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Abstract: Degrees of freedom is a fundamental concept in statistical modeling,

as it provides a quantitative description of the amount of fitting performed by a

given procedure. But, despite this fundamental role in statistics, its behavior is

not completely well-understood, even in somewhat basic settings. For example,

it may seem intuitively obvious that the best subset selection fit with subset size

k has degrees of freedom larger than k, but this has not been formally verified,

nor has is been precisely studied. At large, the current paper is motivated by

this problem, and we derive an exact expression for the degrees of freedom of best

subset selection in a restricted setting (orthogonal predictor variables). Along the

way, we develop a concept that we name “search degrees of freedom”; intuitively,

for adaptive regression procedures that perform variable selection, this is a part

of the (total) degrees of freedom that we attribute entirely to the model selection

mechanism. Finally, we establish a modest extension of Stein’s formula to cover

discontinuous functions, and discuss its potential role in degrees of freedom and

search degrees of freedom calculations.

Key words and phrases: Best subset selection, degrees of freedom, lasso, model

search, Stein’s formula.

1. Introduction

Suppose that we are given observations y ∈ Rn from the model

y = µ+ ϵ, with E(ϵ) = 0, Cov(ϵ) = σ2I, (1.1)

where µ ∈ Rn is some fixed, true mean parameter of interest, and ϵ ∈ Rn are

uncorrelated errors, with zero mean and common marginal variance σ2 > 0. For

a function f : Rn → Rn, thought of as a procedure for producing fitted values,

µ̂ = f(y), the degrees of freedom of f is defined as Efron (1986); Hastie and

Tibshirani (1990):

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
. (1.2)

Intuitively, the quantity df(f) reflects the effective number of parameters used

by f in producing the fitted output µ̂. Consider linear regression, for example,

where f(y) is the least squares fit of y onto predictor variables x1, . . . , xp ∈ Rn: for
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this procedure f , our intuition gives the right answer, as its degrees of freedom is

simply p, the number of estimated regression coefficients. (This is assuming linear

independence of x1, . . . , xp; in general, it is the dimension of span{x1, . . . , xp}.)
This, e.g., leads to an unbiased estimate of the risk of the linear regression fit,

via Mallows’s Cp criterion (Mallows (1973)).

In general, characterizations of degrees of freedom are highly relevant for

purposes like model comparisons and model selection; see, e.g., Efron (1986);

Hastie and Tibshirani (1990); Tibshirani and Taylor (2012), and Section 1.2,

for more motivation. Unfortunately, however, counting degrees of freedom can

become quite complicated for nonlinear, adaptive procedures. (By nonlinear, we

mean f nonlinear as a function of y.) Even for many basic adaptive procedures,

explicit answers are not known. A good example is best subset selection, in

which, for a fixed integer k, we regress on the subset of x1, . . . , xp of size at most

k giving the best linear fit of y (as measured by the residual sum of squares). Is

the degrees of freedom here larger than k? It seems that the answer should be

“yes”, because even though there are k coefficients in the final linear model, the

variables in this model were chosen adaptively (based on the data). And if the

answer is indeed “yes”, then the natural follow-up question is: how much larger

is it? That is, how many effective parameters does it “cost” to search through

the space of candidate models? The goal of this paper is to investigate these

questions, and related ones.

1.1. A motivating example

We begin by raising an interesting point: though it seems certain that a pro-

cedure like best subset selection would suffer an inflation of degrees of freedom,

not all adaptive regression procedures do. In particular, the lasso (Tibshirani

(1996); Chen, Donoho, and Saunders (1998)), which also performs variable se-

lection in the linear model setting, presents a very different story in terms of its

degrees of freedom. Stacking the predictor variables x1, . . . , xp along the columns

of a matrix X ∈ Rn×p, the lasso estimate can be expressed as

β̂lasso = argmin
β∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥1, (1.3)

where λ ≥ 0 is a tuning parameter controlling the level of sparsity. Though not

strictly necessary for our discussion, we assume for simplicity that X has columns

in general position, which ensures uniqueness of the lasso solution β̂lasso (see, e.g.,

Tibshirani (2013)). We write Alasso ⊆ {1, . . . , p} to denote the indices of nonzero

coefficients in β̂lasso, called the support or active set of β̂lasso, also expressed as

Alasso = supp(β̂lasso).

The lasso admits a simple formula for its degrees of freedom.
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Theorem 1 (Zou, Hastie, and Tibshirani (2007), Tibshirani and Taylor (2012)).

Provided that the variables (columns) in X are in general position, the lasso fit

µ̂lasso = Xβ̂lasso has degrees of freedom

df(µ̂lasso) = E|Alasso|,

where |Alasso| is the size of the lasso active set Alasso = supp(β̂lasso). The above

expectation assumes that X and λ are fixed, and is taken over the sampling

distribution y ∼ N(µ, σ2I).

In other words, the degrees of freedom of the lasso fit is the number of

selected variables, in expectation. This is somewhat remarkable because, as

with subset selection, the lasso uses the data to choose which variables to put

in the model. So how can its degrees of freedom be equal to the (average)

number of selected variables, and not more? The key realization is that the lasso

shrinks the coefficients of these variables towards zero, instead of perfoming a

full least squares fit. This shrinkage is due to the ℓ1 penalty that appears in

(1.3). Amazingly, the “surplus” from adaptively building the model is exactly

accounted for by the “deficit” from shrinking the coefficients, so that altogether

(in expectation), the degrees of freedom is simply the number of variables in the

model.

Remark 1. An analogous result holds for an entirely arbitrary predictor matrix X

(not necessarily having columns in general position), see Tibshirani and Taylor

(2012); analogous results also exist for the generalized lasso problem (special

cases of which are the fused lasso and trend filtering), see Tibshirani and Taylor

(2011, 2012).

Figure 1 shows an empirical comparison between the degrees of freedom

of the lasso and best subset selection fits, for a simple example with n = 20,

p = 10. The predictor variables were setup to have a block correlation structure,

in that variables 1 through 4 had high pairwise correlation (between 0.6 and 0.9),

variables 5 through 10 also had high pairwise correlation (between 0.6 and 0.9),

and the two blocks were uncorrelated with each other. The outcome y was drawn

by adding independent normal noise to Xβ∗, for some true coefficient vector β∗,

supported on the first block of variables, and on one variable in the second block.

We computed the lasso estimate in (1.3) over 10 values of the tuning parameter

λ, as well as a best subset selection estimate

β̂subset ∈ argmin
β∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥0, (1.4)

over its own 10 values of λ. Recall that ∥β∥0 =
∑p

j=1 1{βj ̸= 0}. We repeated

this process 100 times, i.e., drew 100 copies of y from the described regression
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Figure 1. A simulated regression example with n = 20, p = 10. We drew 100
copies of the outcome y from the same sparse regression setup, and fit the
lasso and best subset selection estimates each time, across 10 prespecified
tuning parameter values. The plot shows the average number of selected
variables by the lasso (in blue) and best subset selection (in red), across the
tuning parameter values, versus their (estimated) degrees of freedom. The
lasso degrees of freedom lines up with the number of selected variables, but
the same is not true for subset selection, with its degrees of freedom being
relatively much larger.

model, keeping X and β∗ fixed, and each time computed fitted values from the

lasso and best subset selection across the same 10 values of the tuning param-

eter. For each method and value of λ, we then computed the average number

of nonzero coefficients over the 100 trials, and evaluated the covariance in (1.2)

empirically across the 100 trials, as an (unbiased) estimate of the degrees of free-

dom. Figure 1 plots the first quantity versus the second, the lasso in blue and

best subset selection in red. As prescribed by Theorem 1, the (estimated) degrees

of freedom of the lasso fit is closely aligned with the average number of nonzero

coefficients in its estimate. But subset selection does not follow the same trend;

its (estimated) degrees of freedom is much larger than its delivered number of

nonzero coefficients. For example, when λ is tuned so that the subset selection

estimate has a little less than 3 nonzero coefficients on average, the fit uses about

9 degrees of freedom.

Why does this happen? Again, this can be intuitively explained by shrinkage

— this time, a lack thereof. If we denote the support of a best subset selection

solution by Asubset = supp(β̂subset), and abbreviate A = Asubset, then it is not
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hard to see that
β̂subset
A = (XT

AXA)
−1XT

Ay,

i.e., the active coefficients are given by least squares on the active variables XA
(the submatrix of X formed by taking the columns in A). Therefore, like the
lasso, best subset selection chooses an active set of variables adaptively, but
unlike the lasso, it fits their coefficients without shrinkage, using ordinary least
squares. It pays for the “surplus” of covariance from the adaptive model search,
as well as the usual amount from least squares estimation, resulting in a total
degrees of freedom much larger than |A| (or rather, E|A|).

A clarifying note: simulations along the lines of that in Figure 1 can be found
throughout the literature and we do not mean to claim originality here (e.g., see
Figure 4 of Tibshirani and Knight (1999) for an early example, and Figure 2
of Janson, Fithian, and Hastie (2013) for a recent example). This simulation is
instead simply meant to motivate the work that follows, as an aim of this paper
is to examine the observed phenomenon in Figure 1 more formally.

1.2. Degrees of freedom and optimism

Degrees of freedom is closely connected to the concept of optimism, and so
alternatively, we could have motivated the study of the covariance term on the
right-hand side in (1.2) from the perspective of the optimism, rather than the
complexity, of a fitting procedure. Assuming only that y is drawn from the model
in (1.1), and that y′ is an independent copy of y (i.e., an independent draw from
(1.1)), it is straightforward to show that for any fitting procedure f ,

E∥y′ − f(y)∥22 − E∥y − f(y)∥22 = 2σ2 · df(f). (1.5)

The quantity on the left-hand side above is called the optimism of f , i.e., the
difference in the mean squared test error and mean squared training error. The
identity in (1.5) shows that (for uncorrelated, homoskedastic regression errors
as in (1.1)) the optimism of f is just a positive constant times its degrees of
freedom; in other words, fitting procedures with a higher degrees of freedom will
have higher a optimism. Hence, from the example in the last section, we know
when they are tuned to have the same (expected) number of variables in the
fitted model, best subset selection will produce a training error that is generally
far more optimistic than that produced by the lasso.

1.3. Lagrange versus constrained problem forms

We defined the subset selection estimator using the Lagrange form opti-
mization problem (1.4), instead of the (perhaps more typical) constrained form
definition

β̂subset ∈ argmin
β∈Rp

∥y −Xβ∥22 subject to ∥β∥0 ≤ k. (1.6)
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There are several points now worth making. First, these are nonconvex opti-

mization problems, and so the Lagrange and constrained forms (1.4) and (1.6) of

subset selection are generally not equivalent. In fact, for all λ, solutions of (1.4)

are solutions of (1.6) for some choice of k, but the reverse is not true. Second,

even in situations in which the Lagrange and constrained forms of a particular

optimization problem are equivalent (e.g., this is true under strong duality, and

so it is true for most convex problems, under very weak conditions), there is a

difference between studying the degrees of freedom of an estimator defined in

one problem form versus the other. This is because the map from the Lagrange

parameter in one form to the constraint bound in the other generically depends

on y, i.e., it is a random mapping (Kaufman and Rosset (2013) discuss this for

ridge regression and the lasso).

Lastly, in this paper, we focus on the Lagrange form (1.4) of subset selection

because we find this problem is easier to analyze mathematically. For example, in

Lagrange form with X = I, the ith component of the subset selection fit β̂subset
i

depends on yi only (and is given by hard thresholding), for each i = 1, . . . , n; in

constrained form with X = I, each β̂subset
i is a function of the order statistics of

|y1|, . . . , |yn|, and hence depends on the whole sample.

Given the general spirit of our paper, it is important to recall the relevant

work of Ye (1998), who studied degrees of freedom for special cases of best subset

selection in constrained form. In one such special case (orthogonal predictors

with null underlying signal), the author derived a simple expression for degrees of

freedom as the sum of the k largest order statistics from a sample of n independent

χ2
1 random variables. This indeed establishes that, in this particular special case,

the constrained form of best subset selection with k active variables has degrees

of freedom larger than k. It does not, however, imply any results about the

Lagrange case for the reasons explained above.

1.4. Assumptions, notation, and outline

Throughout this work, we assume the model

y = µ+ ϵ, ϵ ∼ N(0, σ2I). (1.7)

This is stronger than (1.1), since we are assuming a normal error distribution.

While the model in (1.1) is sufficient to define the notion of degrees of freedom in

general, we actually require normality for the calculations to come — specifically,

Lemma 1 (on the degrees of freedom of hard thresholding), and all results in

Section 5 (on extending Stein’s formula), rely on the normal error model. Beyond

this running assumption, we will make any additional assumptions clear when

needed.
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In terms of notation, we write M+ to denote the (Moore-Penrose) pseudoin-

verse of a matrix M , with M+ = (MTM)+MT for rectangular matrices M , and

we write MS to denote the submatrix of M whose columns correspond to the set

of indices S. We write ϕ for the standard normal density function and Φ for its

distribution function.

Finally, here is an outline for the rest of this article. In Section 2, we derive

an explicit formula for the degrees of freedom of the best subset selection fit,

under orthogonal predictors X. We also introduce the notion of search degrees

of freedom for subset selection, and study its characteristics in various settings.

In Section 3, we define search degrees of freedom for generic adaptive regression

procedures, including the lasso and ridge regression as special cases. Section

4 returns to considering best subset selection, this time with general predictor

variablesX. Because exact formulae for the degrees of freedom and search degrees

of freedom of best subset selection are not available in the general X case, we

turn to simulation to investigate these quantities. We also examine the search

degrees of freedom of the lasso across the same simulated examples (as its analytic

calculation is again intractable for general X). Section 5 casts all of this work on

degrees of freedom (and search degrees of freedom) in a different light, by deriving

an extension of Stein’s formula. Stein’s formula is a powerful tool that can be

used to compute the degrees of freedom of continuous and almost differentiable

fitting procedures; our extension covers functions that have “well-behaved” points

of discontinuity, in some sense. This extended version of Stein’s formula offers

an alternative proof of the exact result in Section 2 (the orthogonal X case), and

potentially, provides a perspective from which we can formally understand the

empirical findings in Section 4 (the general X case). In Section 6, we conclude

with some discussion.

2. Best Subset Selection with an Orthogonal X

In the special case that X ∈ Rn×p is orthogonal, i.e., X has orthonormal

columns, we can compute the degrees of freedom of the best subset selection fit

directly.

Theorem 2. Assume that y ∼ N(µ, σ2I), and that X is orthogonal, meaning

that XTX = I. Then the best subset selection fit µ̂subset = Xβ̂subset, at any fixed

value of λ, has degrees of freedom

df(µ̂subset) = E|Asubset|+
√
2λ

σ

p∑
i=1

[
ϕ

(√
2λ− (XTµ)i

σ

)
+ ϕ

(√
2λ+ (XTµ)i

σ

)]
,

(2.1)

where ϕ is the standard normal density.
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The proof essentially reduces to a calculation on the degrees of freedom of the

(componentwise) hard thresholding operator because, in the orthogonal X case,

the best subset selection solution is exactly hard thresholding of XT y. Formally,

define the hard thresholding operator Ht : Rn → Rn, at a fixed level t ≥ 0, by

its coordinate functions

[Ht(y)]i = yi · 1{|yi| ≥ t}, i = 1, . . . , n.

Let At denote the support set of the output, At = supp(Ht(y)). The following

result simply comes from the normality of y, and the definition of degrees of

freedom in (1.2).

Lemma 1. Assume that y ∼ N(µ, σ2I), and t ≥ 0 is arbitrary but fixed. Then

the hard thresholding operator Ht has degrees of freedom

df(Ht) = E|At|+
t

σ

n∑
i=1

[
ϕ

(
t− µi

σ

)
+ ϕ

(
t+ µi

σ

)]
. (2.2)

Remark. This result, on the degrees of freedom of the hard thresholding opera-

tor, can be found in both Mazumder, Friedman, and Hastie (2011) and Deledalle,

Peyre, and Fadili (2013). The former work uses degrees of freedom as a calibra-

tion tool in nonconvex sparse regression; the latter derives an estimate of the right

hand side in (2.2) that, although biased, is consistent under some conditions.

The proofs of Lemma 1, and subsequently Theorem 2 are deferred until the

appendix.

We have established that, for and orthogonal X, the degrees of freedom of

the subset selection fit is equal to E|Asubset|, plus an “extra” term. We make

some observations about this term in the next section.

2.1. Search degrees of freedom

The quantity

sdf(µ̂subset) =

√
2λ

σ

p∑
i=1

[
ϕ

(√
2λ− (XTµ)i

σ

)
+ ϕ

(√
2λ+ (XTµ)i

σ

)]
(2.3)

appearing in (2.1) is the amount by which the degrees of freedom exceeds the ex-

pected number of selected variables. We refer to this the search degrees of freedom

of best subset selection, because roughly speaking, we can think of it as the extra

amount of covariance that comes from searching through the space of models.

Note that sdf(µ̂subset) > 0 for any λ > 0, because the normal density is supported

everywhere, and therefore we can indeed conclude that df(µ̂subset) > E|Asubset|,
as we suspected, in the case of an orthogonal predictor matrix.
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How big is sdf(µ̂subset)? At the extremes: sdf(µ̂subset) = 0 when λ = 0, and

sdf(µ̂subset) → 0 as λ → ∞. In words, searching has no cost when all of the

variables, or none of the variables, are in the model. But the behavior is more

interesting for intermediate values of λ. The precise shape of the search degrees

of freedom curve (2.3), over λ, depends on the underlying signal µ; the next three

sections study canonical cases for the underlying signal.

2.2. Example: null signal

We consider first the case of a null underlying signal, i.e., µ = 0. The best

subset selection search degrees of freedom (2.3), as a function of λ, becomes

sdf(µ̂subset) =
2p

√
2λ

σ
ϕ

(√
2λ

σ

)
. (2.4)

In Figure 2, we plot the quantities df(µ̂subset), sdf(µ̂subset), and E|Asubset| as
functions of λ, for a simple example with n = p = 100, underlying signal µ = 0,

noise variance σ2 = 1, and predictor matrix X = I, the 100 × 100 identity

matrix. We emphasize that this figure was produced without any random draws

or simulations, and the plotted curves are exactly as prescribed by Theorem 2

(recall that E|Asubset| also has an explicit form in terms of λ, given in the proof

of Lemma 1). In the left panel, we can see that the search degrees of freedom

curve is maximized at approximately λ = 0.5, and achieves a maximum value of

nearly 50. That is, when λ = 0.5, best subset selection spends nearly 50 (extra)

parameters searching through the space of models!

It is perhaps more natural to parametrize the curves in terms of the expected

number of active variables E|Asubset| (instead of λ), as displayed in the right

panel of Figure 2. This parametrization reveals something interesting: the search

degrees of freedom curve is maximized at roughly E|Asubset| = 31.7. In other

words, searching is most costly when there are approximately 31.7 variables in

the model. This is a bit counterintuitive, because there are more subsets of size

50 than any other size, that is, the function

F (k) =

(
p

k

)
, k = 1, . . . , p,

is maximized at k = p/2 = 50. Hence we might believe that searching through

subsets of variables is most costly when E|Asubset| = 50, because in this case

the search space is largest. Instead, the maximum actually occurs at about

E|Asubset| = 31.7. Given the simple form (2.4) of the search degrees of freedom

curve in the null signal case, we can verify this observation analytically: direct

calculation shows that the right hand side in (2.4) is maximized at λ = σ2/2,
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Figure 2. An example with n = p = 100, X = I, and µ = 0. The left panel
plots the curves df(µ̂subset), sdf(µ̂subset), and E|Asubset| as functions of λ,
drawn as blue, red, and black lines, respectively. The right panel plots the
same quantities with respect to E|Asubset|.

which, when plugged into the formula for the expected number of selected vari-

ables in the null case,

E|Asubset| = 2pΦ

(
−
√
2λ

σ

)
,

yields E|Asubset| = 2Φ(−1)p ≈ 0.317p.

Although this calculation may have been reassuring, the intuitive question

remains: why is the 31.7 variable model associated with the highest cost of model

searching (over, say, the 50 variable model)? At this point, we cannot offer a truly

satisfying intuitive answer, but we will attempt an explanation nonetheless. Re-

call that search degrees of freedom measures the additional amount of covariance

in (1.2) that we attribute to searching through the space of models—additional

from the baseline amount E|Asubset|, which comes from estimating the coeffi-

cients in the selected model. The shape of the search degrees of freedom curve,

when µ = 0, tells us that there is more covariance to be gained when the selected

model has 31.7 variables than when it has 50 variables. As the size of the selected

subset k increases from 0 to 50, note that:

1. the number of subsets of size k increases, which means that there are more

opportunities to decrease the training error, and so the total degrees of

freedom (optimism) increases;

2. trivially, the baseline amount of fitting also increases, as this baseline is just

k, the degrees of freedom (optimism) of a fixed model on k variables.
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Search degrees of freedom is the difference between these two quantities (i.e., total

minus baseline degrees of freedom), and as it turns out, the two are optimally

balanced at approximately k = 31.7 (at exactly k = 2Φ(−1)p) in the null signal

case.

2.3. Example: sparse signal

Now we consider the case in which µ = Xβ∗, for some sparse coefficient vector

β∗ ∈ Rp. We let A∗ = supp(β∗) denote the true support set, and k∗ = |A∗| the
true number of nonzero coefficients, assumed to be small. The search degrees of

freedom curve in (2.3) is

sdf(µ̂subset) =

√
2λ

σ

∑
i∈A∗

[
ϕ

(√
2λ− β∗

i

σ

)
+ ϕ

(√
2λ+ β∗

i

σ

)]

+
2(p− k∗)

√
2λ

σ
ϕ

(√
2λ

σ

)
. (2.5)

When the nonzero coefficients β∗
i are moderate (not very large), the curve in

(2.5) acts much like the search degrees of freedom curve (2.4) in the null case.

Otherwise, it can behave very differently. We therefore examine two sparse se-

tups, with low and high signal-to-noise ratios. See Figure 3. In both setups, we

take n = p = 100, σ2 = 1, X = I, and µ = Xβ∗, with

β∗
i =

{
ρ i = 1, . . . , 10,

0 i = 11, . . . , 100.
(2.6)

The left panel uses ρ = 1, and the right uses ρ = 8. We plot the total degrees

of freedom and search degrees of freedom of subset selection as a function of

the expected number of selected variables (and note, as before, that these plots

are produced by mathematical formulae, not by simulation). The curves in the

left panel, i.e., in the low signal-to-noise ratio case, appear extremely similar to

those in the null signal case (right panel of Figure 2). The search degrees of

freedom curve peaks when the expected number of selected variables is about

E|Asubset| = 31.9, and its peak height is again just short of 50.

Meanwhile, in the high signal-to-noise ratio case, i.e., the right panel of

Figure 3, the behavior is very different. The search degrees of freedom curve is

bimodal, and is basically zero when the expected number of selected variables is

10. The intuition: with such a high signal-to-noise ratio in the true model (2.6),

best subset selection is able to select the same (true) subset of 10 variables in

every random data instance, and therefore the size 10 model produced by subset

selection is akin to a fixed model, with no real searching performed whatsoever.

Another interesting point is that the cost of model searching is very high when the
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Low signal-to-noise ratio High signal-to-noise ratio

Figure 3. An example with n = p = 100, X = I, and µ = Xβ∗ with β∗ as
in (2.6). The left panel corresponds to the choice ρ = 1 (low signal-to-noise
regime) and the right to ρ = 8 (high signal-to-noise regime).

selected model has average size equal to 5; here the search component contributes
over 30 degrees of freedom to the total. Intuitively, with 10 strong variables in
the true model (2.6), there are many competitive subsets of size 5, and hence a
lot of searching is needed in order to report the best subset of size 5 (in terms of
training error).

It is worth mentioning the interesting, recent works of Kaufman and Rosset
(2013) and Janson, Fithian, and Hastie (2013), which investigate unexpected
nonmonoticities in the (total) degrees of freedom of an estimator, as a function
of some underlying parametrization for the amount of imposed regularization. We
note that the right panel of Figure 3 portrays a definitive example of this, in that
the best subset selection degrees of freedom undergoes a major nonmonoticity at
10 (expected) active variables, as discussed above.

2.4. Example: dense signal

The last case we consider is that of a dense underlying signal, µ = Xβ∗

for some dense coefficient vector β∗ ∈ Rp. For the sake of completeness, in the
present case, the expression (2.3) for the search degrees of freedom of best subset
selection is

sdf(µ̂subset) =

√
2λ

σ

p∑
i=1

[
ϕ

(√
2λ− β∗

i

σ

)
+ ϕ

(√
2λ+ β∗

i

σ

)]
. (2.7)

The search curve degrees of freedom curve (2.7) exhibits a very similar behavior
to the curve (2.4) in the null signal case when the coefficients β∗

i are small or
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moderate, but a very different behavior when some coefficients β∗
i are large. In

Figure 4, we take n = p = 100, X = I, and µ = Xβ∗ with β∗
i = ρ, i = 1, . . . , p.

The left panel of the figure corresponds to ρ = 1, and the right corresponds

to ρ = 8. Both panels plot degrees of freedom against the expected number of

selected variables (and, as in the last two subsections, these degrees of freedom

curves are plotted according to their closed-form expressions, they are not derived

from simulation). We can see that the low signal-to-noise ratio case, in the left

panel, yields a set of curves quite similar to those from the null signal case, in

the right panel of Figure 2. One difference is that the search degrees of freedom

curve has a higher maximum (its value about 56, versus 48 in the null signal

case), and the location of this maximum is further to the left (occuring at about

E|Asubset| = 29.4, versus E|Asubset| = 31.7 in the former case).

On the other hand, the right panel of the figure shows the high signal-to-noise

ratio case, where the total degrees of freedom curve is now nonmonotone, and

reaches its maximum at an expected number of selected variables (very nearly)

E|Asubset| = 50. The search degrees of freedom curve itself peaks much later than

it does in the other cases, at approximately E|Asubset| = 45.2. Another striking

difference is the sheer magnitude of the degrees of freedom curves: at 50 selected

variables on average, the total degrees of freedom of the best subset selection

fit is well over 300. Mathematically, this makes sense, as the search degrees of

freedom curve in (2.7) is increasing in |β∗
i |. Furthermore, we can liken the degrees

of freedom curves in the right panel of Figure 4 to those in a small portion of

the plot in the right panel of Figure 3, namely, the portion corresponding to

E|Asubset| ≤ 10. The two sets of curves here appear similar in shape. This is

intuitively explained by the fact that, in the high signal-to-noise ratio regime,

subset selection over a dense true model is similar to subset selection over a

sparse true model, provided we constrain attention in the latter case to subsets

of size less than or equal to the true model size (under this constraint, the truly

irrelevant variables in the sparse model do not play much of a role).

3. Search Degrees of Freedom for General Procedures

Here we extend the notion of search degrees of freedom to general adaptive

regression procedures. Given an outcome y ∈ Rn and predictors X ∈ Rn×p, we

consider a fitting procedure f : Rn → Rn of the form

f(y) = Xβ̂(f),

for some estimated coefficients β̂(f) ∈ Rp. Clearly, the lasso and best subset

selection are two examples of such a fitting procedure, with the coefficients as

in (1.3) and (1.4), respectively. We denote A(f) = supp(β̂(f)), the support set of

the estimated coefficients under f . The overall complexity of f is measured by
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Low signal-to-noise ratio High signal-to-noise ratio

Figure 4. An example with n = p = 100, X = I, and µ = Xβ∗ with β∗
i = ρ,

i = 1, . . . , p. The left panel corresponds to ρ = 1 (low signal-to-noise regime)
and the right to ρ = 8 (high signal-to-noise regime).

its degrees of freedom, as defined in (1.2) (just as it is for all fitting procedures),

but we may be also interested in a degree of complexity associated solely with its

model selection component—i.e., we might ask: how many effective parameters

does f spend in simply selecting the active set A(f)?

We propose to address this question by developing a notion of search degrees

of freedom for f , generalizing the notion considered in the last section specifically

for subset selection. Abbreviating A = A(f), we first define a modified procedure

f̃ that returns the least squares fit on the active set A,

f̃(y) = PAy,

where PA = XA(X
T
AXA)

+XT
A is the projection onto the span of active predictors

XA (note the use of the pseudoinverse, as XA need not have full column rank,

depending on the nature of the procedure f). We now define the search degrees

of freedom of f as

sdf(f) = df(f̃)− E[rank(XA)]

=
1

σ2

n∑
i=1

Cov
(
(PAy)i, yi

)
− E[rank(XA)]. (3.1)

The intuition behind this definition: by construction, f̃ and f are identical in

their selection of the active set A, and only differ in how they estimate the

nonzero coefficients once A has been chosen, with f̃ using least squares, and f

using a possibly different mechanism. If A were fixed, then a least squares fit



DEGREES OF FREEDOM AND MODEL SEARCH 1279

on XA would use E[rank(XA)] degrees of freedom, and so it seems reasonable to

assign the leftover part, df(f̃)−E[rank(XA)], as the degrees of freedom spent by

f̃ in selecting A in the first place, i.e., the amount spent by f in selecting A in

the first place.

It may help to discuss some specific cases.

3.1. Best subset selection

When f is the best subset selection fit, we have f̃ = f , i.e., subset selection

already performs least squares on the set of selected variables A. Therefore,

sdf(f) = df(f)− E|A|, (3.2)

where we have also used the fact thatXA must have linearly independent columns

with best subset selection (otherwise, we could strictly decrease the ℓ0 penalty

in (1.4) while keeping the squared error loss unchanged). This matches our

definition (2.3) of search degrees of freedom for subset selection in the orthogonal

X case—it is the total degrees of freedom minus the expected number of selected

variables, with the total being explicitly computable for orthogonal predictors,

as we showed in the last section.

The same expression (3.2) holds for any fitting procedure f that uses least

squares to estimate the coefficients in its selected model, because then f̃ = f .

(Note that, in full generality, E|A| should be replaced again by E[rank(XA)] in

case XA need not have full column rank.) An example of another such procedure

is forward stepwise regression.

3.2. Ridge regression

For ridge regression, the active model is A = {1, . . . , p} for any draw of the

outcome y, which means that the modified procedure f̃ is just the full regression

fit on X, and

sdf(f) = E[rank(X)]− E[rank(X)] = 0.

This is intuitively the correct notion of search degrees of freedom for ridge re-

gression, since this procedure does not perform any kind of variable selection

whatsoever. The same logic carries over to any procedure f whose active set A
is almost surely constant.

3.3. The lasso

The lasso case is an interesting one. We know from the literature (Theorem

1) that the degrees of freedom of the lasso fit is E|A| (when the predictors are in

general position), but how much of this total can we attribute to model searching?

The modified procedure f̃ that performs least squares on the lasso active setA has
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been called the relaxed lasso (see Meinshausen (2007), who uses the same term to

refer to a broader family of debiased lasso estimates). We denote the relaxed lasso

fitted values by µ̂relax = PAlassoy. When X has orthonormal columns, it is not

hard to see that the relaxed lasso fit is given by hard thresholding, just like best

subset selection, but this time with threshold level t = λ. The following result

hence holds by the same arguments as those in Section 2 for subset selection.

Theorem 3. If y ∼ N(µ, σ2), and XTX = I, then the relaxed lasso fit

µ̂relax = PAlassoy, at a fixed value λ ≥ 0, has degrees of freedom

df(µ̂relax) = E|Alasso|+ λ

σ

p∑
i=1

[
ϕ

(
λ− (XTµ)i

σ

)
+ ϕ

(
λ+ (XTµ)i

σ

)]
.

Therefore the lasso has search degrees of freedom

sdf(µ̂lasso) =
λ

σ

p∑
i=1

[
ϕ

(
λ− (XTµ)i

σ

)
+ ϕ

(
λ+ (XTµ)i

σ

)]
. (3.3)

The search degrees of freedom formulae (3.3) and (2.3) are different as func-

tions of λ, the tuning parameter, but this is not a meaningful difference; when

each is parametrized by their respective expected number of selected variables

E|A|, the two curves are exactly the same, and therefore all examples and fig-

ures in Section 2 demonstrating the behavior of the search degrees of freedom of

best subset selection also apply to the lasso. In a sense, this is not a surprise,

because for orthogonal predictors both the lasso and subset selection fits reduce

to a sequence of marginal considerations (thresholds, in fact), and so their search

mechanisms can be equated.

But for correlated predictors, we might believe that the search components

associated with the lasso and best subset selection procedures are actually quite

different. Even though our definition of search degrees of freedom in (3.1) is not

connected to computation in any way, the fact that best subset selection (1.4)

is NP-hard for a general X may seem to suggest (at a very loose level) that it

somehow “searches more” than the convex lasso problem (1.3). For many prob-

lem setups, this guess (whether or not properly grounded in intuition) appears

to be true in simulations, as we show next.

4. Best Subset Selection with a General X

We look back at the motivating example given in Section 1.1, where we esti-

mated the degrees of freedom of best subset selection and the lasso by simulation,

in a problem with n = 20 and p = 10. See Section 1.1 for more details about

the setup (i.e., correlation structure of the predictor variables X, true coefficients
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Figure 5. The same simulation setup as in Figure 1, but now including the
relaxed lasso degrees of freedom on the left panel, in green. (The relaxed
lasso is the fitting procedure that performs least squares on the lasso active
set.) We can see that the relaxed lasso has a smaller degrees of freedom
than subset selection, as a function of their (respective) average number
of selected variables. Hence, the lasso exhibits a smaller search degrees of
freedom than subset selection, in this example.

β∗, etc.). Here we also consider the degrees of freedom of the relaxed lasso, esti-

mated from the same set of simulations. Figure 5 plots these degrees of freedom

estimates, in green, on top of the existing best subset selection and lasso curves

from Figure 1. Interestingly, the relaxed lasso is seen to have a smaller degrees

of freedom than best subset selection (when each is parametrized by their own

average number of selected variables). Note that this means the search degrees

of freedom of the lasso (i.e., the difference between the green curve and the di-

agonal) is smaller than the search degrees of freedom of subset selection (the

difference between the red curve and the diagonal).

This discrepancy between the search degrees of freedom of the lasso and

subset selection, for correlated variables X, stands in contrast to the orthogonal

case, where the two quantities were proven to be equal (subject to the appropriate

parametrization). Further simulations with correlated predictors show that, for

the most part, this discrepancy persists across a variety of cases; consult Figure 6

and the accompanying caption text for details. However, it is important to note

that this phenomenon is not universal, and in some instances (particularly, when

the computed active set is small, and the true signal is dense) the search degrees

of freedom of the lasso can grow quite large and compete with that of subset
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selection. Hence, we can see that the two quantities do not always obey a simple

ordering, and the simulations presented here call for a more formal understanding

of their relationship.

Unfortunately, this is not an easy task, since direct calculation of the relevant

quantities—the degrees of freedom of best subset selection and the relaxed lasso—

is not tractable for a general X. In cases such as these, one usually turns to

Stein’s formula as an alternative for calculating degrees of freedom; e.g., the

result in Theorem 1 is derived using Stein’s formula. But Stein’s formula only

applies to continuous (and almost differentiable) fitting procedures f = f(y), and

neither the best subset selection nor the relaxed lasso fit is continuous in y. The

next section, therefore, is focused on extending Stein’s result to discontinuous

functions.

5. An Extension of Stein’s Formula

This section considers Stein’s formula (Stein (1981)), and presents an ex-

tension that yields an alternative derivation of the degrees of freedom results

in Section 2, as well as (potential) insights into the empirical results in Section

4. In his remarkable paper, Stein studies the problem of estimating the mean

of a multivariate normal distribution, with a spherical covariance matrix, under

the usual squared error loss. The main result is an unbiased estimate of the

associated risk for a large class of estimates of the mean. At the root of Stein’s

arguments lies the following lemma.

Lemma 2 (Stein (1981)). Let Z ∼ N(0, 1). Let f : R → R be absolutely

continuous, with derivative f ′. Assume that E|f ′(Z)| < ∞. Then

E[Zf(Z)] = E[f ′(Z)].

In its own right, this lemma (along with a converse statement, which is

also true) has a number of important applications that span various areas of

probability and statistics. For our purposes, the most relevant application is an

alternative and highly useful formula for computing degrees of freedom. This is

given by extending the above lemma to a setting in which the underlying normal

distribution has an arbitrary mean vector and variance, and is also multivariate.

Lemma 3 (Stein (1981)). Let X ∼ N(µ, σ2I), for some fixed µ ∈ Rn and

σ2 > 0. Let g : Rn → R be continuous and almost differentiable, and write

∇g = (∂g1/∂x1, . . . , ∂gn/xn) for the vector of partial derivatives. Assume that

E∥∇g(X)∥2 < ∞. Then

1

σ2
E[(X − µ)g(X)] = E[∇g(X)]. (5.1)
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Figure 6. A set of simulation results with n = 30, p = 16 (we are confined to
such a small setup because of the exponential computational complexity of
subset selection). The rows of X were drawn i.i.d. from N(0,Σ), where Σ is
block diagonal with two equal sized (8×8) blocks Σ1,Σ2. All diagonal entries
of Σ1,Σ2 were set to 1, and the off-diagonal entries were drawn uniformly
between 0.4 and 0.9. We considered three cases for the true mean µ = Xβ∗:
null (β∗ = 0), sparse (β∗ is supported on 3 variables in the first block and 1
in the second, with all nonzero components equal to 1), and dense (β∗ has all
components equal to 1). In all cases, we drew y around µ with independent
standard normal noise, for a total of 100 repetitions. Overall, the search
degrees of freedom of subset selection appears to be larger than that of the
lasso, but at times the latter can rival the former in magnitude, especially
for small active sets, and in the dense signal case.
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We will delay the definition of almost differentiability until a little while

later, but the eager reader can look ahead to Definition 2. Putting aside any

concerns about regularity conditions, the result in (5.1) looks like a statement

about degrees of freedom. To complete the connection, consider a function f :

Rn → Rn giving the fit µ̂ = f(y), and assume the usual normal model y ∼
N(µ, σ2I). Let fi : Rn → R be the ith coordinate function of f . If fi satisfies

the appropriate conditions (continuity and almost differentiability), then we can

apply Lemma 3 with X = y and g = fi, take the ith equality in (5.1), and sum

over i to get

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
= E

[ n∑
i=1

∂fi
∂yi

(y)

]
, (5.2)

where ∂fi/∂yi denotes the partial derivative of fi with respect to its ith variable.

This is known as Stein’s formula for degrees of freedom. It can be very useful,

because in some cases the divergence
∑n

i=1 ∂fi/∂yi on the right-hand side of

(5.2) can be computed explicitly, which yields an unbiased estimate of degrees

of freedom. This is true, e.g., of the lasso fit, and as a conrete illustration, we

prove the result in Theorem 1, using Stein’s formula, in the appendix.

Useful as it can be, Stein’s formula (5.2) is not universally applicable. There

are several ways to break its assumptions; our particular interest is in fitting

procedures that are discontinuous in y. For example, we showed in the proof of

Theorem 2 that, when X is orthogonal, the subset selection solution is given by

hard thresholding XT y at the level t =
√
2λ. The hard thresholding function Ht

is clearly discontinuous: each one of its coordinate functions is discontinuous at t

and −t. We therefore derive a modest extension of Stein’s formula that allows us

to deal with a certain class of (well-behaved) discontinuous functions. We begin

with the univariate case, and then move on to the multivariate case.

5.1. An extension of Stein’s univariate lemma

We consider functions f : R → R that are absolutely continuous on a parti-

tion of R. Formally:

Definition 1. We say that a function f : R → R is piecewise absolutely continu-

ous, or p-absolutely continuous, if there exist points δ1 < δ2 < · · · < δm such that

f is absolutely continuous on each one of the open intervals (−∞, δ1), (δ1, δ2), . . .,

(δm,∞).

For a p-absolutely continuous function f , we write D(f) = {δ1, . . . , δm} for

its discontinuity set. Furthermore, note that such a function f has a derivative

f ′ almost everywhere (because it has a derivative almost everywhere on each of
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the intervals (−∞, δ1), (δ1, δ2), . . . , (δm,∞)). We will simply refer to f ′ as its

derivative. Finally, we use the following helpful notation for one-sided limits,

f(x)+ = lim
t↓x

f(t) and f(x)− = lim
t↑x

f(t).

We now have the following extension of Stein’s univariate lemma, Lemma 2.

Lemma 4. Let Z ∼ N(0, 1). Let f : R → R be p-absolutely continuous, and have

a discontinuity set D(f) = {δ1, . . . , δm}. Let f ′ be its derivative, and assume that

E|f ′(Z)| < ∞. Then

E[Zf(Z)] = E[f ′(Z)] +
m∑
k=1

ϕ(δk)
[
f(δk)+ − f(δk)−

]
.

The proof is similar to Stein’s proof of Lemma 2, and is left to the appendix.

It is straightforward to extend this result to a nonstandard normal distribution.

Corollary 1. Let X ∼ N(µ, σ2). Let h : R → R be p-absolutely continuous, with

discontinuity set D(h) = {δ1, . . . , δm}, and derivative h′ satisfying E|h′(X)| < ∞.

Then

1

σ2
E[(X − µ)h(X)] = E[h′(X)] +

1

σ

m∑
k=1

ϕ

(
δk − µ

σ

)[
h(δk)+ − h(δk)−

]
.

With this extension, we can immediately say something about degrees of

freedom, though only in a somewhat restricted setting. Suppose that f : Rn →
Rn provides the fit µ̂ = f(y), and that f is actually univariate in each coordinate,

f(y) =
(
f1(y1), . . . , fn(yn)

)
.

Suppose also that each coordinate function fi : R → R is p-absolutely continuous.

We can apply Corollary 1 with X = yi and h = fi, and sum over i to get

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(yi), yi

)
=

n∑
i=1

E[f ′
i(yi)] +

1

σ

n∑
i=1

∑
δ∈D(fi)

ϕ

(
δ − µi

σ

)[
fi(δ)+ − fi(δ)−

]
. (5.3)

The above expression provides an alternative way of proving the result on the

degrees of freedom of hard thresholding, which was given in Lemma 1, the critical

lemma for deriving the degrees of freedom of both best subset selection and the

relaxed lasso for orthogonal predictors, Theorems 2 and 3. We step through this

proof next.
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Alternate Proof of Lemma 1. For f(y)=Ht(y), the ith coordinate function

is

fi(yi) = [Ht(yi)]i = yi · 1{|yi| ≥ t},

which has a discontinuity set D(fi) = {−t, t}. The second term in (5.3) is hence

1

σ

n∑
i=1

[
ϕ

(
t−µi

σ

)
·(t−0)+ϕ

(
−t−µi

σ

)
·(0−−t)

]
=

t

σ

n∑
i=1

[
ϕ

(
t−µi

σ

)
+ϕ

(
t+µi

σ

)]
,

while the first term is simply
n∑

i=1

E[1{|yi| ≥ t}] = E|At|.

Adding these together gives

df(Ht) = E|At|+
t

σ

n∑
i=1

[
ϕ

(
t− µi

σ

)
+ ϕ

(
t+ µi

σ

)]
,

precisely the conclusion of Lemma 1.

5.2. An extension of Stein’s multivariate lemma

The degrees of freedom result (5.3) applies to functions f for which the

ith component function fi depends only on the ith component of the input,

fi(y) = fi(yi), for i = 1, . . . , n. Using this result, we could compute the degrees

of freedom of the best subset selection and relaxed lasso fits in the orthogonal

predictor matrix case. Generally speaking, however, we cannot use this result

outside of the orthogonal setting, due to the requirement on f that fi(y) = fi(yi),

i = 1, . . . , n. Therefore, in the hope of understanding degrees of freedom for

procedures like best subset selection and the relaxed lasso in a broader context,

we derive an extension of Stein’s multivariate lemma.

Stein’s multivariate lemma, Lemma 3, is concerned with functions g : Rn →
R that are continuous and almost differentiable. Loosely speaking, the concept

of almost differentiability is really a statement about absolute continuity. In

words, a function is said to be almost differentiable if it is absolutely continuous

on almost every line parallel to the coordinate axis (this notion is different, but

equivalent, to that given by Stein). Before translating this mathematically, we

introduce some notation. Let us write x = (xi, x−i) to emphasize that x ∈ Rn

is determined by its ith component xi ∈ R and the other n − 1 components

x−i ∈ Rn−1. For g : Rn → R, we let g( · , x−i) denote g as a function of the ith

component alone, with all others components fixed at the value x−i. We can now

formally define almost differentiability:
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Definition 2. We say that a function g : Rn → R is almost differentiable if

for every i = 1, . . . , n and Lebesgue almost every x−i ∈ Rn−1, the function

g( · , x−i) : R → R is absolutely continuous.

Similar to the univariate case, we propose a relaxed continuity condition.

Namely:

Definition 3. We say that a function g : Rn → R is p-almost differentiable

if for every i = 1, . . . , n and Lebesgue almost every x−i ∈ Rn−1, the function

g( · , x−i) : R → R is p-absolutely continuous.

Note that a function g that is p-almost differentiable has partial derivatives

almost everywhere, and we write the collection as ∇g = (∂g/∂x1, . . . , ∂g/∂xn).

(We are careful about referring to ∇g as the vector of partial derivatives, and

not the gradient, as the latter may not be well-defined.) Also, when dealing with

g( · , x−i), the function g restricted to its ith variable with all others fixed at x−i,

we write its one-sided limits as

g(xi, x−i)+ = lim
t↓xi

g(t, x−i) and g(xi, x−i)− = lim
t↑xi

g(t, x−i).

We are now ready to present our extension of Stein’s multivariate lemma.

Lemma 5. Let X ∼ N(µ, σ2I), for some fixed µ ∈ Rn and σ2 > 0. Let

g : Rn → R be p-almost differentiable, with vector of partial derivatives ∇g =

(∂g/∂x1, . . . , ∂g/∂xn). Then, for i = 1, . . . , n,

1

σ2
E[(Xi−µi)g(X)] = E

[
∂g

∂xi
(X)

]
+
1

σ
E

[ ∑
δ∈D(g( · ,X−i))

ϕ

(
δ − µi

σ

)[
g(δ,X−i)+ − g(δ,X−i)−

]]
,

provided that E|∂g/∂xi (X)| < ∞ and

E

∣∣∣∣∣ ∑
δ∈D(g( · ,X−i))

ϕ

(
δ−µi

σ

)[
g(δ,X−i)+−g(δ,X−i)−

]∣∣∣∣∣ < ∞.

Refer to the appendix for the proof, which utilizes a conditioning argument

to effectively reduce the multivariate setup to a univariate one, and then invokes

Lemma 4.

The above lemma, Lemma 5, leads to our most general extension of Stein’s

formula for degrees of freedom. Let f : Rn → Rn be a fitting procedure, as in

µ̂ = f(y), and let f(y) = (f1(y), . . . , fn(y)). Consider Lemma 5 applied to the
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ith coordinate function, so that X = y and g = fi. Provided that each fi is

p-almost differentiable and satisfies the regularity conditions

E
∣∣∣∣∂fi∂yi

(y)

∣∣∣∣ < ∞ and E

∣∣∣∣∣ ∑
δ∈D(fi( · ,y−i))

ϕ

(
δ − µi

σ

)[
fi(δ, y−i)+ − fi(δ, y−i)−

]∣∣∣∣∣ < ∞,

(5.4)

we can take the ith equality in the lemma, and sum over i to get

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
=

n∑
i=1

E
[
∂fi
∂yi

(y)

]

+
1

σ

n∑
i=1

E

[ ∑
δ∈D(fi( · ,y−i))

ϕ

(
δ − µi

σ

)[
fi(δ, y−i)+ − fi(δ, y−i)−

]]
. (5.5)

Even if we assume that (5.5) is applicable to subset selection and the relaxed

lasso with arbitrary predictors X, the discontinuity sets—and hence the second

term in (5.5)—seem to be quite difficult to calculate in these cases. In other

words, unfortunately, the formula (5.5) does not seem to provide an avenue for

exact computation of the degrees of freedom of subset selection or the relaxed

lasso in general. However, it may still help us understand these quantities, as we

discuss next.

5.3. Potential insights from the multivariate Stein extension

For both of the best subset selection and relaxed lasso fitting procedures,

one can show that the requisite regularity conditions (5.4) indeed hold, which

makes the extended Stein formula (5.5) valid. Here we briefly outline a geometric

interpretation for these fits, and describe how it can be used to understand their

discontinuity sets, and the formula in (5.5). For an argument of a similar kind

(and one given in more rigorous detail), see Tibshirani and Taylor (2012).

In both cases, we can decompose Rn into a finite union of disjoint sets,

Rn = ∪m
i=1Ui, with each Ui being polyhedral for the relaxed lasso, and each Ui an

intersection of quadratic sublevel sets for subset selection. The relaxed lasso and

best subset selection now share the property that, on the relative interior of each

set Ui in their respective decompositions, the fit is just a linear projection map,

and assuming that X has columns in general position, this is just the projection

map onto the column space of XA for some fixed set A. Hence the discontinuity

set of the fitting procedure in each case is contained in ∪m
i=1relbd(Ui), which has

measure zero. In other words, the active set is locally constant for almost every
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y ∈ Rn, and only for y crossing the relative boundary of some Ui does it change.

From this, we can verify the appropriate regularity conditions in (5.4).

As f for the relaxed lasso and subset selection is the locally linear projection

map f(y) = PAy, almost everywhere in y, the first term
∑n

i=1 E[∂fi(y)/∂yi] in
(5.5) is simply E|A|. The second term, then, exactly coincides with the search de-

grees of freedom of these procedures. (Recall that the same breakdown occurred

when using the univariate Stein extension to derive the degrees of freedom of

hard thresholding, in Section 5.1.) This suggests a couple potential insights into

degrees of freedom and search degrees of freedom that may be gleaned from the

extended Stein formula (5.5), which we discuss below.

• Positivity of search degrees of freedom. If one could show that

fi(δ, y−i)+ − fi(δ, y−i)− > 0 (5.6)

for each discontinuity point δ ∈ D(fi(·, y−i)), almost every y−i ∈ Rn, and each

i = 1, . . . , n, then this would imply that the second term in (5.5) is positive.

For the relaxed lasso and subset selection fits, this would mean that the search

degrees of freedom term is always positive, i.e., the total degrees of freedom

of these procedures is always larger than the (expected) number of selected

variables. In words, the condition in (5.6) says that the ith fitted value, at a

point of discontinuity, can only increase as the ith component of y increases.

Note that this is a sufficient but not necessary condition for positivity of search

degrees of freedom.

• Search degrees of freedom and discontinuities. The fact that the second term

in (5.5) gives the search degrees of freedom of the best subset selection and the

relaxed lasso fits tells us that the search degrees of freedom of a procedure is

intimately related to its discontinuities over y. At a high level: the greater the

number of discontinuities, the greater the magnitude of these discontinuities,

and the closer they occur to the true mean µ, the greater the search degrees

of freedom.

This may provide some help in understanding the apparent (empirical) differ-

ences in search degrees of freedom between the relaxed lasso and best subset

selection fits under correlated setups, as seen in Section 4. The particular

discontinuities of concern in (5.5) arise from fixing all but ith component of

the outcome at y−i, and examining the ith fitted value fi(·, y−i) as a function

of its ith argument. One might expect that this function fi(·, y−i) generally

exhibits more points of discontinuity for best subset selection compared to

the relaxed lasso, due to the more complicated boundaries of the elements Ui

in the active-set-determining decomposition described above (these bound-

aries are piecewise quadratic for best subset selection, and piecewise linear for
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the relaxed lasso). This is in line with the general trend of subset selection
displaying a larger search degrees of freedom than the relaxed lasso.
But, as demonstrated in Figure 6, something changes for large values of λ
(small active sets, on average), and for µ = Xβ∗ with a sparse or (especially)
dense true coefficient vector β∗; we saw that the search degrees of freedom
of both the relaxed lasso and best subset selection fits can grow very large
in these cases. Matching search degrees of freedom to the second term in
(5.5), therefore, we infer that both fits must experience major discontinuities
here (and these are somehow comparable overall, when measured in number,
magnitude, and proximity to µ). This makes sense, especially when we think of
taking λ large enough so that these procedures are forced to select an active
set that is strictly contained in the true support A∗ = supp(β∗); different
values of y, quite close to µ = Xβ∗, will make different subsets of A∗ look
more or less appealing according to the criterions in (1.3), (1.4).

5.4. Connection to Theorem 2 of Hansen and Sokol (2014)

After completing this work, we discovered the independent and concurrent
work of Hansen and Sokol (2014). These authors propose an interesting and
completely different geometric approach to studying the degrees of freedom of a
metric projection estimator

f(y) ∈ argmin
u∈K

∥y − u∥22,

where the set K ⊆ Rn can be nonconvex. Their Theorem 2 gives a decomposition
for degrees of freedom that possesses an intriguing tie to ours in (5.5). Namely,
these authors show that the degrees of freedom of any metric projection estimator
f an be expressed as its expected divergence plus an “extra” term, this term being
the integral of the normal density with respect to a singular measure (dependent
on f). Equating this with our expression in (5.5), we see that the two forms of
“extra” terms must match—i.e., our second term in (5.5), defined by a sum over
the discontinuities of the projection f , must be equal to their integral.

This has an immediate implication for the projection operator onto the ℓ0
ball of radius k, i.e., the best subset selection estimator in constrained form:
the search degrees of freedom here must be nonnegative (as the integral of a
density with respect to a measure is always nonnegative). The decomposition of
Hansen and Sokol (2014) hence elegantly proves that the best subset selection fit,
constrained to have k active variables, attains a degrees of freedom larger than or
equal k. However, as far as we can tell, their Theorem 2 does not apply to best
subset selection in Lagrange form, the estimator considered in our paper, since
it is limited to metric projection estimators. To be clear, our extension of Stein’s
formula in (5.5) is not restricted to any particular form of fitting procedure f
(though we do require the regularity conditions in (5.4)).
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We find the connections between our work and theirs fascinating, and hope

to understand them more deeply in the future.

6. Discussion

In this work, we explored the degrees of freedom of best subset selection and

the relaxed lasso (the procedure that performs least squares on the active set

returned by the lasso). We derived exact expressions for the degrees of freedom

of these fitting procedures with orthogonal predictors X, and investigated by

simulation their degrees of freedom for correlated predictors. We introduced a

new concept, search degrees of freedom, which intuitively measures the amount

of degrees of freedom expended by an adaptive regression procedure in merely

constructing an active set of variables (i.e., not counting the degrees of freedom

attributed to estimating the active coefficients). Search degrees of freedom has

a precise definition for any regression procedure. For subset selection and the

relaxed lasso, this reduces to the (total) degrees of freedom minus the expected

number of active variables; for the lasso, we simply equate its search degrees of

freedom with that of the relaxed lasso, since these two procedures have the exact

same search step.

The last section of this paper derived an extension of Stein’s formula for

discontinuous functions. This was motivated by the hope that such a formula

could provide an alternative lens from which we could view degrees of freedom for

discontinuous fitting procedures like subset selection and the relaxed lasso. The

application of this formula to these fitting procedures is not easy, and our grasp

of the implications of this formula for degrees of freedom is only preliminary.

There is much work to be done, but we are hopeful that our extension of Stein’s

result will prove useful for understanding degrees of freedom and search degrees

of freedom, and potentially, for other purposes as well.
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Appendix: Proofs

A.1. Proof of Lemma 1.

By definition,

df(Ht) =
1

σ2

n∑
i=1

Cov
(
[Ht(y)]i, yi

)
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=
1

σ2

n∑
i=1

E
[
yi(yi − µi)

(
1{yi ≥ t}+ 1{yi ≤ −t}

)]
=

1

σ2

n∑
i=1

E
[
(zi + µi)zi

(
1{zi ≥ t− µi}+ 1{zi ≤ −t− µi}

)]
, (A.1)

where z = y− µ ∼ N(0, σ2I). To compute the above, we note the identities (the

last two can be checked using integration by parts):

E
[
zi · 1{zi ≤ a}

]
= −σϕ(

a

σ
), (A.2)

E
[
zi · 1{zi ≥ b}

]
= σϕ(

b

σ
), (A.3)

E
[
z2i · 1{zi ≤ a}

]
= −σaϕ(

a

σ
) + σ2Φ(

a

σ
), (A.4)

E
[
z2i · 1{zi ≥ b}

]
= σbϕ(

b

σ
) + σ2

[
1− Φ(

b

σ
)
]
, (A.5)

where Φ denotes the standard normal cdf. Plugging these in, the expression in

(A.1) becomes

n∑
i=1

[
1− Φ

(
t− µi

σ

)
+Φ

(
−t− µi

σ

)]
+

t

σ

n∑
i=1

[
ϕ

(
t− µi

σ

)
+ ϕ

(
−t− µi

σ

)]
,

and the first sum above is exactly

E
[ n∑

i=1

(
1{zi ≥ t− µi}+ 1{zi ≤ −t− µi}

)]
= E|At|,

as desired.

A.2. Proof of Theorem 2.

As X is orthogonal, the criterion in (1.4) can be written as

∥y −Xβ∥22 = ∥XT y − β∥22 + c,

where c is a constant, meaning that it does not depend on β. Hence we can

rewrite the optimization problem in (1.4) as

β̂subset ∈ argmin
β∈Rp

1

2
∥XT y − β∥22 + λ∥β∥0,

and from this it is not hard to see that the solution is

β̂subset = H√
2λ(X

T y),
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hard thresholding the quantity XT y by the amount t =
√
2λ. Finally, we note

that

df(Xβ̂subset) = tr
(
Cov(Xβ̂subset, y)

)
= tr

(
Cov(β̂subset, XT y)

)
,

because the trace operator is invariant under commutation of matrices, and

XT y ∼ N(XTµ, σ2I). Applying Lemma 1 completes the proof.

A.3. Proof of Theorem 1.

We use several facts about the lasso without proof. These are derived in, e.g.,

Tibshirani and Taylor (2012) and Tibshirani (2013). For fixed X,λ, the lasso fit

f(y) = µ̂lasso(y) is continuous and almost differentiable in each coordinate, so we

can apply Stein’s formula (5.2). As X has columns in general position, there is

a unique lasso solution β̂lasso, and letting A denote its active set, and s denote

the signs of active lasso coefficients,

A = supp(β̂lasso) and s = sign(β̂lasso
A ),

the fit can be expressed as

µ̂lasso = XA(X
T
AXA)

−1XT
Ay −XA(X

T
AXA)

−1λs.

For almost every y ∈ Rn, the set A and vector s are locally constant (with respect

to y), and so they have zero derivative (with respect to y). Hence, for almost

every y,
n∑

i=1

∂µ̂lasso
i

∂yi
(y) = tr

(
XA(X

T
AXA)

−1XT
A

)
= |A|,

and taking an expectation gives the result.

A.4. Proof of Lemma 4.

The result can be shown using integration by parts. We prove it in a dif-

ferent way, mimicking Stein’s proof of Lemma 2, which makes the proof for the

multivariate case (Lemma 5) easier. We have

E[f ′(Z)] =

∫ ∞

−∞
f ′(z)ϕ(z) dz

=

∫ ∞

0
f ′(z)

{∫ ∞

z
tϕ(t) dt

}
dz −

∫ 0

−∞
f ′(z)

{∫ z

−∞
tϕ(t) dt

}
dz

=

∫ ∞

0
tϕ(t)

{∫ t

0
f ′(z) dz

}
dt−

∫ 0

−∞
tϕ(t)

{∫ 0

t
f ′(z) dz

}
dt. (A.6)

The second equality follows from ϕ′(t) = −tϕ(t), and the third is by Fubini’s

Theorem. Consider the first term in (A.6); as f is absolutely continuous on
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each of the intervals (−∞, δ1), (δ1, δ2), . . . , (δm,∞), the fundamental theorem of

(Lebesgue) integral calculus gives∫ t

0
f ′(z) dz = f(t)− f(0)−

m∑
k=1

[
f(δk)+ − f(δk)−

]
· 1(0 ≤ δk ≤ t).

Therefore∫ ∞

0
tϕ(t)

{∫ t

0
f ′(z) dz

}
dt

=

∫ ∞

0
tϕ(t)

[
f(t)− f(0)

]
dt−

∑
δk≥0

[
f(δk)+ − f(δk)−

] ∫ ∞

δk

tϕ(t) dt.

The second term in (A.6) is similar, and putting these together we get

E[f ′(Z)] = E[Zf(Z)]− E[Z]f(0)−
∑
δk≥0

[
f(δk)+ − f(δk)−

]
· E

[
Z · 1{Z ≥ δk}

]
+

∑
δk<0

[
f(δk)+ − f(δk)−

]
· E

[
Z · 1{Z ≤ δk}

]
.

The result follows by noting that E[Z] = 0 and recalling the identities (A.2) and

(A.3).

A.5. Proof of Corollary 1.

Define Z = (X − µ)/σ and f(z) = h(σz + µ), and apply Lemma 4.

A.6. Proof of Lemma 5.

We assume that X ∼ N(0, I), and then a similar standardization argument

to that given in the proof of Corollary 1 can be applied here to prove the result

for X ∼ N(µ, σ2I).

For fixed X−i, the function g( · , X−i) is univariate. Hence, following the

proof of Lemma 4, and using the independence of Xi and X−i,

E
[
∂g

∂xi
(X)

∣∣∣X−i

]
=

∫ ∞

−∞

∂g

∂xi
(z,X−i)ϕ(z) dz

=

∫ ∞

0

∂g

∂xi
(z,X−i)

{∫ ∞

z
tϕ(t) dt

}
dz −

∫ 0

−∞

∂g

∂xi
(z,X−i)

{∫ z

−∞
tϕ(t) dt

}
dz

=

∫ ∞

0
tϕ(t)

{∫ t

0

∂g

∂xi
(z,X−i) dz

}
dt−

∫ 0

−∞
tϕ(t)

{∫ 0

t

∂g

∂xi
(z,X−i) dz

}
dt.
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Consider the first term above. For almost every X−i, the function g( · , X−i) is

p-absolutely continuous, so the inner integral is∫ t

0

∂g

∂xi
(z,X−i) dz

= g(t,X−i)− g(0, X−i)−
∑
δ∈Di

[
g(z,X−i)+ − g(z,X−i)−

]
· 1(0 ≤ δ ≤ t),

where we have abbreviated Di = D(g( · , X−i)). The next steps follow the corre-

sponding arguments in the proof of Lemma 4, yielding

E
[
∂g

∂xi
(X)

∣∣∣X−i

]
= E[Xig(X) |X−i]−

∑
δ∈Di

[
g(δ,X−i)+ − g(δ,X−i)−

]
for almost every X−i. Taking an expectation over X−i gives the result.
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