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Abstract: Three widely used sampling designs—the nested case-control, case-cohort,

and classical case-control designs—can be categorized as generalized case-cohort

designs. Maximum likelihood methods are used to perform regression analysis

of linear transformation models with these sampling designs, and the resulting

estimator is proved to be consistent, asymptotically normal and semiparametrically

efficient. Simulation studies and an application to the Stanford heart transplant

data are presented.
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1. Introduction

Cohort sampling is a popular methodology in epidemiological studies and

clinical trials. The main advantage of such a design, compared with prospective

studies, is that collecting covariate information is relatively quick and inexpen-

sive. A number of publications have addressed the analysis of cohort designs,

and in particular on nested case-control (n-c-c) designs (see, e.g., Breslow and

Day (1980), Langholz and Goldstein (1996), and Breslow (1996)).

Thomas (1977) proposed a partial likelihood approach to estimating the re-

gression parameter of the Cox model. Because of its partial likelihood nature, his

estimation method possesses useful properties similar to those of Cox’s partial

likelihood estimation based on full cohort data. The estimator is easy to com-

pute, and its variance estimator is simply the negative of the derivative of the

log-partial likelihood. The asymptotic properties of Thomas’ estimator can be

formally established using the counting process martingale theory of Goldstein

and Langholz (1992). However, Thomas’ estimator is not semiparametrically ef-

ficient, and it is likely that other more efficient and easy-to-compute estimates

exist.

Samuelsen (1997) presented an entirely new estimator based on maximiz-

ing pseudo-likelihood. His key observation is that the conditional probability
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of a censored subject’s ever being selected as a control can be explicitly com-

puted with an expression similar to that of the Kaplan–Meier estimator. The

resulting estimator and its inference are also very easy to compute. Empirical

evidence shows that Samuelsen’s estimator is sometimes better than Thomas’.

As Samuelsen (1997) has pointed out, however, the weighting techniques used to

construct the pseudo-likelihood can be inefficient.

Chen (2001) proposed an estimation method based on local averaging that

is essentially an alternative sample reuse method other than those of Thomas

and Samuelsen. This method is applicable to so-called generalized case-cohort

designs, which includes not only n-c-c, but case-control and case-cohort designs as

well. Chen (2001) discusses how the accuracy of this estimator is comparable to

those of Thomas and Samuelsen, but the efficient estimator can be quite difficult

to obtain, as it involves estimating and computing an integral operator.

There are also some other methods in the literature. Almost all use Cox

model. This puts serious limitations on practitioners because of the lack of

statistical tools to analyze n-c-c or more general cohort designs. More general

statistical methodologies for this purpose are badly needed. The transformation

model, as a natural generalization of the Cox model, is an ideal choice. Typically

a linear transformation model can be written as

logH(T ) = −βZ + ϵ,

where (T,Z) is the response-covariates pair, H is an unknown monotone func-

tion, ϵ is the unobserved random variable with known distribution and β is the

unknown regression parameter of main interest. When ϵ follows the extreme

value distribution or the standard logistic distribution, the model reduces to the

Cox’s proportional hazards model or the proportional odds model, respectively.

Cheng, Wei, and Ying (1995) contains a very simple and elegant idea based on

pairwise comparison of the survival times. This type of rank based method relies

on the assumption that the censoring variables are independent of the covariates.

In this paper, we propose an efficient estimation method for linear transfor-

mation models with cohort sampling designs. The rest of the paper is organized

as follows. We describe the maximum likelihood-based estimation method and

asymptotic properties in Section 2. Simulation studies and an application to

data are given in Sections 3 and 4. Concluding remarks are given in Section 5.

Technical details are provided in the Appendix.

2. Estimation and Inference

Consider a cohort of n i.i.d. individuals. Let Ti and Ci denote the failure

time and censoring time of the ith individual respectively. We assume that Ci is

independent of (Ti, Zi). We set
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(i) the event time: Yi = min(Ti, Ci);

(ii) the failure/censoring index: δi = I(Ti ≤ Ci);

(iii) the indicator of the ith individual being sampled for covariate ascertainment:

∆i, with conditional probability πi = P (∆i = 1|(Yj , δj), 1 ≤ j ≤ n).

It is necessary in the inference procedure that (∆1, . . . ,∆n) are conditionally

independent of (Z1, . . . , Zn), given (Yj , δj), 1 ≤ j ≤ n.

In the linear transformation model

logH(T ) = −βZ + ϵ, (2.1)

it is supposed that β is the unknown parameter of main interest, H is an unknown

increasing function, and ϵ is a continuous random variable whose hazard function

λϵ is known. We take ϵ to be independent of Z and C.

The likelihood function from (2.1) can then be written as

L(β,H, F ) =
n∏

i=1

f(Yi, δi)× f(∆1, . . . ,∆n|(Yj , δj), 1 ≤ j ≤ n)

×
n∏

i=1

f(Zi|(Yj , δj ,∆j), 1 ≤ j ≤ n)∆i

=

n∏
i=1

f(Yi, δi)× f(∆1, . . . ,∆n|(Yj , δj), 1 ≤ j ≤ n)

×
n∏

i=1

f(Zi|Yi, δi)∆i ,

where the second equation comes from the conditional independence of (∆1, . . .,

∆n) and (Z1, . . . , Zn), and independence between individuals.

The last term in the likelihood function can be calculated as

f(Zi|Yi, δi)∆i =

(
f(Yi, δi|Zi)f(Zi)

f(Yi, δi)

)∆i

.

For simplicity, denote the hazard and cumulative hazard functions of exp(ϵ) as

λ and Λ, and the probability density and distribution of covariate Z as f and F ,

respectively. The log-likelihood then takes a final form

ln(β,H, F ) =

n∑
i=1

∆i

{
δi[βZi + log λ(H(Yi)e

βZi)]− Λ(H(Yi)e
βZi)

}
+(1−∆i) log

{∫
[eβZλ(H(Yi)e

βZ)]δie−Λ(H(Yi)e
βZ)f(Z)dZ

}
+δi log h(Yi) + ∆i log f(Zi)
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+ log(λC(Yi)
1−δie−ΛC(Yi)) + log f∆(∆1, . . . ,∆n|(Yj , δj), 1 ≤ j ≤ n),

where h(·) is the derivative function of H(·).
Using the method of discretization of H and F , let qj represent the size of the

increment of H at the jth smallest observed failure times, say sj , j = 1, . . . , n1,

where n1 =
∑n

i=1 δi is the number of failures. Set

H(t) =

n1∑
j=1

qjI(sj ≤ t), and h(t) =

n1∑
j=1

qjI(t = sj).

To estimate F , put probability mass on all known covariates, with

f(Zj) = P (Z = Zj) = pj satisfying

n2∑
j=1

pj = 1,

where n2 =
∑n

i=1∆i is the number of individuals with known covariates. Then

the integral over Z in the likelihood can be estimated as∫
[eβZλ(H(Yi)e

βZ)]δie−Λ(H(Yi)e
βZ)f(Z)dZ

=

n2∑
j=1

[eβZjλ(H(Yi)e
βZj )]δie−Λ(H(Yi)e

βZj )pj .

We show that maximizing the log-likelihood function over (β, q1, . . . , qn1 ,

p1, . . . , pn2) leads to its being consistent, asymptotically normal, and semipara-

metrically efficient for β under certain regularity conditions. Regularity condi-

tions and the proof of the theorems are in the Appendix.

Theorem 1. Under the regularity conditions (C1)−(C5), |β̂n−β0| → 0, supt∈[0,τ ]
|Ĥn(t)−H0(t)| → 0 and supZ∈M |F̂n(Z)− F0(Z)| → 0 almost surely.

To describe the variance estimation, let τ denote the duration of the study

and suppose Z lies in a bounded set M . Let Q1 = {p ∈ BV [0, τ ] : |p| ≤ 1} and

Q2 = {q ∈ BV [M ] : |q| ≤ 1}, where BV [D] is the set of functions on D with

bounded total variation. Then Ĥn can be treated as a bounded linear functional

in L∞(Q1) as

Ĥn(p) =

∫ τ

0
p(t)dĤn(t),

and similarly, F̂n can be treated as a bounded linear functional in L∞(Q2).

Theorem 2. Under the conditions (C1)−(C6),
√
n(β̂n − β0, Ĥn −H0, F̂n − F0)

converges weakly to a zero-mean Gaussian process in the metric space Rd ×
L∞(Q1) × L∞(Q2). The limiting covariance matrix of

√
n(β̂n − β0) attains the

semiparametric efficiency bound.
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Theorem 3. For any (b, p, q) ∈ V ×Q1 ×Q2, where V = {v ∈ Rd : |v| ≤ 1}, the
asymptotic variance for

√
nvT (β̂n − β0) +

√
n

∫ τ

0
p(t)d

[
Ĥn(t)−H0(t)

]
+

√
n

∫
Z
q(Z)d

[
F̂n(Z)− F0(Z)

]
can be consistently estimated by (vT , p⃗T , q⃗T )I−1

n (vT , p⃗T , q⃗T )T , where nIn is the

negative Hessian matrix of the log-likelihood function ln(β,H, F ) with respect to

(β, q1, . . . , qn1 , p1, . . . , pn2), and the vectors p⃗ = (p(s1), . . . , p(sn1))
T ,q⃗ = (q(Z1),

. . . , q(Zn2))
T . Taking p = 0 and q = 0, the variance matrix of

√
n(β̂n − β0) can

be estimated by the upper left d× d matrix of I−1
n .

Remark. The computation can be carried out in many scientific computing

packages. For example, the algorithm of fmincon in the optimization toolbox of

Matlab can be used to find a minimizer and calculate the Hessian matrix as well.

Our simulation shows that this algorithm does well when handling moderate

sample size like 200. For the initial value, one can use estimates from the Cox

model or try different initial values to make the maximization guaranteed.

3. Simulation Study

We took independent covariates Z1 uniform distributed over [0, 1] and Z2

Bernoulli with success probability 0.5. The hazard function of the error term ϵ

was chosen as

λϵ(t) =
exp(t)

1 + r exp(t)
,

with r = 0, 1 and 2 (Dabrowska and Doksum (1988); Chen, Jin, and Ying (2002)).

Here the proportional hazards and proportional odds models correspond to r = 0

and r = 1, respectively. For the transformation function in the model logH(t) =

−βZ + ϵ, we take H(t) = t for r = 0, H(t) = exp(t) − 1 for r = 1, and

H(t) = 0.5 exp(2t) − 0.5 for r = 2. The censoring time C was uniform on [0, c],

where c was chosen such that the expected proportion of censoring was 0.7 and

0.8, respectively. The sample size n was set at 200 and all simulations were

based on 500 replications. For the case-cohort design, we selected all failures

and a subcohort of size 85 and 50 when the censoring rate was 0.7 and 0.8,

respectively. For the classical case-control design, we selected all failures and a

group of non-failures of the same size as the failures. For the nested case-control

design, we selected all failures and two non-failures in each risk set of failure

times.

Table 1 summarizes the simulation results estimating β1 and β2. The true

values were β1 = 1 and β2 = −1. Results include the mean of the bias (Bias) of

the estimates, the sample standard deviations (SSD) of the estimates, the mean
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Table 1. Summary of simulation results.

Censoring rate=0.7
Case-cohort design

r Bias SSD ESE CP RE RE*
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 0.006 -0.027 0.542 0.333 0.584 0.375 0.962 0.976 0.84 0.77 0.73 0.64
1 0.014 -0.027 0.676 0.405 0.695 0.424 0.954 0.960 0.65 0.60 0.62 0.62
2 -0.003 0.021 0.733 0.433 0.750 0.477 0.958 0.962 0.85 0.82 0.72 0.67

Classical case-control design
r Bias SSD ESE CP RE RE*

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 0.018 -0.012 0.550 0.343 0.580 0.364 0.964 0.968 0.82 0.72 0.60 0.59
1 0.016 -0.040 0.663 0.402 0.674 0.415 0.966 0.956 0.68 0.61 0.62 0.60
2 -0.022 -0.018 0.779 0.460 0.823 0.469 0.944 0.946 0.76 0.73 0.67 0.70

Nested case-control design
r Bias SSD ESE CP RE RE*

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 -0.013 -0.006 0.531 0.304 0.544 0.341 0.960 0.974 0.88 0.92 0.79 0.83
1 0.039 -0.035 0.642 0.374 0.653 0.398 0.954 0.970 0.72 0.70 0.78 0.74
2 0.016 -0.002 0.741 0.443 0.781 0.451 0.950 0.950 0.83 0.78 0.78 0.82

Censoring rate=0.8
Case-cohort design

r Bias SSD ESE CP RE RE*
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 -0.007 -0.033 0.623 0.393 0.642 0.411 0.962 0.972 0.83 0.92 0.62 0.76
1 0.032 0.019 0.760 0.467 0.736 0.458 0.950 0.954 0.74 0.74 0.55 0.63
2 0.018 -0.018 0.928 0.535 1.070 0.560 0.958 0.956 0.65 0.72 0.58 0.62

Classical case-control design
r Bias SSD ESE CP RE RE*

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 0.036 -0.002 0.732 0.436 0.725 0.449 0.940 0.960 0.60 0.74 0.51 0.59
1 0.068 -0.004 0.829 0.480 0.917 0.516 0.958 0.950 0.62 0.70 0.45 0.61
2 -0.007 0.003 0.933 0.540 0.920 0.547 0.956 0.958 0.64 0.71 0.59 0.66

Nested case-control design
r Bias SSD ESE CP RE RE*

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 0.012 -0.031 0.612 0.380 0.649 0.415 0.970 0.962 0.86 0.98 0.75 0.88
1 0.051 -0.036 0.768 0.424 0.843 0.485 0.960 0.968 0.72 0.90 0.70 0.87
2 0.024 0.020 0.792 0.486 0.855 0.508 0.966 0.962 0.89 0.87 0.74 0.76

of the estimated standard errors (ESE) of the estimates, and the 95% empirical

coverage probabilities (CP) for β1 and β2 based on the asymptotic normality in

Theorem 2. The proposed estimation procedures perform well in all cases.

We compared our approach with that of Chen, Sun, and Tong (2012), a



MAXIMUM LIKELIHOOD METHOD 1237

likelihood-based method involving inverse probability that can apply to different

cohort sampling schemes. A series of simulation with the same settings as above

was conducted and it found that the Chen et al. estimators less efficient in most of

the senarios, especially when the censoring rate was large. This is mainly because

the Chen et al. estimator does not involve the event times whose covariates are

not sampled. This can be seen in Table 1 by comparing the relative efficiency

of our estimators (RE) with that of the Chen et al. estimators (RE*), where

the relative efficiency was computed by comparing the sample variance of an

estimator to the sample variance of the full-cohort estimator.

4. Application

The Stanford heart transplant data, consisting of censored or uncensored

survival times in February 1980 of 184 patients who had received heart trans-

plants, was reported in Miller and Halpern (1982). In the data set, the patients’

T5 mismatch score is a measure of the degree of tissue incompatability between

the initial donor and the recipient with respect to HLA antigens. The goal of

this study was to analyze the relationship among the survival time, T5 mismatch

score and the age of the patients.

We compared the results using the full cohort data with those from different

sampling schemes. As in Miller and Halpern (1982) and Jin, Lin, and Ying

(2006), only the 157 patients with complete records were used. Following Miller

and Halpern (1982), in Model 1 we regressed the logarithm of the survival time

against the ages and T5 mismatch scores for the 157 patients. Then the T5

mismatch score was deleted due to its nonsignificance in Model 1 and a quadratic

age model was tried to achieve better fit. In Model 2 we regressed the logarithm

of the survival time against the age and age2 for the 152 patients whose survival

times were not less than 10 days.

The sampling designs for both models were set as follows: For the case-cohort

design we selected all failures and a subcohort of size 75 among the whole set

of subjects. For the classical case-control design we selected all failures and 25

non-failures. For the nested case-control design we selected all failures and one

non-failure in each risk set.

Table 2 shows the average of the estimates of parameters with standard

errors and p-values based on 400 replications. The proposed method under all

the sampling designs led to the same conclusion as using the full data set. For

comparison, we also present the estimates from Chen, Sun, and Tong (2012) in

the table, from which one can draw similar conclusions in general. It can also be

seen from the comparison of standard error that the proposed method has the

advantage of being asymptotically efficient.
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Table 2. Comparison of parameter estimation (estimated standard error,
p-value) for the Stanford heart transplant data.

Full data

Model 1 Age T5
0.0295 (0.0115, 0.0056) 0.1692 (0.2110,0.2120)

Model 2 Age Age2

-0.1457 (0.0528, 0.0033) 0.0023 (0.0007,0.0004)

Model 1

Design Proposed Chen

Age T5 Age T5

C-C 0.0281 (0.0179, 0.0400) 0.1175 (0.2817, 0.3368) 0.0292 (0.0182, 0.0677) 0.1621 (0.2756, 0.2960)

C-C-C 0.0275 (0.0186, 0.0459) 0.1145 (0.2882, 0.3406) 0.0295 (0.0178, 0.0638) 0.1636 (0.2757, 0.2947)

N-C-C 0.0263 (0.0146, 0.0301) 0.1825 (0.2426, 0.2263) 0.0291 (0.0174, 0.0542) 0.1691 (0.2565, 0.2693)

Model 2

Design Proposed Chen

Age Age2 Age Age2

C-C -0.1416 (0.0593, 0.0294) 0.0023 (0.0008, 0.0108) -0.1478 (0.0830, 0.0599) 0.0024 (0.0010, 0.0317)

C-C-C -0.1429 (0.0652, 0.0320) 0.0023 (0.0008, 0.0125) -0.1498 (0.0850, 0.0614) 0.0024 (0.0011, 0.0337)

N-C-C -0.1474 (0.0552, 0.0150) 0.0023 (0.0007, 0.0065) -0.1489 (0.0697, 0.0355) 0.0024 (0.0009, 0.0136)

Note: Proposed represents the proposed method; Chen represents the Chen, Sun, and Tong (2012)

method; C-C represents case-cohort sampling; C-C-C represents classical case-control sampling; N-C-C

represents nested case-control sampling.

5. Concluding Remarks

This paper presents an efficient estimation technique for a broad class of sam-

pling designs using linear transformation models. The computation procedure is

based on the maximization of the discretized likelihood function. The variance

estimation is obtained from the inverse of the negative Hessian matrix. We prove

that such estimation method attains the semiparametric efficiency bound. The

performance of the estimator is illustrated with simulation studies and a Stanford

heart transplant data study. Further work will consider extending this method to

partially linear transformation models, where kernel smoothing could be applied.
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Appendix: Regularity conditions and proofs of theorems

Some regularity conditions are needed:
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(C1) The function H0(t) and the distribution F0(t) are strictly increasing and

differentiable, with derivatives h(t) and f(t) that are absolutely continuous,

and β0 lies in the interior of a known compact set in the domain of B.

(C2) The covariate Z is bounded, and P (C ≥ τ) > δ > 0 for some constant δ.

(C3) λ(t) > 0, and λ is twice continuously differentiable.

(C4) lim sup
x→∞

Λ(C0x)
−1 log(x supy≤x λ(y)) = 0 holds for every C0 > 0.

(C5) (First Identifiability) Let

Ψi(β,H, F ) =
{
[eβZiλ(H(Yi)e

βZi)]δie−Λ(H(Yi)e
βZi )

}∆i

×
{∫

[eβZλ(H(Yi)e
βZ)]δie−Λ(H(Yi)e

βZ)f(Z)dZ

}(1−∆i)

.

If

Ψi(β
∗,H∗, F ∗)h∗(Yi)

δif∗(Zi)
∆i = Ψi(β0,H0, F0)h0(Yi)

δif0(Zi)
∆i ,

almost surely, then β∗ = β0, H
∗ = H0 and F ∗ = F0.

(C6) (Second Identifiability) If

vT lβ(β0, H0, F0) + lH(β0,H0, F0)
[ ∫

pdH0

]
+ lF (β0,H0, F0)

[ ∫
qdF0

]
= 0

almost surely for some v ∈ Rd, p ∈ BV [0, τ ] and q ∈ BV [M ], then (v, p, q) =

0, where vT lβ, lH [g1] and lF [g2] denote the partial derivatives of l along

direction of v, g1, and g2, respectively.

Remark. Conditions (C1)−(C3) assume certain smoothness and identifiability

of the model, which are standard requirements in censored data analysis. (C4)

is a technical condition on the structure of the model that is used in the proof of

consistency. (C5) is the usual parameter identifiability condition. (C6) ensures

that the Fisher information is non-singular.

Proof of Theorem 1. The jump size of Ĥn must be finite, otherwise the log-

likelihood would diverge to −∞ by (C4). Ĥn is also bounded almost surely, oth-

erwise if a new estimator H̄n = Ĥn/Ĥn(τ) were considered, it would contradict

the maximum property of Ĥn. Since Ĥn is uniformly bounded and monotone,

Helly’s Selection Theorem requires that for any subsequence of {Ĥn}, there is a

further subsequence which converges to some monotone function H∗ pointwise.

Without loss of generality, assume that F̂n converges to F ∗ and β̂n converges
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to β∗ for the same subsequence. Then consistency is proved if we can show

that H∗ = H0, F
∗ = F0, and β∗ = β0 with probability one. Furthermore, the

continuity of H0 and F0 ensures that the convergence is uniform in t and Z.

Take the derivative of the log-likelihood with respect to H along H + ϵI(· ≥
Yi), and let it be zero. Then

ĥ(Yi) = − δi
n∑

j=1

ΨjH(β̂n, Ĥn, F̂n)[I(· ≥ Yi)]

Ψj(β̂n, Ĥn, F̂n)

.

Hence

Ĥn(t) =

n∑
i=1

∫ t

0
h(u)dNi(u) = −

n∑
i=1

∫ t

0

dNi(u)
n∑

j=1

ΨjH(β̂n, Ĥn, F̂n)[I(· ≥ u)]

Ψj(β̂n, Ĥn, F̂n)

,

where we use Ni(u) to denote the counting process of Yi.

Now define

H̃n(t) = −
n∑

i=1

∫ t

0

dNi(u)
n∑

j=1

ΨjH(β0,H0, F0)[I(· ≥ u)]

Ψj(β0,H0, F0)

.

The Glivenko-Cantelli Theorem leads to lim
n→∞

H̃n(t) = H0(t). Here Ĥn(t) can

be written as

Ĥn(t) =

∫ t

0

1

n

n∑
j=1

ΨjH(β0,H0, F0)[I(· ≥ u)]

Ψj(β0,H0, F0)

1

n

n∑
j=1

ΨjH(β̂n, Ĥn, F̂n)[I(· ≥ u)]

Ψj(β̂n, Ĥn, F̂n)

dH̃n(u). (A.1)

It is now possible to show that H∗ is continuously differentiable. For sim-

plicity, define E (ΨjH(β0,H0, F0)[I(· ≥ u)]/Ψj(β0,H0, F0)) as g1j(u) and

E (ΨjH(β∗,H∗, F ∗)[I(· ≥ u)]/Ψj(β
∗, H∗, F ∗)) as g2j(u). It can be shown that

they are both bounded away from zero.

Taking the limit of (A.1), we get

H∗(t) =

∫ t

0

g1j(u)

g2j(u)
dH0(u).

We have now shown that H∗(t) is absolutely continuous with respect to H0(t).

By assumption, H0(t) is continuously differentiable, and so is H∗(t). Then

lim
n→∞

dĤn(t)

dH̃n(t)
=

h∗(t)

h0(t)
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uniformly in t ∈ [0, τ ], where h∗ is the derivative of H∗.

Repeating the same process with F similarly yields

lim
n→∞

dF̂n(Z)

dF̃n(Z)
=

f∗(Z)

f0(Z)

uniformly.

It follows from the inequality ln(β̂n, Ĥn, F̂n) ≥ ln(β0, H̃n, F̃n) that

1

n

n∑
j=1

log
Ψj(β̂n, Ĥn, F̂n)

Ψj(β0, H̃n, F̃n)
+

1

n

n∑
j=1

δj log
dĤn(Yj)

dH̃n(Yj)
+

1

n

n∑
j=1

∆j log
dF̂n(Zj)

dF̃n(Zj)
≥ 0.

Let n → ∞, then

E

(
log

Ψj(β
∗,H∗, F ∗)h∗(Yj)

δjf∗(Zj)
∆j

Ψj(β0,H0, F0)h0(Yj)δjf0(Zj)∆j

)
≥ 0.

The left-hand side is the negative Kullback-Leibler distance, therefore condition

C5 requires that β∗ = β0, H
∗ = H0 and F ∗ = F0 with probability one.

Proof of Theorem 2. This proof is based on the argument on maximum

likelihood estimators of Van der Vaart (1998, pp.419-424). Let

L(β,H, F ) = logΨj + δj log h(Yj) + ∆j log f(Zj),

Φn(β,H, F ) = Pn

{
vTLβ + LH

[ ∫
pdH

]
+ LF

[ ∫
qdF

]}
,

Φ(β,H, F ) = P
{
vTLβ + LH

[ ∫
pdH

]
+ LF

[ ∫
qdF

]}
,

where we use vTLβ, LH [g1], and LF [g2] to denote the partial derivatives of L
along direction of β + ϵv, H + ϵg1 and F + ϵg2 respectively as above, and let

Pn denote the empirical measure based on n i.i.d. observations with P as its

expectation.

For any δ0 > 0, when n large enough,

(β̂n, Ĥn, F̂n) ∈ N0 =

{
(β,H, F ) : |β − β0|+ |H −H0|+ |F − F0| < δ0

}
almost surely. By the Donsker theorem,

√
n(Φn − Φ)(β̂n, Ĥn, F̂n)−

√
n(Φn − Φ)(β0,H0, F0) = op(1).

Direct calculations show

√
n(Pn − P)

{
vTLβ(β0,H0, F0) + LH(β0, H0, F0)

[ ∫
pdH0

]
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+LF (β0,H0, F0)
[ ∫

qdF0

]}
=

√
n(Pn − P)

{
vTLβ(β̂n, Ĥn, F̂n) + LH(β̂n, Ĥn, F̂n)

[ ∫
pdĤn

]
+LF (β̂n, Ĥn, F̂n)

[ ∫
qdF̂n

]}
+ op(1)

= −
√
nP

{
vTLβ(β̂n, Ĥn, F̂n)− vTLβ(β0,H0, F0) + LH(β̂n, Ĥn, F̂n)

[ ∫
pdĤn

]
−LH(β0,H0, F0)

[ ∫
pdH0

]
+ LF (β̂n, Ĥn, F̂n)

[ ∫
qdF̂n

]
−LF (β0,H0, F0)

[ ∫
qdF0

]}
+ op(1)

= −
√
nP

{
vTΨjβ(β̂n, Ĥn, F̂n)

Ψj(β̂n, Ĥn, F̂n)
−

vTΨjβ(β0,H0, F0)

Ψj(β0,H0, F0)
+

ΨjH(β̂n, Ĥn, F̂n)[

∫
pdĤ]

Ψj(β̂n, Ĥn, F̂n)

−
ΨjH(β0,H0, F0)[

∫
pdH0]

Ψj(β0, H0, F0)
+

ΨjF (β̂n, Ĥn, F̂n)[

∫
qdF̂ ]

Ψj(β̂n, Ĥn, F̂n)

−
ΨjF (β0,H0, F0)[

∫
qdF0]

Ψj(β0,H0, F0)

}
+ op(1). (A.2)

For the continuous linear functional from BV [0, τ ] to R:

p 7→ P
(
ΨjH [p]

Ψj
(β,H, F )

)
,

by Theorem 4.2 in Edwards and Wayment (1971), there exists a bounded function

ηH such that

P
(
ΨjH [p]

Ψj
(β,H, F )

)
=

∫ τ

0
ηH(t;β,H, F )dp(t).

To be specific, let p(s) = I(s ≥ t), so that

ηH(t;β,H, F ) = P
(
ΨjH [I(· ≥ t)]

Ψj
(β,H, F )

)
.

Analogously, we define

ηF (z;β,H, F ) = P
(
ΨjF [I(· ≥ z)]

Ψj
(β,H, F )

)
,

and second order partial derivatives functions:
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ηHβ(t;β,H, F ) =
∂

∂β
ηH(t;β,H, F ),

ηFβ(t;β,H, F ) =
∂

∂β
ηF (t;β,H, F ),

ηHH(s, t;β,H, F ) =
∂

∂H
ηH(s;β,H, F )[I(· ≥ t)],

ηHF (s, z;β,H, F ) =
∂

∂F
ηH(s;β,H, F )[I(· ≥ z)],

ηFH(x, t;β,H, F ) =
∂

∂H
ηF (x;β,H, F )[I(· ≥ t)],

ηFF (x, z;β,H, F ) =
∂

∂F
ηF (x;β,H, F )[I(· ≥ z)].

We also set

ζβ(β,H, F ) =
∂

∂β
P
(
Ψjβ

Ψj

)
(β,H, F ),

ζH(t;β,H, F ) =
∂

∂H
P
(
Ψjβ

Ψj

)
(β,H, F )[I(· ≥ t)],

ζF (z;β,H, F ) =
∂

∂F
P
(
Ψjβ

Ψj

)
(β,H, F )[I(· ≥ z)].

The right-hand side of (A.2) is now

= −
√
n
(
B1[v, p, q]

T (β̂n − β0)+

∫
B21[v, p, q]d(Ĥn−H0)+

∫
B22[v, p, q]d(F̂n−F0)

)
+o

(√
n|β̂n − β0|+

√
n|Ĥn −H0|+

√
n|F̂n − F0|

)
,

with linear operators B1, B21, and B22 defined as

B1[v, p, q] = vT ζβ(β0, H0, F0) +

∫ τ

0
ηHβ(t;β0,H0, F0)p(t)dH0(t)

+

∫
M

ηFβ(z;β0,H0, F0)q(z)dF0(z);

B21[v, p, q] = vT ζH(t;β0,H0, F0) + ηH(t;β0,H0, F0)p(t)

+

∫ τ

0
ηHH(s, t;β0,H0, F0)p(s)dH0(s)

+

∫
M

ηFH(x, t;β0,H0, F0)q(x)dF0(x);

B22[v, p, q] = vT ζF (z;β0,H0, F0) + ηF (z;β0,H0, F0)q(z)

+

∫ τ

0
ηHF (s, z;β0,H0, F0)p(s)dH0(s)

+

∫
M

ηFF (x, z;β0,H0, F0)q(x)dF0(x).
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The operator [B1, B21, B22] can then be written as

B1[v, p, q]
T ṽ +

∫
B21[v, p, q]p̃dH0 +

∫
B22[v, p, q]q̃dF0

=
d

dϵ

∣∣∣∣∣
ϵ=0

P
{
vTLβ(β0 + ϵṽ,H0 + ϵ

∫
p̃dH0, F0 + ϵ

∫
q̃dF0)

+LH(β0 + ϵṽ,H0 + ϵ

∫
p̃dH0, F0 + ϵ

∫
q̃dF0)

[ ∫
pdH0

]
+LF (β0 + ϵṽ,H0 + ϵ

∫
p̃dH0, F0 + ϵ

∫
q̃dF0)

[ ∫
qdF0

]}
.

We now show that (B1, B21, B22) is continuously invertible. By the Open Map-
ping Theorem, we need only prove that the linear operator is one-to-one.

To show (B1, B21, B22) is injective, suppose that B1[v, p, q] = 0, B21[v, p, q] =
0 and B22[v, p, q] = 0. Then

0 = B1[v, p, q]
T v +

∫
B21[v, p, q]pdH0 +

∫
B22[v, p, q]qdF0,

where the right-hand side is the derivative of

P
{
vTLβ(β0,H0, F0) + LH(β0,H0, F0)

[ ∫
pdH0

]
+ LF (β0,H0, F0)

[ ∫
qdF0

]}
along the path (β0 + ϵv,H0 + ϵ

∫
pdH0, F0 + ϵ

∫
qdF0). This implies that the

information along this path is zero, hence

vTLβ(β0,H0, F0) + LH(β0, H0, F0)
[ ∫

pdH0

]
+ LF (β0, H0, F0)

[ ∫
qdF0

]
= 0

almost surely. By the identifiability condition (C6), we get (v, p, q) = 0.
To show (B1, B21, B22) is surjective, write

(B1, B21, B22)[v, p, q] = I1[v, p, q] + I2[v, p, q],

where I1[v, p, q] is defined as v

ηH(t;β0,H0, F0)p(t)

ηF (z;β0,H0, F0)q(z)


and I2[v, p, q] is defined as

vT ζβ(β0,H0, F0) +
∫ τ
0 ηHβ(t;β0,H0, F0)p(t)dH0(t)

+
∫
M ηFβ(z;β0,H0, F0)q(z)dF0(z)− v

vT ζH(t;β0,H0, F0) +
∫ τ
0 ηHH(s, t;β0,H0, F0)p(s)dH0(s)

+
∫
M ηFH(x, t;β0,H0, F0)q(x)dF0(x)

vT ζF (z;β0,H0, F0) +
∫ τ
0 ηHF (s, z;β0,H0, F0)p(s)dH0(s)

+
∫
M ηFF (x, z;β0,H0, F0)q(x)dF0(x)


.
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Since ηH(t;β0,H0, F0) = P(LH(β0,H0, F0)[I(· ≥ t)]), the score function along

the direction of H0+ϵI(· ≥ t), ηH(t;β0,H0, F0) is negative and continuous for all

t. Similarly, ηF (z;β0,H0, F0) is the score function along the direction F0+ϵI(· ≥
z), hence ηF (z;β0, H0, F0) is negative and continuous for all z. Thus I1[v, p, q] is

a bijective continuous operator, and is continuously invertible.

By the smoothness conditions (C1) and (C3), the image of I2 is a set of

uniformly bounded and equi-continuous functions, hence I2 is a compact operator

by the Arzelá-Ascoli theorem. Now we can write (B1, B21, B22) as I1 + I2 =

I1(I + I−1
1 I2), where I is identity mapping. It is clear that I−1

1 I2 is a compact

operator by the continuity of I−1
1 . Then I + I−1

1 I2 is a Fredholm operator. Now

since ker(I + I−1
1 I2) = ker(I1 + I2) = 0, the Fredholm operator theory gives

that I + I−1
1 I2 is surjective, and so is I1 + I2. The continuous invertibility of

(B1, B21, B22) has been proved.

Now with (ṽ, p̃, q̃) = (B1, B21, B22)
−1(v, p, q), from (A.2) we have

√
n
{
vT (β̂n − β0) +

∫
pd(Ĥn −H0) +

∫
qd(F̂n − F0)

}
= −

√
n(Pn − P)

{
ṽTLβ(β0,H0, F0) + LH(β0, H0, F0)

[ ∫
p̃dH0

]
(A.3)

+LF (β0,H0, F0)
[ ∫

q̃dF0

]}
+o

(√
n|β̂n−β0|+

√
n|Ĥn−H0|+

√
n|F̂n−F0|

)
.

The first term of the right side of (A.3) converges in distribution to a zero-mean

Gaussian process in the metric space Rd × L∞(Q1) × L∞(Q2). By Slutsky’s

theorem, we now need only show that

√
n|β̂n − β0|+

√
n|Ĥn −H0|+

√
n|F̂n − F0| = Op(1). (A.4)

By definition,

|β̂n − β0|+ |Ĥn −H0|+ |F̂n − F0|

= sup
(v,p,q)∈V×Q1×Q2

∣∣∣∣vT (β̂n − β0) +

∫ τ

0
pd(Ĥn −H0) +

∫
Z
qd(F̂n − F0)

∣∣∣∣,
so (A.3) gives

√
n|β̂n − β0|+

√
n|Ĥn −H0|+

√
n|F̂n − F0|

= Op(1) + o
(√

n|β̂n − β0|+
√
n|Ĥn −H0|+

√
n|F̂n − F0|

)
,

therefore (A.4) holds immediately.

Now we have

√
n
{
vT (β̂n − β0) +

∫
pd(Ĥn −H0) +

∫
qd(F̂n − F0)

}
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= −
√
n(Pn − P)

{
ṽTLβ(β0,H0, F0) + LH(β0,H0, F0)

[ ∫
p̃dH0

]
+LF (β0,H0, F0)

[ ∫
q̃dF0

]}
+ op(1). (A.5)

Since the right side of (A.5) converges to normal by the Central Limit Theorem,

we have proved that
√
n(β̂n − β0, Ĥn −H0, F̂n − F0) converges weakly to a zero-

mean Gaussian process. If p = q = 0 in equality (A.5), then the estimate β̂n
is an asymptotically linear estimator with influence function ṽTLβ(β0,H0, F0) +

LH(β0,H0, F0)[
∫
p̃dH0] + LF (β0,H0, F0)[

∫
q̃dF0], which lies in the linear space

spanned by the score functions: {ṽTLβ + LH [
∫
p̃dH] + LF [

∫
q̃dF ] : ṽ ∈ Rd, p̃ ∈

Q1, q̃ ∈ Q2}. By Proposition 1 in Bickel et al. (1993), the estimate β̂n is semi-

parametrically efficient.

Proof of Theorem 3. Let H̃n(t) be a step function with a jump size h̃n(si) =

H0(si) − maxsj<si H0(sj) at each failure time si, and F̃n(z) be a step function

with a jump size f̃n(Zi) = F0(Zi)−maxZj1
≤Zi,...,Zjd

≤Zi F0(Zj1(1), . . . , Zjd(d)) at

each observed covariate Zi, where Zk(m) is the value on the mth dimension of

the covariate Zk, and the order Zk < Zi is taken as Zk(m) < Zi(m) for all

1 ≤ m ≤ d. Then H̃n(si) = H0(si) and F̃n(Zi) = F0(Zi) holds for every si and

Zi.

Choose v1 ∈ Rd and bounded variation functions p1 ∈ Q1, q1 ∈ Q2 such that v1∫
p1dĤn∫
q1dF̂n

 = I−1
n

v

p⃗

q⃗

 ,

where In, p⃗, and q⃗ are as defined in Theorem 3 and∫
p1dĤn = (p1(s1)ĥn(s1), . . . , p1(sn1)ĥn(sn1))

T ,

∫
q1dF̂n = (q1(Z1)f̂n(Z1), . . . , q1(Zn2)f̂n(Zn2))

T .

Let

ĥn − h̃ = (ĥn(s1)− h̃(s1), . . . , ĥn(sn1)− h̃(sn1))
T

and

f̂n − f̃ = (f̂n(Z1)− f̃(Z1), . . . , f̂n(Zn2)− f̃(Zn2))
T ,

then we have

√
nvT (β̂n − β0) +

√
n

n1∑
i=0

p(si)(ĥn(si)− h̃(si)) +
√
n

n2∑
i=0

q(Zi)(f̂n(Zi)− f̃(Zi))
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=
√
n

 β̂n − β0
ĥn − h̃

f̂n − f̃


T v

p⃗

q⃗



=
√
n

 β̂n − β0
ĥn − h̃

f̂n − f̃


T

In

 v1∫
p1dĤn∫
q1dF̂n



=
√
nPn

 Lββ LβH LβF

LHβ LHH LHF

LFβ LFH LFF

 (β̂n, Ĥn, F̂n)


 v1∫

p1dĤn∫
q1dF̂n

 ,

 β̂n − β0
Ĥn − H̃n

F̂n − F̃n




=
√
nP

 Lββ LβH LβF

LHβ LHH LHF

LFβ LFH LFF

 (β0, H0, F0)


 v1∫

p1dH0∫
q1dF0

 ,

 β̂n − β0
Ĥn −H0

F̂n − F0


+ op(1)

= −
√
n(Pn −P)

{
v1

TLβ(β0,H0, F0) + LH(β0,H0, F0)
[ ∫

p1dH0

]
+LF (β0,H0, F0)

[ ∫
q1dF0

]}
+ op(1),

where the last equality is from the proof of Theorem 2.

Note that

= −
√
n(Pn − P)

{
v1

TLβ(β0, H0, F0) + LH(β0,H0, F0)
[ ∫

p1dH0

]
+LF (β0, H0, F0)

[ ∫
q1dF0

]}
= −

√
n(Pn − P)

{
v1

TLβ(β0, H0, F0) + LH(β0,H0, F0)
[ ∫

p1dĤ
]

+LF (β0, H0, F0)
[ ∫

q1dF̂
]}

+ op(1),

and the variance of the right side is consistently estimated by

−P

 Lββ LβH LβF

LHβ LHH LHF

LFβ LFH LFF

 (β0,H0, F0)

 v1∫
p1dĤn∫
q1dF̂n

 ,

 v1∫
p1dĤn∫
q1dF̂n

 .

This can be further estimated by

−Pn

 Lββ LβH LβF

LHβ LHH LHF

LFβ LFH LFF

 (β̂n, Ĥn, F̂n)

 v1∫
p1dĤn∫
q1dF̂n

 ,

 v1∫
p1dĤn∫
q1dF̂n


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=

 v1∫
p1dĤn∫
q1dF̂n

T

In

 v1∫
p1dĤn∫
q1dF̂n


= (vT , p⃗T , q⃗T )I−1

n InI
−1
n (vT , p⃗T , q⃗T )T

= (vT , p⃗T , q⃗T )I−1
n (vT , p⃗T , q⃗T )T .

The proof of Theorem 3 is complete.
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