
since f4 = 0. Consequently, all four stage-1 parameter estimators are biased.

The bias in β̂11 is approximately a quarter of that in Setting 1. The bias in β̂12 is

about half of that of β̂11, with reversed sign. The bias in ψ̂11 is about the same

magnitude as that of β̂11, with reversed sign. The bias in ψ̂12 is about half of

that of β̂11. In this setting, the oracle estimator has the best performance, with

no significant bias and well predicted standard errors. The penalized Q-learning

based estimator has a bias in ψ̂11 but the bias is much smaller than that of the

hard-max estimator. The penalized Q-learning based estimator has no noticeable

bias in the other three parameter estimations and the standard error calculations

are accurate when compared to Monte-Carlo errors.

Setting 6 is a completely regular setting with values of ψT20S2(2) well above

zero. The penalized Q-learning based estimator has almost identical performance

as the oracle estimator, which is the same as the hard-max estimator. Both

estimators are unbiased with accurately calculated standard errors.

Chakraborty, Murphy and Strecher (2010) proposed several bootstrapped

confidence intervals for the hard max estimator as well as hard-threshold estima-

tors, with α in Step 2 set to be 0.08 or 0.20, and the soft-threshold estimator. To

compare the confidence intervals from the proposed penalized Q-learning based

estimator with these bootstrapped methods, we re-ran the simulations with the

penalized Q-learning based estimator at sample size n = 300 and 1,000 replica-

tions. The coverage probabilities from different inferential methods in the six

settings are compared in Figure 1, where the results from the hard max, hard

threshold and soft threshold methods based on hybrid bootstrapping for variance

estimation are shown. Overall, the competing methods cannot provide consistent

coverage rates across all six settings while the penalized Q-learning based method

always gives coverage probabilities that are not significantly different from the

nominal level.

We also applied percentile bootstrapping or double bootstrapping variance

estimation in the other competing methods and found that the hard max esti-

mator with the double bootstrapped confidence interval and the soft-threshold

estimator with the percentile bootstrapped can give reasonable coverage proba-

bilities. Nonetheless, the penalized Q-learning based estimator has a significant

computational advantage. In a comparison run analyzing one dataset with sam-

ple size 300, the hard max with double bootstrap confidence interval, at 500

first-stage and 100 second-stage bootstrap iterations needed 316.35 seconds. The

soft thresholding with percentile confidence interval at 1,000 bootstrap iterations

took 10.98 seconds, and the penalized Q-learning based estimator took only 0.14

second.
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Table 2. Summary statistics and empirical coverage probability of 95% nom-
inal percentile confidence intervals for β0

11 and β
0
12 using the oracle estimator,

the proposed penalized Q-learning based estimator, the hard max estimator
and the soft-threshold estimator. “PQ” refers to the penalized Q-learning
based estimator, “HM” refers to the hard max estimator, “MSE” refers to
the mean squares error, “Std” refers to the average of the 2,000 standard
error estimates and “CP” refers to the empirical coverage probability of
95% nominal percentile confidence interval. A “*” indicates a significantly
different coverage rate than the nominal.

β11 β12
bias(×1000) MSE(×1000) std(×100) CP bias(×1000) MSE(×1000) std(×100) CP

Setting 1
Oracle 1 2.0 4.5 94.7 1 2.0 4.5 94.9
PQ 1 2.0 4.5 94.7 1 2.0 4.5 94.9
HM 61 6.6 – 88.7* 1 2.1 – 95.2
ST 7 2.3 – 96.2* −1 2.0 – 94.9
Setting 2
Oracle 52 5.5 6.2 90.0* 1 2.1 4.6 95.3
PQ −9 2.1 4.5 94.7 1 2.0 4.5 94.8
HM 52 5.5 – 90.8* 1 2.1 – 95.1
ST −3 2.2 – 94.8 −1 2.0 – 95.1
Setting 3
Oracle 0 3.0 5.5 94.6 1 2.0 4.5 95.1
PQ 0 3.1 5.5 94.2 2 2.0 4.5 95.2
HM 30 4.3 – 93.0* 2 2.1 – 95.2
ST −5 3.3 – 93.5* −1 2.1 – 94.9
Setting 4
Oracle 26 4.0 6.2 93.8* 2 2.1 4.6 95.2
PQ −5 3.1 5.5 94.3 2 2.0 4.5 95.1
HM 26 4.0 – 93.4* 2 2.1 – 95.1
ST −10 3.4 – 93.5* −1 2.1 – 95.0
Setting 5
Oracle 0 3.8 6.1 94.7 2 2.7 5.2 95.1
PQ −2 3.8 6.1 94.4 0 2.7 5.2 95.0
HM 15 4.1 – 94.1 −5 2.7 – 94.3
ST −8 4.0 – 94.9 −3 2.8 – 94.9
Setting 6
Oracle 2 3.8 6.2 94.8 −1 2.3 4.8 94.7
PQ 1 3.8 6.2 94.7 −1 2.3 4.8 94.7
HM 2 3.8 – 94.3 −1 2.3 – 95.2
ST 45 6.3 – 87.2* −1 2.3 – 95.2

We analyzed data from the mental health study described in Fava et al.

(2003) using the proposed method. The details are given in the online Supple-

mental Material.
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Table 3. Summary statistics and empirical coverage probability of 95% nomi-
nal percentile confidence intervals for ψ0

11 and ψ
0
12, using the oracle estimator,

the proposed penalized Q-learning based estimator, the hard max estimator
and the soft-threshold estimator. The notations are the same as in Table 2.

ψ11 ψ12

bias×1000 MSE×1000 std×100 CP bias×1000 MSE×1000 std×100 CP
Setting 1
Oracle −1 1.9 4.5 95.3 0 2.0 4.5 94.7
PQ −1 1.9 4.5 95.3 0 2.0 4.5 94.7
HM 0 2.4 – 93.7* −1 2.1 – 94.5
ST 1 2.3 – 94.8 −1 2.1 – 94.6
Setting 2
Oracle 0 2.5 5.8 97.3* −1 2.1 4.6 95.0
PQ −1 1.9 4.5 95.3 0 2.0 4.5 94.8
HM 0 2.5 – 94.8 −1 2.1 – 94.4
ST 1 2.3 – 94.8 0 2.1 – 94.4
Setting 3
Oracle −1 2.9 5.5 95.0 0 2.0 4.5 94.8
PQ −10 3.1 5.5 94.0 −1 2.0 4.5 94.6
HM −31 4.2 – 93.8* −1 2.1 – 94.0
ST −11 4.0 – 95.0 0 2.1 – 94.0
Setting 4
Oracle −26 4.0 6.2 94.9 −1 2.1 4.5 95.0
PQ −6 3.1 5.5 94.6 0 2.0 4.5 94.6
HM −26 4.0 – 94.5 −1 2.1 – 94.0
ST −7 3.4 – 95.1 0 2.1 – 93.9
Setting 5
Oracle −1 3.5 6.1 95.8 −1 2.5 4.9 94.3
PQ −5 3.6 6.1 95.2 0 2.5 4.9 94.3
HM −16 4.0 – 94.6 6 2.6 – 94.0
ST −3 4.0 – 95.2 −3 2.6 – 94.2
Setting 6
Oracle 2 3.9 6.2 95.0 0 2.4 4.8 94.2
PQ 2 4.0 6.2 94.6 0 2.4 4.8 94.2
HM 2 3.9 – 93.7* 0 2.4 – 94.1
ST 1 4.6 – 91.4* 2 2.5 – 94.1

5. Discussion

The proposed penalized Q-learning provides valid inference based on an ap-

proximate normal distribution for the estimators of the regression coefficients.

Recently while this paper was under review, Chakraborty, Laber and Zhao (2013)

proposed m-out-of-n bootstrap as a remedy to the non-regular inference in Q-

learning. This modified bootstrap is consistent, and can be used in conjunction

with the simple hard-max estimator.
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Figure 1. Plot of 95% confidence interval’s coverage rates with several in-
ference methods in six simulation settings. The shaded area indicates cov-
erage rates considered to be nonsignificantly different from nominal rate
0.95. Curve “a”: the coverage probabilities from the oracle estimator; curve
“b”: the coverage probabilities from the penalized Q-learning method; curve
“c”: the coverage probabilities from the hard-max estimator; curve “d”:
the coverage probabilities from the hard-threshold estimator with α = 0.08;
curve “e”: the coverage probabilities from the hard-threshold estimator with
α = 0.2; curve “f”: the coverage probabilities from the soft-threshold esti-
mator. Curves “c”–“f” all use hybrid bootstrapping.

Under some special cases, the proposed method is the same as variable se-

lection but, in general, it is for individual subject selection instead of individual

variable selection. In small samples, our penalization on the linear predictor

would possibly impose some constraints as demonstrated in the following exam-

ple provided by a referee. Suppose that ψ2 = (ϵ,−ϵ)T and that the following

four feature vectors are in the support of S2(2): (1, 1)T , (1, 1 + a)T , (1 + a, 1)T ,

(1+a, 1+a)T for a > 0. For small value of ϵ and large value of a, say a = 100/ϵ,

it is possible that the penalized estimator ψ̂2 shrinks the entire coefficient vector

to zero due to the penalty put on |ψTS2(2)|. Every patient is thus deemed to

have no treatment effect. The true treatment effect for subject (1, 1 + a)T and

(1 + a, 1)T , however is non-negligible.

This dilemma is due to the finite rank of the covariate space and lack of
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power to distinguish groups with small effects in small samples. One possibility

here is to use a penalty of the form
n∑
i=1

{pλ1(|ST2i(2)ψ2|) + pλ2(|ST2i(2)ψ2 − ST2i(2)ψ
◦
2|)},

where ψ◦
2 is a consistent initial estimator of ψ2. This penalty can shrink estimated

ST2i(2)ψ2 to zero if the truth is zero; otherwise, it will force ST2i(2)ψ2 to be not far

from ST2i(2)ψ
◦
2.

Although the linear model form of the Q-functions presented here is an im-

portant first step, as well as being useful for illustrating the ideas of this paper,

this form may not be sufficiently flexible for certain practical settings. Semi-

parametric models are an alternative in many such settings because such models

involve both a parametric component, which is usually easy to interpret, and a

nonparametric component that allows greater flexibility. Generalizations of Q-

functions to allow diverse data such as ordinal outcome, censored outcome, and

semiparametric modeling, are thus future research topics of practical importance.

The theoretical framework is based on discrete covariates, but this is so

restrictive. Thus in a two-stage setting with continuous covariates, outside the

rare case with ψ20 zero, the set Mc
⋆ = {i : ψT20S2i(2) = 0} does not have positive

probability. That said, we can always discretize continuous covariates, though

with a loss of information. Future research to extend our work to continuous

covariates would be useful. The framework works for two-level treatments, and

the generalization to multilevel treatments is a natural and useful next step.

In many clinical studies, the state space is of high dimension. Then to develop

optimal dynamic treatment regimes, it is important to develop simultaneous vari-

able selection and individual selection. Such modern machine learning techniques

as support vector regression and random forests can be nested into our penalized

Q-learning framework as powerful tools to develop optimal dynamic treatment

regimes.

Our method is proposed for the general setting of randomized clinical tri-

als, but it would be useful to generalize the proposed methods to observational

studies. Under certain assumptions (for example, no-unobserved confounders),

a propensity scores weighted approach can be incorporated into the proposed

PQ-learning. We are currently investigating this topic.
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