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Supplementary Material

This supplement is organized as follows. Section S1 contains the detailed proofs
of the required technical lemmas used to prove the main results in the paper. The
section is divided into four subsections to classify the lemmas used in the CLT of the
ISE, the independence test and the goodness-of-fit test, with an extra subsection for
general purpose lemmas. Section S2 presents closed expressions that can be used in the
independence test, the extension of the results to the directional-directional situation and
some numerical experiments to illustrate the convergence to the asymptotic distribution.
Section S3 describes in detail the simulation study of the goodness-of-fit test to allow its
reproducibility: parametric models employed, estimation and simulation methods, the
construction of the alternatives, the bandwidth choice and further results omitted in the

paper. Finally, Section S4 shows deeper insights on the real data application.

S1 Technical lemmas

S1.1 CLT for the ISE

Lemma 1 presents a generalization of Theorem 1 in Hall (1984) for degenerate U-statistics
that, up to the authors’ knowledge, was first stated by Zhao and Wu (2001) under
different conditions, but without providing a formal proof. This lemma, written under a
general notation, is used to prove asymptotic convergence of the ISE when the variance
is large relative to the bias (n¢(h,g)h%g — 0) and when the bias is balanced with the
variance (ng(h, g)hg — 0).

Lemma 1. Let {X,-};L:1 be a sequence of independent and identically distributed random
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variables. Assume that Hy(z,y) is symmetric in x and y,
E[H, (X1, X>)|X1] = 0 almost surely and E [H; (X1, X>)] < o0, Vn. (S1.1)

Define Gn (z,y) = E[H, (2, X1) Hp (y, X1)] and @n, satisfying Epn(X1)] = 0 and
E [¢1(X1)] < co. Define also:

M (X1) =E [n(X2) Hp (X1, X3)|X4],
A, =nE [} (X1)]+ n’E [M2(X1)]+ n’E [Hp (X1, X2) ]+ n'E [G2 (X1, X2)]

1
B, =nE [¢2(X1)] + 5n?]E [H2 (X1, X5)]
If A,By2—=0asn— oo and U, =Y 1 on(X;) + D<icjen Hn (Xis Xj),

B2 U, -4 N(0,1).

Note that when ¢, = 0, U, is an U-statistic and Theorem 1 in Hall (1984) is a

particular case of Lemma 1.

Proof of Lemma 1. To begin with, let consider the sequence of random variables {Y,, }.—;,
defined by

v, — Qon(Xl)a } 1= 1a
i <Pn(Xz’)+Z;';11 H,(X:, X;), 2<i<n.

This sequence generates a martingale S; = 22:1 Y,,, 1 <1 < n with respect to the
sequence of random variables {X;}._, with differences Y,,, and with S,, = U,. To see
that S; = Z;zl Y,,, 1 <i < nis indeed a martingale with respect to {X;};_;, recall
that

i+1 i+1 -1
E[Sit1 X1, X =Y Elon(X)I X1, X1+ > Y E[Ha(X;, X)X, ..., X
Jj=1 j=1k=1

because of the null expectations of E [¢,,(X)] and E [H,, (X1, X2) | X1].

The main idea of the proof is to apply the martingale CLT of Brown (1971) (see
also Theorem 3.2 of Hall and Heyde (1980)), in the same way as Hall (1984) did for the
particular case where ¢,, = 0. Theorem 2 of Brown (1971) ensures that if the conditions



CLTS FOR DIRECTIONAL LINEAR RANDOM VARIABLES S3

: —2 2 _
C1. nh—>ngo Sh Z;E |:Ym]1{|yni|>ssn}:| =0, Ve >0,
i=
C2. 5,22 21,

are satisfied, with s2 = E[U2] and V2 = Y1 | E[Y,2|Xy,...,X;_1], then s;'U, N
N(0,1). The aim of this proof is to prove separately both conditions. From now on,
expectations will be taken with respect to the random variables X1, ..., X, except oth-

erwise is stated.

Proof of C1. The key idea is to give bounds for E[Y,! | and prove that s;* Y7 | E[Y}

— 0 as n — oo. In that case, the Lindenberg’s condition C1 follows immediately:

lim s;2Z]E |:Yn2731{|ynt|>53n}:| < lim s;2ZE [Yfisfzsgz X 1]
i=1

n—o00 n— o0 e
i=1

=e7? lim 554;]E (v, ]
=0.
In order to compute s2 = E [U,zl], it is needed
27 ]EI:SO%(XI):I ’ L= ].7
E [}/’ﬂz] - 2 ) . ) .
E [@2(X:)] + (i — DE [H2(X1,X,)], 2<i<n,

where the second case holds because the independence of the variables, the tower property

of the conditional expectation and (S1.1) ensure that
E [Cpn(Xl)Hn(le XQ)] =E [Hn(Xl, XQ)Hn(Xl, Xg)] =0.

Using these relations and the null expectation of ¢, (X1), it follows that for j # k,

k—1
E [V, Vo] =E [0 (X)) E [0n(X0)] + D E [on(X;) Ha (X, X1))
=1
j—1 k-1 j—1
+ Z E [Qpn(Xk)Hn(Xj’ Xm)] + Z Z E [Hn(Xk»Xl)Hn(Xj’ Xm)]
m=1 =1 m=1
=0.
Then:
st =nE [¢2(X1)] + ) (7 — VE [HZ (X1, X2)] = O (Bn). (S1.2)

J=1
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On the other hand,

B (1] =E| (2060 + X Ha(X0 X7)|

i—1 4
=0 (E [pn(X))]) + O(E[(Zﬂn(xi,){j)) D
j=1
=0 (B [¢h(X1)]) + (i — DO (E [H, (X1, X2)])
+3(i — 1)(i — 2)0 (E [H2 (X1, X2)HA (X1, X3)])
where the equalities are true in virtue of Lemma 12 and because
]E[Hn (X1, X2) Hy, (X1, X3) Hy, (X1, X4) Hy, (Xl,Xg))] =E [Hf; (X1, X5) H, (Xl,Xg)] =0.

Finally,

ZE (V1] =nO (E [¢p(X1)]) + %n(n —1)0 (E [Hp (X1, X2)])

+ (n® —n)O (E [G%(X1, X2)])
ot (S1.3)

Then, joining (S1.2) and (S1.3),
n—oo

s;*Y E[Y]=0(B,%A,) ——0
i=1

and C1 is satisfied.

Proof of C2. Now it is proved the convergence in squared mean of s;2V,? to 1,
which implies that s,2V;2 - 1, by obtaining bounds for E [V;].

First of all, let denote V,2 = > | v,,,, where

Vp, =E [Y2i‘X1,...,X¢_1]

n

j=1
i—1d—1

DD (X, X Ho (Xi, Xp)| X ,X“}
j=1k=1

i—1 i—1

SB[ (X)) 423 Ma(X) + 30 3B [Ha(X X)) Ha (X3, X)X, X4
j=1 j=1k=1
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:]E[%%(Xl)] +2ZX:MVL(XJ)+§G (X, X;) +2 Z Gn(Xj, Xg).-

1<j<k<i—1

Using Lemma 12, the Jensen inequality and that for j; < kq, jo < ko,

E[G2(X1,X1)], j1=hki =j>= ko,
E[Gn(X1, X)*, 1=k # jo = ko,

E|Gn(Xj,, Xk, )Gn(X,,, Xi,)] = ] )
(G (X1 X )G X, Xo) E[G2(X1,X2)], j1=1j2 <ki=ks,

0, otherwise,
it follows:
i—1i—1
E[12] =0 (E[p2(x1)]") + 32D O (B [My(X;) Mo (X))
j=1k=1

+ i N O (E [Gn(Xj; X])Gn(kaXk)])
j=1k=1

-|— Z O(]E [Gn(levXkl)G (XJQVXk2)])

1< <ki<i—1
1<j2<ka<i—1

=0 (E [¢n(X1)]) + (i = 1)O (E [M7(X1)])

+ (i = 10 - 20 (E[Mu(X1)]*)

+(i—1)0 (E [G3( (i
+i-1)i -2

G2(X1, X1)]) + (i = 1)(i = 2)0 (E[Gn (X1, X))

G
=
Q
S
>
s

Applying again the Lemma 12,

n

E [V] :E[(ZVM)Q] :gO(E V2

i=1

By the two previous computations and bearing in mind that E[G,(Xi,X;)]* =
O (E [H}(X1,X2)]) (by the Cauchy-Schwartz inequality) and E [M, (X1)] = 0 (by the
tower property), it yields:

E[V.] —nO(E[ X1)]) +n(n = 1O (E [Mz(X1)])
+n(n— ) = 3)0 (E [H, (X1, X2)])
+n(n —1)(n = 3)0 (E[G} (X1, X2)])
=0 (An) .
Then, using the bound for E [ ] that s2 = B,, and that E [V ] 2 it results

E[(5:2V2 = 1)) = s, B [(v2 = 2)°] =2 (B[V] = sb) < s, E V1] = O (B2 A,).
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Then s, 2V,2 converges to 1 in squared mean, which implies s,,2V,? 251 O
Lemma 2. Under A1-AS3,

n2é(h,g) 2 Iy — N(0,1).

Proof of Lemma 2. The asymptotic normality of I,, ; = ZZ ] 17(1)1 will be derived check-
ing the Lindenberg’s condition. To that end, it is needed to prove the following relations:

B[] =0, E[(I1)] =n70(hg)(1 +o (1),

n,1

E[(1)"] —0( T gh), =070+ g),

n7

where s2 = 31", E[( ) | and ¢(h, g) is defined as in Theorem 1. If these relations
hold, the Lindenberg’s condition

. —2 (i) \ 2
3 E (010

2 >ES”}:| =0, Ve>0

is satisfied:

QZ]E{M } ZE[If *2*4><1]

= nk [(Iflz)l) } O (n (h® + gs)_l)
=20 (n71).

Therefore s, 1, 1 SN N(0,1), which, by Slutsky’s theorem, implies that

n3¢(h,g) 2L, — N(0,1).

In order to prove the moment relations for Ir(f)l and bearing in mind the smoothing

operator (5.2), let denote

~ _xT . — . N
17(11)1 :QCh’;;L)/Q RLK (1 ;;2 Xz, z gZZ) (]E [fh,g(x,z)] —f(x7z)> dz wg(dx),

=20 LK, , (E [fh,g(Xi, Zi)} - [(Xs, Zi))

n, n,1 can be decomposed in two

so that 17(;7)1 = ffﬁ — E[’I\};)l] Therefore, IE[I Z)J =0 and IV
addends by virtue of Lemma 11:

)

fff)l:2n_1LKh7g<bqf]L)tr[7-fo(Xi,Zi)}h2 ( ZICPTT A >+0(n_1(h2+g2))
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=100+ 10D 1o (n7H(h? + ),

5

where 109 — O LKh g0;(f, X, Z;) and

n,l

(f ) tr [fo(xaz)]v j = 1; 5 quq(L) hQnila ] = ]-7
wilJ, X, 2) = . j = .
/ H. f(x,2), j=2 " pe(K)g*n=t, j=2.

Note that as the order o (h2 + g2) is uniform in (x,2) € Q4 x R, then it is possible to
extract it from the integrand of f,(f)l Applying Lemma 10 to the functions ¢;(f, -, ), that
by A1 are uniformly continuous and bounded, it yields LK} 4¢;(f,y,t) = ¢;(f,¥,t)
uniformly in (y,t) € Q, x R as n — co. So, for any integers k; and ko:

i 538 ()" (7))

n—oo

= lim (LK g01(f,y, )" (LEp g2 (f,y, 1) f(y, ) dt wy(dy)

n—oo Qq xR

- /Q oAy P a3 0 Tt dey ()
=E [p1(f, X, 2)" ¢a(f, X, Z)F2] .

Here the limit can commute with the integral by the Dominated Convergence Theorem
(DCT), since the functions (LK} g4 (f,y,t))" are bounded by condition Al and the

construction of the smoothing operator (5.2), being this dominating function integrable:

(LEn g1 (£.y. 1) (LK g02(f,y. )™ f(y. 1)
S sup ’@I(faxaz>kl(p2(fax7z)k2’f(Y7t)'
(x,2)€Qg xR

Recapitulating, the relation obtained is:
o~ ) b (L)k
E |:(Ir(:’,11))k1 (j—}lzy,f))lm} N 2k1n7(k1+k2) q(qkl) 14 (K)k2 h2k192k2
X E |tr [P/, X, )] Ho (X, 2)"2]

Now it is easy to prove:

B [(10)7] ~E (@) + 12)7] - (& [0] + = [102])
=E [(I01)°] + & [(100)7] - 2m [0 10D

B[] R[] -k [10] & [197)]
L

2(‘”"’( P Var tr (£, X, Z)]) 1+ pa(K)?Var [ F(X, 2)] g*
~n q2 ar |tr | H« ([, X, K2 ar |7tz , g
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y(LpalE)
q

=n"2¢(h,g).

+ tr [Hx(faX’Z)]aHzf(Xa Z)] h292>

With the previous expression, it follows ]E[(I,(lz
point of Lemma 12) and s2 = n=1¢(h,g)(1 + o0
fourth point of Lemma 12:

)1)2] O (n72(h* 4+ g*)) (see the first
(1) = ( “(h* +g4)). Then by the

where

Lemma 3. Under A1-A3,

Ag(L?)Ag(L)"*R(K)
nhig

Loz =E[Lp2] +Op (n~3h71g7") = +0p (n~ 071971,
Proof of Lemma 3. To prove the result the Chebychev inequality will be used. To that
end, the expectation and variance of I, o = % Yo I,S)Q have to be computed. But
first recall that, by Lemma 10 and (2.1), for ¢ and j naturals,

(1—xTy 22—t ) L
/Q LK <th p )w(y,t)dtwq(dy)thgxq(LJW(x,z), (S1.4)
X

uniformly in (x, z) € Q, x R, with ¢ a uniformly continuous and bounded function and

A(L7) = wy—12871 [ LI (r)r—1 dr. The following particular cases of this relation are

useful to shorten the next computations:

i B[LK (1552, 2=22)] ~ high (L) f(x, 2),

. fQ ><]RLKQ(l x” Y Z;t) dzwy(dx) ~ high,(L*)R(K).

Ezpectation of I, ». The expectation is divided in two addends, which can be com-
puted by applying the relations i—ii:

E [f,gg} -

/ LKZ((x,2),(X,Z)) dzw,(dx)
Q xR
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1-xTX z-2Z
:/Q X]R]E{LKQ <h2 g )] dz wg(dx)
_ T _ 2
7/ ]E{LK(lXX,Z Z)] dz wy(dx)
Qg xR h? g

2 lfxTX 2 — 7 2 2 ,
- /squRLK (1127 g )dqu(dx)] —h™g"A(L)"R(f)(1 + 0 (1))

=higA(L*)R(K) + O (h*g?).

Therefore, the expectation of I, 5 is

Ag(L)~2

_ ML) Ag(L*)Ag(L) *R(K)
~ nh2ag2

E|I
[ "’2] nhdg

(RigA(L*)R(K) + O (R*1g?)) =

+ 0 (nfl) .

Variance of I, 2. For the variance it suffices to compute its order, which follows
considering the third point of Lemma 12:

sl = [ {6 )} $03.0) s )
—o (i + 7).

where the involved terms are

2
; 1-xTy 22—t
- [ { | (AR )dwqwx)} (3 1) di sy (),
QxR | JQ xR g

2

_ I _ 2
Ir(zl,’;) :/Q R{/ﬂ ]R]E [LK <1 h); X,Z gZ)] dzwq(dx)} fy,t) dtwg(dy).
g X g X

Using relations i—ii the orders of the addends I @) I = 1,2, follow easily:

n,2

K~ [ g (IREOY 5050 iy (dy)
Qg xR

1A (L2 R,
. 2
19~ [ A @) (i b sy di(ay)
Qg xR Qg xR
— g (L) R,

Therefore If:;’;) =0 (h2qg2), ISZQ) =0 (h4qg4) and E[(Ifll)z)ﬂ = O(I,(i"zl)) +(9(Ir(z’22)) =
o0 (thgQ). The variance of I,, 5 is

n

Var [I,2] < TL_"‘C;W(L)‘lg_4 ZE {(17(:)2)2} =0 (n_?’h_qu_Q) ,
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so by Chebychev’s inequality
: 1
P{Il2 — B el = kn 371971} < 0 VE >0,

which, by definition, is

Ag(LH)Aq(L)*R(K)

+ Op (n_%h_qg_l) ,
because O (n’l) = Op (n*%h*qgfl). O
Lemma 4. Let be
Hy ((x,2), (v, 1)) = /Q LK ((u,v), (x,2)) LKy ((w,0), (y, 1)) dvw,(du),
g X

Gn ((%,2), (y, 1) =E[Hn (X, 2), (%, 2)) Hn (X, Z), (y,1))],

Ch,q(L)2

Mo (X, 21) =24 B [ 10 H (%0, 20), (X, 22)) (X0, 24)

Then, under A1-AS3,

E [H2 (X1, Z1), (X2, Za))] =h*1g°Ag(L)*0? (1 4 0 (1)), (S1.5)
E [H, (X1, Z1), (X2, Z2))] =0 (h*9°) (S1.6)
E [G2 (X1, 21), (X2, Z2))] =0 (h7997), (SL.7)

E[M2(X1,21)] =0 (n=0(h* + gy~ FgF) (S1.8)

Proof of Lemma 4. The proof is divided in four sections.

Proof of (S1.5). E[H2(X1, Z1), (X2, Z2))] can be split into three addends:

E[H} (X1, 21), (X2, Z5))]
2
—E K/ﬂ LK ((x,2), (X0, 20)) LK (%, 2), (X2, 22)) dzwq(dx)> ]
_El/gz XR/Q <R (X1721))LK71 ((X,Z),(X27Z2))
x LK, ((y,1), (X1, Z1)) LKy (v, 1), (X2, Z2)) dz wy(dx) dtwq(dy)]

- / / E[LK, ((x.2), (X, 2)) LKy ((y.£), (X, Z))]? dz w,(dx) dtw,(dy)
QxR JQ, xR

- / / (Br((x,2), (3.)) — Ba((x, 2), (. 1)))? dzoy(d) di wq(dy)
QxR JQ xR
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=A; — 245 + As,

where:

Ei((x,2), (y,t)) =E {LK (HL’;TX z ; Z) LK <1h3;TX th)} :

Es((x,2), (y,t)) =E {LK (HL’;TX z ; Z)] E {LK (lff;TX th)] .

The dominant term of the three is Ay, which has order O (h3qg3), as it will be seen.
The terms Ao and Az have order O (h4qg4), which can be seen applying iteratively the
relation (S1.4):

Ay = /Q . /Q B(2), (5 D) Ba((%,2). (v 0) disy (dy) doy (%)

o (e (1557500 100)

X (hzquAq(L) f(x,2)f(y, )) dt wy(dy) dz wy(dx)

~Hig (L) / £, 2)? dz wq(dx),

Q4 xR

Ay = / / (%, 2), (y,1)) dt wq(dy) dz wq(dx)
Qg xR JQgxR
/ / B9 g8 N (D) (%, 2)2f (v, £)2 dt wy (dy) dz w(dx)
Qg xR JQgxR

=119\ (L) R(P)

Let recall now on the term A;. In order to clarify the following computations, let
denote by (x,z), (y,y) and (z,z) the three variables in Q, x R that play the role of
(x,2), (y,t) and (u,v), respectively. The addend A; in this new notation is:

T _
4 / / / LK( xz’x >LK( yz7y z>
e QXRQXR[QXR h? h? g

X f(z,2z)dz wq(dz)] dy wy(dy) dzwy(dx).

The computation of A; will be divided in the cases ¢ > 2 and ¢ = 1. There are several
changes of variables involved, which will be detailed in i—iv. To begin with, let suppose
q>2:

o LALLM
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_ — st — _$2)3 —
« LK t7x 2\ 1k 1—st—7(1 8)27y z
h? g h? g

-3

(o B 1) A ) 18—

2
X dzdt dqug(dn)] (1—s2)2 1 dyds wq—1(dE) dx we(dx)

A AT AN Gy

<LK (r o= = 0 [ro2 — 122 - 0] L2

% f (1= )+ 1 [p(2 = h2p)] 3 [0B& +(1-6°)3 Agn] =)

X (= O (o2 = 1) T (o2 - 020)] dedbdpaain)]

X hI72r3 712 — h2r) 3102 dy dr w, 1 (dE) da wy(dx)

S A S AV S S TS

X LK (7 +p = h?rp—0 [rp(2 = h*r)(2 — W)t U)

< (1= B2p)x+ b [p(2 = h20)]* [0Bu& + (1 - 0%)} Agn| v — ug)
2

<=0 (o= 120)) " dudddp i) 72— 1)

X dv dr wg—1(d§) dr we(dx)

S A AT A B R

x LK (T+p—29(r,0)2 ,u+v)f( 2)(1—62)%F (2p)% "

2
X dud&dpwqg(dn)] (2r)% v drwy—1(d€) dr wy(dx)

PR ey 2 [T [ [ || otk

1
></ (1-62)% LK(r+p—29(rp)%,u+u) d&dpdu} dv dr

-1
= 1A, (L)'
The steps for the computation of the case ¢ > 2 are the following:
i. Let x a fixed point in €24, ¢ > 2. Let be the change of variables:

y=sx+(1—82)%Bx£, wq(dy) = (1—5) dswq 1(d§),
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where s € (—1,1), § € ;1 and Bx = (by,...,bg)(g+1)xq is the semi-orthonormal
matrix (BIByx = I, and BxBL =11 — xxT) resulting from the completion of x
to the orthonormal basis {x,b1,...,bg} of R+, Here I, represents the identity
matrix with dimension ¢g. See Lemma 2 of Garcia-Portugués et al. (2013b) for

further details. Consider also the other change of variables
z=1x+7By&+ (1 —1%— 72)%A5n, wy(dz) = (1 —1* — 72)§ dt dr wg—_o(dn),

where t,7 € (—1,1), >+ 72 < 1,n € Qg2 and Ag = (a1,...,a9)(g+1)x(g—1) 1S
the semi-orthonormal matrix (A Ag = I, and AgAf =T,y —xx" — B,¢¢'BT)
resulting from the completion of {x, Bx£€} to the orthonormal basis {x, Bx¢, ay, . . .,
a,_1} of R This change of variables can be obtained by replicating the proof
of Lemma 2 in Garcia-Portugués et al. (2013b) with an extra step for the case
q > 2. With these two changes of variables,

ylz=st+7(1 - 82)%, xT(By€) = XT(A57I) = (Bxf)T(Agn) =0.

ii. Consider first the change of variables r = 1% and then

h
1t )
(027, e epe- el
hlp(2—h2p)] 2 P

With this last change of variables, 7 = h [p(? — th)] %, t=1—h%pand, as a

result:
1—s? =h%r(2 - h?r),
1= =h?p(2 = h?p),
112 =72 =(1-0*h%*p(2 — h?p),
1—st—7(1—s%)2 1
i ;;2( 5) :r+p—h27°p—9[rp(2—h2r)(2—h2p)]2.
i11. Use u = £=% and v = L2,

g

w. By expanding the square, A; can be written as

et [ LI

X (pn(x> Z, T, P1, 913 Ui, v, 57 nl)(pn<xa Z,T, P2, 927 U2, v, Ea 772)
X dU1 d91 dp1 wq_g(d’l’h) dUQ d92 dpg wq_g(d’l’[z):|

X dvdr wg_1(d€) dr wy(dx), (51.9)
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where

wn(xvxvrapivgiauiavvgvni)
=L (p;) L (7“ + pi — WPrpi — 0 [rpi(2 — h?r)(2 — h?py)] )
X K (u;) K (u; +0) f((x,2) + aung) (1 - 62) "%

q4_1 q_ _1 a_ 1
xp2 (2-— h2pi)2 Lpi—3z (2 - h27”)4 2 1[072}1—2)(T)]].[O,Qh—Z)(pi),

Nl

with ay, = ( — h2pix + h [pi(2 — h2pi)]? [0By€ + (1 — 62)F Agn,], —uig) and
1 =1,2. A first step to apply the DCT is to see that by the Taylor’s theorem,

f ((X7 x) + ah,g) = f(X’ 'T) +0 (az;gvf(xa JJ)) )

where the remaining order is O((h?p; + g2u2)z ||V f(x,z)]|) because ||ozh,g\|2 =
2h?p; + g?u?. Furthermore, the order is uniform for all points (x, z) because of the
boundedness assumption of the second derivative given by A1 (see the proof of
Lemma 11). Next, as h, g — 0, then the order becomes o ((\/pi + ;) ||V f(x,2)|]).

For bounding the directional kernel L, recall that by completing the square,

(2= K2r)(2 = h2p)) =4 = 202(r + pi) + b ((r+ p)/2)° = b* (((r + i) /2)° = 7pi)

2
< (2_h27«+m)
—_ 2 .

Using this, and the fact that 8 € (=1, 1), for all r, p; € [0,2h2),
1
" pi = hPrpi = 0 [rpi(2 = hPr)(2 — h2py))?
1
> 1+ pi — hPrp; — (rp) [(2— h2r)(2 — h2py)) 2

>+ pi — h2rp; — (rpi)? (2 — h27‘;pi>

r =+ p; 1
=T+pi—2(rm)5+h2(rm);( 2p _(Tpi)Q)

>r+pi—2(rp;)2,

Nl

where the last inequality follows because the last addend is positive by the in-
equality of the geometric and arithmetic means. As L is a decreasing function
by A2,

[V

L(T + pi — KPrp; — 0 [rp;i(2 — BPr)(2 — B®p;)] ® ) <L (7" + pi — 2(rp;)
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Then for all the variables in the integration domain of A,
on(X, 2,7, pi, 0, ui,0,€6,m;) <L(p;) L (r + pi — 2(7"pi)%) K (u;) K (u; +v)

X (f(x.2) o (Voi +u) [V F (< 2)[) (1= 67) "%
241524 g o) (1) Lo 00 (04)

:\IJ(X,,I”I" Pis 9i7ui7v)'

%_
X P,

The product of functions ¢, in (S1.9) is bounded by the respective product of
functions ¥. The product is also integrable as a consequence of assumptions A1l
(integrability of f and V f), A2 (integrability of kernels) and that the product of
integrable functions is integrable. To prove it, recall that by the integral definition
of the modified Bessel function of order 4 — 1 (see equation 10.32.2 of Olver et al.
(2010)):

1 a=1
/1(1792)¥ do = ﬁrr((q; ) c oo, g2
- 2

The integral of the linear kernel is proved to be finite using the Cauchy-Schwartz

inequality and A2:

/R /R /RK(ul)K(“l + 0) K (u2) K (us + v) duy dus dv
- /R/RK(“”K(”?) [/R K (uy + v)K (uz + v) dv| duy dus

< / / K (1) K (uz) (K ) pa () ¥ duy duy
= p2(K).

For the directional situation, the following auxiliary result based on A2 is needed:

/OOOLQ ((\f_\/p—l)Q) Tg_ldTS/OOOLQ(s) (\/g_’_m)q—ls_%dr

o g1 k_1 a—l—k
:/ LQ(S)ZST[)Z- 2 dr
0 k=0

Using this and that fooo L(,o)pg%5 dr < )\(%] (L) < o0, it follows:

L Ho0monn (v o= 20008 £ (r 4 2 - 2000)%)
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g qa_
31 4

~1
X pioops

9] o0 a1 a4
- / / L(p)L{po)pd ' p3

x [/OOOL((\[—\/E)Q)L((W—\@)Q) ré—ldr] dp1 dps

oo oo a_1 a_ a—1 a—1

S/ / L(p1)L(p2)pi p3 'O (pl“ )0(p24 )dpl dpa
0 0

—0(1)

Y dr dpy dps

Then, by the DCT,

e [ L LALLL

x LK (p,u) LK (r+p—29(rp)% ,u+v>

2
0,0 (1= )77 (20 dud0dpi (i)
x (2r) 27V dv dr wy_ 1 (d€) da wy(dx),

because all the functions involved are continuous almost everywhere.

Turn now to the case ¢ = 1. As before, the details of the case ¢ = 1 are explained

in vi—iz:

&%@A//MJ/M(tx?

LK (1 — (1= )31 )} (Beg)" <Axn>7y—z>
h? g

2
x f (tx +(1- tz)%Axn,z) (1—t*)"2dz dtwo(dn)l
(1—s%)" % dy ds w (d€) dx w1 (dx)

”AWA/%/I@fh/“%ﬂ )

x LK (r +p—W2rp— (rp(2 = W2r)(2 — h2p)) * (Bx€)T A, ; 2)

X f ((1 — h2p)X + h [,0(2 — h2p)] % Axny'Z) h71p7%(2 _ h2p)7%h2

2
x dzdpwo(dn)] K73 (2 = h2r) " 2 h? dy dr wo(d€) da wy (dx)
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2h~2 2h~2
L A A A Y S R
QxR JQp JO R Qo J0O R

% LK (r+p = Wrp— (rp(2 = 12r)(2 = 12p))* (Buk)" Asm,u+ )
1

X (1= 12p)x+ R [p(2 = h20)] > Axm, @ ug)
2

Xp;@hagédudpwddnﬂ - n)h

X dv dr wo(d€) dx wy (dx)

] ) 2h 2 2h 2
S A A AT A
leR Q(] 0 R 0 R

X {LK (r +p—hrp+ (rp(2 — h*r)(2 — h2p))% U+ v)

% (1= 12 ppx+ 1 [p(2 = 12p)] PBot,r—u )

+LK(r+p—h2rp— (rp(2 — B°r)(2 — K?p )) u+v)
x f ((1 — h?p)x — h [p(2 — h?p)]* By&,x — ug) }
1 1 2 1 1
X p72(2—h%p) 2 du dp} r72(2 — h%r) 72 dv dr wo(d€) do wy (dx)
ST A AT A R
aixrJQJo JrLJo Jr
X [LK<r+p+2(rp)%,u+v)+LK(r+p 2rp)?,u v)]
2
x f(x,x) pT2273 du dp} rTE273 do dr wo(d€) dx w (dx)
o [T [ [
rRLJo Jr
[ <r+p+2rp%u+v)+LK(r+p 2(rp)% +U):|
X du dp] dv dr
=h%1g3)\,(L)*o?
The steps used for the computation are the following:

vi. Let x a fixed point in €,. For ¢ =1, let be the changes of variables

y=sx+(1-5%)7 By, wi(dy)=(1—s*)3 " dswo(df),
z=tx+(1-— tQ)%Axn, wi(dz) = (1 —t2)3 1 dt wo(dn),

S17
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where s,t € (—1,1) and Bx and Ay are two semi-orthonormal matrices whose ¢
columns are vectors that extend x to an orthonormal basis of R?*!. Note that

as ¢ = 1 and xT(Bx€) = xT(Axn) = 0, then necessarily Bx& = A,n or By& =
—Axn.

vii. Let be the changes of variables p = % and r = 1h_2
and s = 1 — h%r. Then 1 — s2 = h?r(2 — h%r), 1 —t? = h%p(2 — h%p) and

1—st— (1 — 32)%(1 — tQ)%(Bxg)TAx’rl
h2

= p— g — (rp(2 = 1r)(2 — %) (Bo&)T A

Zandv:%.

viit. Use u = ””g

iz. A; can be written as

Al :h?’qg?)/ / / / |:/ // /gpn(x,x,r,pl,ul,v,ﬁ)
QxR JQye_1 J0O R 0 RJO R

X on (X, T, 7, p2, us, v, &) duy dpy dusg dpg} dv dr wg—1(d) da wq(dx),
where
(pn(xa Z,T,p4, UiV, 5)

=L (pi) K (u;) [L (7“ +pi = hPrp; + [rpi(2 = h*r) (2 — W2 pi)] %>

N

x K (uj +v) f (( )—i—a(l)) —I—K(ui—ﬁ-v)f((xvm)“‘af,;)
<L(r+

_ ”

% 9 1 _1 9 \_1
. (2*h pl) 2r 4(2*h ’I") 4]]-[0,2h*2)(T)]]-[O,thz)(pi)a

i = hPrp = [rpi(2 = K*r)(2 = 1P pi)]

with o) = (— W2 pix + ki [pi(2 — h2p:)] ? Bt —uig> and ky = 1, ky = —1. As
before, by the Taylor’s theorem,

7 (Ge2) +afly) = fxa) + o (Voi +u) [V F(x.2)]).

where the order is uniform for all points (x, z). By analogous considerations as for
the case q¢ > 2,

Nl

enlX, .7, pi s, 0,€) 2L (pi) L (1 + ps = 2rpi)? ) K (i) K (us +v) (f(x,2)

o ((v/7i +u) IV £ 2)ID) ) oy #7400 (1) Lo, (1)
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:\I](X,$77’7 pi7ui7v)7

Then the product of functions ¢,, is bounded by the respective product of functions

W, which is integrable, and by the DCT the limit commute with the integrals.

Proof of (51.6). E [H} ((X1,Z1),(X2,25))] can be decomposed in the sum of two
terms:

E[H, (X1,21), (X3, Z5))]

=E

4
</ LKn ((X,Z),(Xl,Zl))LKn ((Xa Z)v(XQaZQ)) dzwq(dx)> ‘|
Qg xR

/ / (Br (%, 2), (91)) — Ba((x,2), (3, £)))" dz wgldx) dt wy(dy)
Qg xR JQy xR
=0 (B1 + Bs).

The computation of the orders of these terms is analogous to the ones of Ay and As:

b= /Q / o Br(Ge), (v, 1)) dt wy(dy) dzwq(dx)

/QX]R/QXR (hqg* L)LK ( ?Tu7zgt) f(Y,t))4dtwq(dy)dzwq(dx)

~h1g° g (L) A (LY)R(f?),

- / / (Bx((%,2), (3, 1)) dt wq(dy) dz wy(dx)
QxR JQg xR
/ / BB GE A (L) F (3, 2)* £ (3, )" di wq(dy) dz oy ()
QxR JQg xR
98 q(L>8R( )

Then E [H,i ((Xl, Zl), (XQ, ZQ))] =0 (h5qg5>.

Proof of (§1.7). The notation (x,z), (y,¥), (z,2) and (u,u) for variables in 0, x R

will be employed again:

Gn((x,2), (y,9)) = /Q i ((z,2), (%, 2)) Hn (2, 2), (v, 9)) f(2, 2) dzw,(d2)

-/ { / QXRLKn<<u7u>,(x,x»LKn((u,u),<z,z>>dqu<du>}
A [ L0, ) L (0,0, () duy )

x f(z,z) dzwq(dz).
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Therefore:

E[G2((X1,21), (X2, Z2))]

/Q XR/Q . {/Q . [/Q e LKn((uau)»(X,:U))LKn((u,u),(z,z))dqu(du)]

X [/ LK, ((u,u),(y,y)) LK, ((u,u), (2, 2)) du wq(du)l f(z,2)dz wq(dz)}
Qg xR
X f(y,9)f(x,2) dyw,(dy) dz wy(dx).

Then, according to the expression of LK,, E [G2 (X1, Z1), (X2, Z2))] can be de-
composed in 16 summands, which, in view of the symmetric roles of (x,z) and (y,y)
can be reduced to 9 different summands. The first of all, C, is the dominant and has

order O (h7qg7). Again, the orders are computed using (S1.4) iteratively:

o= Lot
Qg xR J Qg xR Qg xR
1—uTx u—x) <l—uTz u—z)
x LE (——S X Y20 e (202 BT i, (du
l/&2qu ( h? g h? g alen)

_ T _ _ul _
x V LK(1 S y) LK(l o f”) dqu(du)l
Qg xR g g

q

x f(z,2)dz wq(dZ)} F(,9) f(x,2) dywy(dy) dx wy(dx)

1—xT —
N/ / / [)\q(L)hquK< >2< Z’l’ z)]
QxR JQg xR Qg xR h g

X [)\q(L)hquK (1 ‘hZTZ, Y- Z)] F(z,2)dz wq(dz)}2

g
x f(y,y) f(x,2) dywy(dy) dx wy(dx)

2
1-y'x y—x
L)*ptagt / / L)h1 LK< , > X, T
Qg xR QXR{ g h? g f( )

x f(y,y) f(x,2) dywy(dy) dx w,(dx)

N)\q(L)ﬁthgG/Q R)\q(LZ)R(K)hqgf(x, x) f(x, )3 dr w,(dx)

=g (L)°Xg(L*)R(K)RT1g" R(f?).

The rest of them have order O (hngg), something which can be seen by iteratively ap-
plying the Lemma 12 as before.
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Proof of (S1.8). Tt suffices to apply the tower property, the Cauchy-Schwartz in-
equality, result E[(Iyﬂ)ﬂ = O (n=*(h® + ¢*)) from Lemma 2 and (S1.6):
Ch,q(L)4
ntgt
Ch,q(L)4

E |E 13 Ha (X1, 21), (Xa, Z2) | (X4, Zﬁﬂ

E [M2(X1,Z,)] =4

<4 nigt E (IT(LQ})QHi (X1, 21), (X27Z2))}
L 4 - 1 1
§4Ch;;4(g4)E _(Ir(Lz,;)4:| ’ E [H’i ((X17 Zl)v (X2> ZQ))] é

— ((nhqg)ﬂi) O (n=(h® + gs))% o (h5qg5)%

S1.2 Testing independence with directional data

Lemma 5. Under A1-AS3,

R(K)Ag(L*)Aq(L) 2
nhdg

n(htg) <Tn,1 - ) 5 N (0,207).

Proof of Lemma 5. By the decomposition of I,, in the proof of the Theorem 1, T, 1 =
I, 2+ I, 3 and therefore by (A.2) and (A.5),

Ty =E L]+ O (n7307971) 4+ 280n~ (h1g) A N,
where N,, is asymptotically a normal. On the other hand, by (A.2),
Ag(L2)Ag(L)*R(K)

El|l,2] = -1
[In,2] nhig + O (n )
and then
A (LN (L) 2R(K \ .
Thny = oL (L) (K) + Q%Jn_l(hqg)_ﬁNn + Op (n‘%h_qg_l) ,
nhig

because (n%hqg)_l = o((nh%g%)_l). As the last addend is asymptotically negligible

compared with the second,

R(E)Ng(L*)Ag(L)~*
nhig

n(h’g)? <Tn,1 - ) 5 N (0,207) .
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Lemma 6. Under independence and A1-A3,
2 —2
A(L)A(L)PR(fz) | RUK)R(fx) o
nhd ng
Var [T, 2] =0 (n72(h7q + gfl)) .

E[Tn 2] = n AT+ g7h),

Proof of Lemma 6. The term T}, o can be decomposed using the relation

Fu(0fo(2) = E [Fu0)] E [ £5(2)] = S1(x,2) + Sa(x, 2) + Sa(x, 2),

where:
S1(x,2) = (Fa) ~E [fi(x)] ) (Fu(2) ~E[£a(2)]) .
$2(x,2) = (falx) ~E[f1)] ) E [£(2)]
Ss(%,2) = (fo(2) — E [£4(2)] ) E [fa(x)]

Hence,

Tho= / S%(x, 2) dz wy(dx) + / S2(x, 2) dz wy(dx)
Qg xR Qg xR
+ / S3(x, 2) dz wy(dx) + 2/ S1(x, 2)S2(x%, 2) dz we(dx)
Qg xR Qg xR

+ 2/ Si1(x, 2)S3(x, 2) dz wy(dx) + 2/ Sa(x, 2)S3(x, 2) dz we(dx)
Q24 xR Qg xR

=T+ T2 + 1) + 1) + 1) + 7).

To compute the expectation of each addend under independence, use the variance
and expectation expansions for the directional and linear estimator (see for example
Garcia-Portugués et al. (2013b) for both) and relation (2.1). Recall that due to assump-
tion A1 it is possible to consider Taylor expansions on the marginal densities that have

uniform remaining orders.
E {Tfll)} :/Q Var [fh(x)} wq(dx)/RVar {fg(z)} dz
=0 ((n*hig)™"),
E {Tfﬁ} = /Q Var [fh(x)] wy(dx) /R E [fg(z)r dz

_ A(LP)A(L)R(f2) ‘o ((nhQ)_l) ,

nhd
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(1] = [var[f0)] oz [ E[fie0)]” wuti

_ [ng( )+ o (nl)} [R(fx) + o (1)
R(K)R(fx) o
- TX +o0 ((ng) ) :

The expectation of ) T(5) and T(ﬁ) is zero because of the separability of the directional

n,2?

and linear components. Jomlng these results,

7, - IS R) | RUORD) | o100 ),

because (712hqg)71 =0 (nfl (hfq + 971))-

Computing the variance is not so straightforward as the expectation and some extra
results are needed. First of all, recall that by the formula of the variance of the sum, the

Cauchy-Schwartz inequality and Lemma 12,

6

>l

i=1

_ 26: o (var [13)]).

i=1

Var [T}, 2] = Var

Then the variance of each addend will be computed separately. For that purpose, recall
that by the decomposition of the ISE given in Theorem 1,

. . 2
[ (e ) =B [fg(.2)]) dewyli) = T+ T
Qg xR
so by equations (A.2) and (A.4),

Var [I,,2 + In3] = O (Var [, o] + Var [I,, 3])
O ((n°hig)~" + (n®hig)™")
O ((n*hg)7"),
E[(I+ In,g)ﬂ —Var [Ins + Ins] + E [Ins + Ins]®
=0 ((n*h%9)~" + (nhig)~?)
=0 ((nhig)™?).

The marginal directional and linear versions of these relations will be required:

</Q (710 - E[fu)])” wq(dx))

2

E =0 ((nh%)7?),
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( | (B0 -Blie]) dz) T 0@,

/Q (fh(X) -E [fh(x)})Q wq(dx)_ -0 ((thq)_l) ’

E

Var

var [1)) =var |( [ (i [5100]) et )( [ E[4)] d)]
_< / E[fg<z)fdz)2w / (fh<x>—E[fh<x>D2wq<dx>]
—0 ()0 ((n?h)™)
=0 ((n*n)™")

var [10)] =var |( [ ()~ 2 []) e ) ([ E{fh(X)rwq(dX)ﬂ

= ([ elheo] ) ver | [ (1)~ [HG)])" @]

=0 (1) 0 ((n*g)7")
=0 ((nzg)fl) .

The next results follows from applying iteratively Cauchy-Schwartz and the previous

orders:

var [10] <B[(z(9)’]

<E _(/WRS%<x7z>dwq<dx>) (/qu]RS%(y’” dtwqu))]

<z (@] = [@)?’
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— O (nh %),
5 1)\ 2 % 3)\ 2 %
var [10] <E [(19)°] " E [(1)]
=0 (n%g7%),
6 2)\ 2 % 3)\ 2 %
var 1] <E [(113)°] E[(1)?]
=0 (n_Q)
Therefore, the order of Var [T}, 5] is O (n=2(h™% + g~')) since it dominates O (n~*h~21g~
O (n™3(h™% + g=2)) and O (n~?2) by assumption A3. O
Lemma 7. Under independence and A1-A3, E[T, 3] = —2E [T, 2] and Var [T, 3] =
O (n~2(h~74g71)).
Proof of Lemma 7. The term T}, 3 can be split in a similar fashion to 7}, ». Let denote
S4(x%,2) = fag(x,2) — E {fh’g(xw)} .
Then:
Ths=— 2/ Sa(x, z) (S1(x,2) + Sa2(x, 2) + S3(x, 2)) dzwg(dx)
Qg xR
1 3
— 2 (ng +TC) + :r,gg) :
The key idea now is to use that, under independence,
-7
LK, (%,2),(X,2)) = Ly (x,X) Ky, (2, Z) + L, (x, X) E [K (Z )]
g
1-xTX

where L,, and K, are the marginal versions of LK ,:
1—xTy 1—xTX
Ln(X7Y):L< h2 >_E|:L< h2 ):|>

s -x(55) 2[e (5]

By repeated use of (S1.10) in the integrands of T}, 3 and applying the Fubini theorem, it

follows:

c 2
E[14] = h,:fg(g? /Q | BULE (66:2), (X, 2)) Lo (36, K) Ko (2, 2)] ()

— Ch,q(L)z / E
n?g? QxR

Ly (x,X)* Ky (2,2)" + Ly (%, X)* K, (2, Z)

525

2),
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xE [K (z_gzﬂ + L, (x,X) K, (2,2)°E [L (1 _h’;TX)} ] dz wy(dx)

- Ch7f2(gl2/)2 /SquRE [Ln (X’X)ﬂ E [Kn (27 Z)z} dz wq(dx)

_ / E [S1(x,2)?] dzw,(dx)
Qg xR

1]
.
-0 e e e (50)] o ()
#1378 [ (2]
)

:CM(L)Q/ E[L, (x,X)’
Qg xR

n292

E [T,g?g] ZW/QqXRE{LKn((X,Z),(X, Z)) L, (x,X)E | K (Z_)] } dz wq(dx)
]

- /qu]RE [Sz(X’Z)z] i)
~E |17,
efr] 2" [ &

i
- %sz(gl;)Q /quRE Ln 06 X) Kn (2 2)E [L (1 _h);TX)]
b L (%, X) Ky (2, 2)E [L (1_;;5)()] £ [K <Z_Z>]
e zre ()]

_ cng(L)? /qu]RE {Kn (z,Zﬂ E [L (1 _h);TXﬂQ dz w(dx)

n292

LK, ((x,2),(X,2)) K, (2, 2)

dz wg(dx)

:/ E [S3(x,2)?] dzw,(dx)
Qg xR
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Then E [Tn’g] = 2Kk [Tn’g].

Computing the variance is much more tedious: the order obtained by bounding the
variances by repeated use of the Cauchy-Schwartz inequality is not enough. Instead of, a
laborious decomposition of the term 7}, 3 has to be done in order to compute separately
the variance of each addend, by following the steps of Rosenblatt and Wahlen (1992). The

first step is to split the variance using the Cauchy-Schwartz inequality and Lemma 12:
Var [T),3] =O (Var [Trglg),] + Var {Tﬁ;} + Var [TTE?’?))D .

Each of the three terms will be also decomposed into other addends. To simplify their

computation the following notation will be employed:

CLK,((x1,21), (X1, Z1); (X2, 22), (X2, Z2))

— Cov |:LK<1—X¥1X1 Zl—Zl> LK(l—XgXQ ZQ_ZQ):|
g )

hz h2 7 g

and also its marginal versions:

1-xTX 1-xI'X
CLn(X17X1;X2,X2):(COV|:L( h21 1>7L( h22 2)},

cntnns o s (25) n(255)]
g g

Term Tézg To begin with, let examine ng using the notation of LK, L, and K,:

LP? - Z

T = C”qu( 2) ZZ/ LK, ((x,2), (X4, Z:)) L (x, X, )E [K (Z )} dz w,(dx).
g D=1 /xR 9

where the double summation can be split into two summations (a single sum plus the

sum of the cross terms). Then,

@] _ chq(L)* @D] , 2 2,2)
Var |:Tn,3] = g (@] (nVar [Tm?, ] +n“Var [Tn,3 D ,
where:
-7
e :/ LK. ((x,2), (X, Z))Ln(x, X)E [K (z ; )] dz wg(dx),
Qg xR

P
g

JR N e
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The first term is computed by
2
var [T3] <E [(23")’]

=0 (gg)IE

(/ﬂqu LEw((x,2), (X, Z)) Ln(x, X) dz wq(dx)> 2]
</ e (P ) o)
) o]

~0(g?) ( / / " [ 12K 6.0 = 0 W) L) = 0 (1)

=0 (92) E

2
x h9(2 — h2r)2 3 g dz drwq_l(d£)>

=0 (h2q94) ,

where the second equality follows from E [LK(I’}’I‘#, =2)] = O (hig) and E[L( 1’,’:2TX)} =

O (h?), and the third from applying the changes of variables of the proof of Lemma 4.
The second addend is

Var [T(M)} <E

n,3

/ / LEn((x1,21), (X1, Z1)) Ln (%1, Xo)
QxR J QxR

<8 1 ()| LR (20 (K0 20) e Xa)

x E [K <22 ; Z)] dzy wy(dxy) dzs wy(dxs)

= / / CLKn((Xl,Zl)7(X1,Zl);(XQ,ZQ),(Xl,Zl))
QxR JQg xR

% CLy(x1, Xo; X2, X)E {K <21 ; Z)} E [K (Zz ; Z)]

X dz1 we(dx1) dzg we(dx2)
< (/ / CLE((x1,21), (X1, Z): (9, 22), (X1, Z1))
Qg xR JQuxR

X dzy wy(dx1) dzo wq(dX2)> @ (hqg2) ,

because CL,(x1,X2;x2,X2) = O (h?) by Cauchy-Schwartz and the directional version
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of Lemma 11, and E[K(%)] = O (g). Also, the integral of the covariance is

/ / CLK,((x1,21), (X1, Z1); (X2, 22), (X1, Z1)) dz1 wg(dxy) dzg wy(dx2)
QxR JQ xR

1— X,{Xl zZ1 — Zl 1— XgXl Z9 — Zl
:/ / E[LK( i )LK< 22 )
QxR JQ xR g g
X dzy we(dxy) dzo wy(dxe) — O (h2q )

/ / / LK( xly 21 — t>LK(1—xgy zz—t>
Qg xR J Qg xR J Qg xR 9 27 g

X f(y7 ) t)dt Wq(dy) dZ1 wq(dxl) dZQ wq(dXQ) -0 (h2q92)
=0 (r*g%) ,

as it follows that the order of the first addend is O (thgz) by applying i—iz in the
same way as in the computation of A; in Lemma 4 (recall that the square in A4; is not
present here and therefore the order is larger). Then Var [Tﬁf)] = O (h3g*) and as a

consequence,

Ch,q(L)4

var 1] = A T0 (b 4 ahigt) = O () (S1.11)

Term T,(L332 This addend follows analogously from T2 as the only difference is the

n,3’

swapping of the roles of the directional and linear components:

% O (0,20, (K0 Z0)Ka 2,2 (22 et

=1 j5=1

with the same decomposition that gives

var [183] = 2280 (wvan [150] 4 v [157])

where:
3,1 1—xTX
T7§73):/Q XRLKn((x,z),(X,Z))Kn(z,Z)IE {L (hrzﬂdwq(dx)7

TTS??;?):/Q XRLKH((X,Z),(Xl,Zl))Kn(z,Zg)]E {L <1h);TX>}dzwq(dx).

-
g
S
—
>

IS
<
<
[V
S—
<
&
=
—
3
()
&
I

Then, by similar computations to those of T, ,(L g, Var [TT(L?’
O (h*g3) and
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Term TT(ng This is the hardest part, as it presents more combinations. As with the

previous terms,

Tvgll% Chq ZZZ/} N X, 2), (X4, Z;)) L (%, X)) Ky (2, Zy) dz wy(dx).

i=1 j=1 k=1

and now the triple summation can be split into five summations

1] =0 1] (v 1] v 125%] v 125

+ n®Var [Té}ém} ),
where:

Tr(t,lél) :/Q RLKn((Xa 2), (X1, Z1)) Ln(x, X1) Ky (2, Z1) dz wy(dx),
X

T = /Q LE(0x,2), (X1, 20)) L 06, Xa) K (3, Z2) d oy (d%),
X

T = /Q LK ((3,2), (X1, 20)) L (%, X Ko (3, Z2) dz 0y (d),
X

15 = /Q L6, 2), (X, 20) L6, Xa) K (2 Z1) iy (),
X

TV(L}?ZS) :/Q RLKn((Xa z), (X1, Z1)) Ly (%, X2) Ky, (2, Z3) dz wy(dx).
X

The first term is computed by

Var [T(lél)} <E

(/Q«XR LRn((x,2), (X, 2) Ln (%, X) Kn(2, Z) d wq(dx>>2]
([ (55557 o)

x [L (1_i:;TX> - O(hq)] [K (z ; Z) _ (’)(9)} dzwq(dx)>21
(/ /2h / [LK (r,t) — O (h?g)][L (r) — O (h7)]

X (K (£) — O ()] h9(2 — B2r) 381 g dr w1 (d€) dz)2

=E

=0 (h2qu) ,

by the same arguments as for T,(L’Qz;l). The fifth addend is

Var{T(l 3) <El / LK, ((x1,21), (X1, Z1))Ln(x1,X2) Ky (21, Z3)
Qy xR

Qg xR
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X LKn((X27 2’2), ()(17 Zl))Ln(Xg, XQ)Kn(ZQ, Zg) le wq(dxl) d22 wq(dXQ)

=[] CLRu(Ga ). (X, Z0)i (e 22). (X, )
QxR JQuxR
X CLn(Xl,XQ;XQ,XQ)CKn(Zl, Zg; Z2, Zg) le wq(dxl) dZQ wq(dXQ)
So(hqg)/ / CLK,((x1,21), (X1, Z1); (%2, 22), (X1, Z1))
Qg xR JQgxR
X dz1 wg(dxy) dze wy(dx2)

<O (h*g°),

again by the same arguments used for T,(L?;;Q). It only remains to obtain the variance of

Tfl}?’)za), T 7(171?’,%) and T 7(1713’)26). The first one arises from

Var[ 5] <E

/ / LK, ((x1,21), (X1, 21)) Ln(x1, X2) Kn (21, Z2)
Qg xRJI Qg xR
x LK, ((x2, 22), (X1, Z1)) L (x2, X2) K (22, Z2) dz1 wy(dx) dza wy(dxz)

-/ CLE (%1, 1), (Xu, Z0)s (%2, ), (X1, 1))
Qg xRJI Qg xR
X CLn(Xl, XQ; X, XQ)C’Kn(zh ZQ; Z9, ZQ) le wq(dxl) dZQ wq(dXQ)

=0 (h*1g%),

in virtue of the assumption of independence and the computation of Var [T(lél)}. The

n7

second one is

var| 1| <E

/ / LKn((Xl,Zl),(Xl,Zl))Ln(Xl,Xl)Kn(Z’l,Zg)
Qg xRJI Qg xR

X LK, ((x2,22), (X1, Z1))Ln(x2, X1) Ky (22, Z2) dzy wq(dx1) dzo wq(dXQ)]
= / / E[LKn((Xl,Zl),(Xl,Zl))LKn((Xg,ZQ),(Xl,Zl))

Qg xRJI Qg xR

X Lp(x1,X1)Lp (X2, Xl)] CK, (21, Z2; 22, Z) dz1 wq(dx1) dzg wg(dxs)
=0(g)E l(/@ lRL.K'n((x,z), (X1, Z1)) L (%, Xl)dzwq(dx)) 1
=0 (h*g°),

where the order of the expectation is obtained again using the change of variables de-
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scribed in the proof of Lemma 10,

’ l< /Q‘JX]RLKH((X’ 2), (X1, Z1)) Ln (%, X1) d2 wq(dX)) 21

([ (572557 00

() o] )

. ( /Q /0 zh_Q/R[LK (ru) — O (hig)] [L () — O (h)]

2
x h9(2 — h2r)2 3 g du drwq_l(dﬁ)) ]

=E

=0 (thgQ) .
The variance of T, 7(L1325) is obtained analogously:
Var 717(%1 26 <]E / / Xl,Zl) (Xl,Zl))Ln(Xl,Xg)Kn(zl,Zl)
QxR JQ, xR
X LKn((X27 22), (Xl, Zl))Ln(Xg, XQ)Kn(ZQ, Zl) le wq(dxl) d2’2 wq(dXQ)‘|
=[] BlKa(an). (X, Z0) LKy (k2. 22), (X, 20)
QxR JQ xR
X Kn(Zl, Zl)Kn(ZQ, Zl)] CLn(Xl, XQ; X2, XQ) le wq(dxl) dZQ wq(dXQ)
2
=0 (h)E </ LK, ((x,2), (Xl,Zl))Kn(z,Zl)dzwq(dx))
Qg xR
=0 (hgqu) .
Then, putting together the variances of T,(L}él), 7(L132a), Tfl}g%), T7§132C and T7§133), it
follows

L 4
Var [Tffﬁ} _ Ch;;(gfo (nh21g2 +n2(h31g® + B2 g% + B3g%) + n3h3ig?)

_ chq(D)?
=gt
=0 (n?h7%"). (S1.13)
Finally, joining (S1.11), (S1.12) and (S1.13),
Var [T, 5] =0 (n?h 9™ ) + O (n 2L )+ 0 (n g ) =0 (n2(h"1+g7 ")),

) (n3h3qg3)

which proves the lemma. O
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S1.3 Goodness-of-fit test for models with directional data

Lemma 8. Under Hy : f = fo,, with 8y € © unknown and A1-A3 and A5-A6,
n(hqg)%Rn,l 250 and n(hqg)%Rn,4 P.0.

Proof of Lemma 8. Under the null f = fg,, for a known 8, € O.

Term R, 4. Using a first order Taylor expansion of f in 6o,

Ry 4= / . (LKh’g (fg0 (x,2) — fé(x,z)))2 dz wy(dx)

q

R R = R ) PR

R dfe(x, 2
<llo-ooll [ (zmn(]| 2252, ||)) dzentan

= O]p (n_l) OP (1)
~0p ().

60=6,

where 6,, € O is a certain parameter depending on the sample. The order holds because,
on the one hand, Hé - 190||2 = Op (nil) by assumption A6 and on the other, by A5

and Lemma 10,
/quk(LKhvg<HW >>2dwq<dx>
2dwq(dX))(l +o(1)

_ (/ dfo(x,2)
Q, xR

—0p(1).

0=0,

00 ‘e:en

Therefore, R,, 4 = Op (n‘l) and, by assumption A3, n(hqg)%RnA s0.

Term R, 1. It follows also by a Taylor expansion of second order centred at 8g:

Rpy= 2%’2? ; /QQXRLKn ((x,2), (X3, Z3)) L, (foo (%, 2) = fo(x,2)) dzwy(dx)
_ oCn, (L) - iy i = TGz
—27‘192‘/§ZQXRLKH ((X7Z)3(XZ’Z1)) LKh’g<(0 00) 00 ’9:90

~ 62 x ~
+(6- HO)T%L:@" (6~ 90)) el
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)

n

;/ﬂ LK, ((x,2),(X;, Z;)) [He 00\|LK,W<H

xR

0%f(x,2)

‘ 2006" ‘e:on 7
RS+ 116 — 60| "R,

,1

Ch,q(L)
ng

of(x,2)

<2

‘0=90
+ ||900H2LKhyg<

=6

where ||A||, stands for the Frobenious norm of the matrix A. By Lemma 10 and as-

)] dsantan

sumption of A5,

; L) &
RY —0 cna(L) / LK, ((x,2),(X;,Z;)) dzwg(dx) |,
n,1 P( ng ; 0y xR (( ) ( )) q( )

for = 1,2. As a consequence of this and of assumption A6, the first addend of R, ;
dominates the second. The proof now is based on proving that Rflll = Op (n 2) using
the Chebychev inequality and the fact that the integrand of Rgll)l is deterministic. Now
recall that E[RSA] = 0 and by the proof of (51.5) in Lemma 4,

Var[Rfi)l} C";z;f)zE K/ﬁ DB ((6,2), (X, 2)) dzwq(dx))j

Ch,
bl [ R (0 (X, 2) LK (3.0, (X, 2)
Qg xR JQy xR
X dzwq(dx) dt wg(dy)
C
=l [ (B (2 0) — Ba (02, (50)
Qg xR JQgxR
X dzwq(dx) dt wy(dy)
Chq(L)? 2q .2
_ Cnadl)” 5 (12
ng? O( 9 )
=0 (nfl) ,
so by the Chebychev mequahty, Rgl 1 = Op(n~ 2) and as a consequence of A5, R, 1 =
O]p( - ) and n(hqg) Rua 250 follows. O

Lemma 9. Under the alternative hypothesis (5.4) and A1-A8, A5 and A7, n(hqg)%f% 1
250 and n(hig)2 R i — R(A).

Pmof of Lemma 9. The convergence in probability is obtained using the decompositions
Roy = Roy + R and Ryq = Ry + R + RC).

Terms Ry, 1 and R, 4. The proofs of n(hqg)%le L5 0and n(hqg)%RnA 50 are
analogous to the ones of Lemma 8 and follow just replacing assumption A6 by A7 and
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Ho by Hlp.

Term R(l) Recall that E[E(l)l] = 0 and its variance, using the same steps as in

the proof of R(L)1 in Lemma 8, is

var [R0)] JM /Q . /Q (B (62, (7,1) — Ba (.2, (v.1)

n2h%gs
X LKp gA(x,2) LK} g Ay, t) dz wg(dx) dt wg(dy)

Ch q(L)2

=4 =0 (hzqgQ)

Then, jégﬂ = Op((nhigt)~) and n(hg)* R\, £+ 0.

Term RS’L. Applying Lemma 10,

N x,2))? dzwy(dx) = ——
Rk = ey [ K02 d2d) = s RO 0(1)

Nl=

and as a consequence n(hqg)%ﬁg’i 25 R(A).

2

Term Rn)gl. Applying the Cauchy-Schwartz inequality:

Therefore, Ry = Op((nh%g3)~") and n(hg)? R\, = Op((hg)7) - 0. O

S1.4 General purpose lemmas

For the proofs of some lemmas, three auxiliary lemmas have been used.

Lemma 10. Under A1-A3, for any function ¢ : Q; x R = R that is uniformly contin-
uwous and bounded, the smoothing operator (5.2) satisfies

sup  |LKj gp(x,2) —@o(x,2)] —— 0. (S1.14)

(x,2)€Qy xR n—00

Thus, LK}, g0(x, z) converges to ¢(x, z) uniformly in Qg x R.
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Proof of Lemma 10. Let denote D,, = |LK}, 4¢(x,2) — ¢(x,2)|. Since ¢(x,z) can be

. ch,q(L —xTy »—
written as "'T() fﬂquLK(1 Y, 2 )(y, t) dz we(dx), then

Dn =

ChﬂI(L) 1— XTy ¥t
all) [ e (B (ot o) drfay

Ch,q(L 1-xTy 22—t
<ol [ nr (SR ) fett) - ol dres )
Qg xR )

S Dn,l + Dn,27

where:

chq(L) 1-xTy z—t
Dy = qT/ LK <h2a lo(y, t) — p(x, 2)| dtwg(dy),
As g

Dn,2 — ChaQ(L) /

) A,

1-xTy z—t
L (P22 22 oty — )] dhs ),

As = {(y,t)GQqXR:maX( 2(1fxTy),|zft\> <5},

52
Ais Z{(y,t) €QxR:1-x"y< 2}7
Aps ={(y,t) € QxR : [z —t| < 5}

and A denotes the complementary set to As for a 6 > 0. Recall that A5 = A sNAszs
and as a consequence As = A 5 U Ay 5.

As stated in assumption A1, the uniform continuity of the functions defined in

2, x R is understood with respect to the product Euclidean norm, that is

2 2
1 2)lly = \/Ixllq, +[lzllg, where [[{lg, = [[ll; and [l = |-

Nevertheless, given the equivalence between the product 2-norm and the product oo-
norm, defined as ||(x, z)||,, = max ( Ixllq, » ||z|lg ), and for the sake of simplicity, the
second norm will be used in the proof. Then, by the uniform continuity of ¢, it holds
that for any € > 0, there exists a § > 0 such that

V(X,Z), (Y7t) € Qq X Ra ||(X> Z) - (yvt)Hoo <d = |50(X,Z) - @(yat” <Eé.

Therefore the first term is dominated by

L 1—xT —t
Doa <5L()/ LK (Xy z ) dtwy(dy) < e,
g As g

h?

for any € > 0, so as a consequence D,, 1 = o(1) uniformly in (x,2) € Q, x R.
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For the second term, let consider the change of variables introduced in the proof of

Lemma 4 (see Lemma 2 of Garcia-Portugués et al. (2013b) for a detailed derivation):

y = ux + (1 — u?)2 B¢,
we(dy) = (1 —u?)3 7! duwy_1(d€),

where u € (=1,1), § € Q;-1 and Bx = (by,...,by)(g+1)xq 15 the semi-orthonormal
matrix resulting from the completion of x to the orthonormal basis {x,bi,...,bg}.
Applying this change of variables and then using the standard changes of variables r =

L= (for the first addend) and s = Z;t (second addend), it follows:

cp,q(L 1-xTy z—t
Doa =248 [ i (25 22 oty - ot )] dryay)
g A )
cp,q(L 1-xTy z—t
<ol [ p (S ) ety - ol ) dey(ay)
9 Ais 9

ch.q(L 1-xTy z—t
# 2B [ (L5 20 fotyot) - ol )| desya)
Az s 9

L 1—xT —t
<o) G0 oy p) / LK (’Q‘y Z) dtwq(dy)
9 (y.t)eQ,xR Avs h g

1—xT —t
o o () )|
As s 9

1_§; 1—u q
<2 sup lo(y, 1)l {Ch,q(L)wa / L ( B2 ) (1- U2)§_1 du
-1

(y.0)€2 xR

o0

+2 K (s) ds}

§g—1

1
<2 sup |p(y,t)] ch’q(L)wq,l/ (1—u?)2tdux sup L(r)rir 3
(y,1)€Qg xR -1 r>82/(2h?)

o0

+2 K (s) ds}

6g—1
q ! q q
<0(1) {AM(L)lwq_lzz(SQ/ (1—u*)27 dux sup L(r)rz +o(1) }
-1 r>62/(2h2)

—01)(©(1)o(1) +0(1))
—o(1),

by relation (2.1), the fact f_ll(l — uz)%_l du < oo for all ¢ > 1 and because by assump-
tion A2, Ag42(L) < 0o, which implies that lim L(r)r? = 0.
r—00
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Then, D,, — 0 as n — oo and this holds regardless the point (x, z), since ¢ is uni-
formly continuous, so (S1.14) is satisfied and LK}, 4¢(x, z) converges to ¢(x, z) uniformly
in Q4 x R. O

Lemma 11. Under A1-AS3, the bias and the variance for the directional-linear estima-

tor in a point (x, z) € Q4 X R is given by

E [fh,g(x’ 2)] = f(x,2) + quIL)tr [Hyf(x,2)] B* + %M2(K)Hzf(xv 2)9° +o(h* +¢°),

Ag(L)Ag(L) 2 R(K)

i f(.2) + o (nh1g) )

Var [fh,g(x, z)] =

where the remainder orders are uniform.

Proof of Lemma 11. The asymptotic expressions of the bias and the variance are given
in Garcia-Portugués et al. (2013b). Recalling the extension of f in condition A1, the
partial derivative of f for the direction x and evaluated at (x, z), that is xT V f(x, 2),
is null:

xTV, f(x,2) = lim FA+R)x2) = [(x,2) = lim f(x,2) = f(x,2)

=0.
h—0 h h—0 h

Using this fact, it also follows that x7H, f(x, z)x = 0, since

0
xT (&CXTfo(X, Z)) =xT (Vi f(x,2) + Hxf(x,2)x) = 0.

Therefore, the operator Wy (f,x,2) appearing in the bias expansion given in Garcia-
Portugués et al. (2013b) can be written in the simplified form

To(f.x,2) = —x" Vo f(x,2) + 2 (V2£(x,2) = XM f(x, 2)x) = étr o (x,2)],

because V2 f(x, z) represents the directional Laplacian of f (the trace of Hy f(x, 2)).

The uniformity of the orders, not considered in the above paper, can be obtained
by using the extra-smoothness assumption A1 and the integral form of the remainder

in the Taylor’s theorem on f:

1
fly+a) = fly) =a"VI(y) + ;a"Hf(y)a + R,
with y = (x, 2), a € Q; x R and where the remainder has the exact form
g+1 93 q+1

1 2
(1-1) ]
k= /0 2 %::1 8xi8xj6xkf(x +ta)aza o dt < 6Mijzk::1 o = o (a’a),
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where M is the bound of the third derivatives of f and in the last equality it is used the
second point of Lemma 12. Then the remainder does not depend on the point y = (x, z)
and following the proofs of Garcia-Portugués et al. (2013b) the convergence of the bias

and variance is uniform on Q4 x R. O

Lemma 12. Let a,, b, and c, sequences of positive real numbers. Then:

i. If ap, by, — 0, then anb, = o(a, + by).
. If an,bn,cn — 0, then apbyc, = 0 (ai + b% + ci)
iii. albl = (’)(aﬁ + b’;), for any integers i,j > 0 such that i+ j = k.

w. (an +bp)* = O(ak +bf), for any integer k > 1.

Proof of Lemma 12. The first statement follows immediately from the definition of o (-),

nbn . 1 1
anby, = o0(ay +b,) : < lim a4 = lim ——=—=0.
n—)ooan—i—bn n~>oob—+f o0

n An

For the second, suppose that, when n — oo, a,, = max(ay, b,, ¢,) to fix notation. Then

3
UL T T R TS S Sy
n—)ooa%—}—b%—kc%_n—)ooa%—}—b%—f—c% n—>ooai %4_% 00

Let C be a positive constant. The third statement follows from the definition of O (-),

1 —
Qg 1 (EES an = 0(bn),
lim 2" - lim—mF —— = 1 b, =ol(a
n—oo aﬁ + bfL n—oo (g \’ 4 (b i ooJri)’ n ( ”) ’
by an Citc—i» @n ™ Chy,.

Then the limit is bounded and a!b), = (’)(aﬁ + bfl) The last statement arises as a

consequence of this result and the Newton binomial:

(an +bn)" = Zk: (':) alh=iyi = Zk: (’:)0 (ak +05) =0 (ak +0F).

=0 =0

S2 Further results for the independence test

S2.1 Closed expressions

Consider K and L a normal and a von Mises kernel, respectively. In this case R(K) =
(277%)71, Ag(L) = (2m)% and Ag(L2)A,(L)~2 = (272)" ", Furthermore, it is possible to

S39
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compute exactly the form of the contributions of these two kernels to the asymptotic

variance, resulting:
fe’e] (e’ 2
'yq)\q(L)_4/ rz=1 {/ pf_lL(,o)goq(r,p) dp} dr = (8m)~ 2,
0 0

J{ [ xwxwo) du}2 do— (sm)- 1.

Corollary 4. If L(r) = e™" and K is a normal density, then the asymptotic bias and
variance in Theorem 2 are

1 _ R(fz)  R(fx)

QQ+17TLJ51nhqg 2473 nha 27T%ng’

_gfl

of = (87)7 % R(fx)R(fz).

In addition, if fx = fuu(s k) and fz is the density of a N(m,o?), then R(fx) =
(on ) W Toa (20)Tacs ()2 and RUf7) = (2nb0)

Proof of Corollary 4. The expressions for R(K), R(fz) and [, { [ K(uw)K(u+ v) du}2 dv =
(871')_% follow easily from the convolution properties of normal densities. The expres-
sions for A\, (L) and A\;(L?) can be derived from the definition of the Gamma function.

Similarly,

. C,(r)? H%IE(2H)
R =C Hz/ 2 X By (dx) = =1 = T )
() = Calw)? | TG T T (v

q

2§72 =1
) o == (S2.1)

’Yq_1>‘q(L)4 = { )F(ﬂ)z, g> 1.

For ¢ = 1 the contribution of the directional kernel to the asymptotic variance can

be computed using (S2.1) and
> 1 r
/ p_ie_Q(”iﬁ) dp = V2mez (1 - ($\/?)) ,
0

where ® is the cumulative distribution function of a N'(0,1). Then:

2

na(L)* /OOO ros {/OOO P2 L(p)er (7, p) dp} dr

[es) [eS) e 2
:71)\1(1/)—4/ r—;e—zr{ / p—%e—Qp—Z(rp)% dp +/ p—%e—2p+2(7“p)% dp} dr
0 0 0
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For ¢ > 1, the integral with respect to 6 is computed from the definition of the

modified Bessel function and the integral with respect to p is

o0
I
0
Using these two facts, it results:
2

Yarg(L)™* /Ooor 1{/000 pglL(p)soq(np)dp} dr

St () (1)

IS
Nl=

e Ty 1 (2y/rp) dp =2 3pi el

q
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S2.2 Extension to the directional-directional case

Under the directional-directional analogue of condition A4, that is, h‘flnhg 2 — ¢, with
0 < ¢ < oo, the directional-linear independence test can be directly adapted to this

setting, considering the following test statistic:
. R R 2
T, = / (f(X,Y);h1,h2 (X7 Y) - fx;hl (X)fY;hz (y)) Was (dy) Waqq (dX)
Qgq XQqy

Corollary 5 (Directional-directional independence test). Under the directional-directional

analogues of A1-A4 and the null hypothesis of independence,
n(h{'hg)? (T = An) = N(0,207),

where
A :)‘(h(L%))‘!h(Ll)_z/\%(Lg))‘%(LQ)_Q
" nhi*hi?
_ Afh (L%)ACH (Ll)_QR(fY) _ /\QQ(L%)/\(]Q‘,(LQ)_ZR(fx)
nhi! nh ’

and 0% is defined as o in Corollary 2 but with R(f) = R(fx)R(fy). Further, if L1 and

Lo are the von Mises kernel,
1 __RUy) _ RUx)

a1+4a a1 q2
52 nh{h¥ 207z nhit 22773 nhd

A, =

2q91+4q2 77
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)_ q142r<12

R(fx)R(fy). If fx and fy are von Mises densities, R(fx) and
R(fy) are given as in Corollary 4.

and 0? = (8w

Proof of Corollary 5. The proof follows from adapting the proofs of Theorem 2 and

Corollary 4 to the directional-directional situation. O

S2.3 Some numerical experiments

The purpose of this subsection is to provide some numerical experiments to illustrate the
degree of misfit between the true distribution of the standardized statistic (approximated

by Monte Carlo) and its asymptotic distribution, for increasing sample sizes.

For simplicity, independence will be assessed in a circular-linear framework (¢ = 1),
with a vM((0,1),1) for the circular variable and a N(0,1) for the linear one. Kernel
density estimation is done using von Mises and normal kernels, as in Corollary 4. Sam-
ple sizes considered are n = 5/ x 10¥, j = 0,1, k = 3,5 (see supplementary material for
k =1,2,4). The sequence of bandwidths is taken as h,, = g, = 2n_%, as a compromise
between fast convergence and numerical problems avoidance. Figure A.5 presents the
histogram of 1000 values from (nhZ gn)% (T,, — A,) for different sample sizes, jointly with
the p-values of the Kolmogorov-Smirnov test for the distribution N'(0,20%) and of the
Shapiro-Wilk test for normality. Both tests are significant, until a very large sample size
(close to 500,000 data) is reached.

It should be noted that, in practical problems, the use of the asymptotic distribu-
tion does not seem feasible, and a resampling mechanism for the calibration of the test
is required. This issue is addressed in Garcia-Portugués et al. (2014), considering a per-
mutation approach. The reader is referred to the aforementioned paper for the details

concerning the practical application.

S3 Extended simulation study

Some technical details concerning the simulation study and further results are provided
in this section. First, the simulated models considered will be described. For construct-
ing the test statistic, parametric estimators as well as simulation methods are required.
Different Maximum Likelihood Estimators (MLE) and simulation approaches have been
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Figure A.5: Comparison of the asymptotic and empirical distributions of (nh%gn)% (T, — Ap)
for sample sizes n = 57 x 10¥, j = 0,1, k = 2,3,4,5. Black curves represent a kernel estimation
from 1000 simulations, green curves represent a normal fit to the unknown density and red

curves represent the theoretical asymptotic distribution.
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considered, playing copulas a remarkable role in both problems (see Nelsen (2006) for
a comprehensive review). Some details on the construction of alternative models and
bandwidth choice will be also given, jointly with extended results showing the perfor-
mance of the tests (for circular-linear and circular-circular cases) for different significance

levels.

S3.1 Parametric models

Two collections of Circular-Linear (CL) and Circular-Circular (CC) parametric scenarios
have been considered. The corresponding density contours can be seen in Figures 6.1
and 6.2 in the paper. For the circular-linear case, the first five models (CL1-CL5) con-
tain parametric densities with independent components and different kinds of marginals,
for which estimation and simulation are easily accomplished. The models are based on
von Mises, wrapped Cauchy, wrapped normal, normal, log-normal, gamma and mixtures
of these densities. Models CL6—-CL7 represent two parametric choices of the model in
Mardia and Sutton (1978) for cylindrical variables, which is constructed conditioning a
normal density on a von Mises one. Models CL8-CL9 include two parametric densities
of the semiparametric circular-linear model given in Theorem 5 of Johnson and Wehrly
(1978). This family is indexed by a circular density g that defines the underlying circular-
linear copula density, allowing for flexibility both in the specification of the link density
and the marginals. CL10 is the model given in Theorem 1 of Johnson and Wehrly (1978),
which considers an exponential density conditioned on a von Mises. CL11 is constructed
considering the QS copula density of Garcia-Portugués et al. (2013a) and cardioid and
log-normal marginals. Finally, CL12 is an adaptation of the circular-circular copula den-
sity of Kato (2009) to the circular-linear scenario, using an identity matrix in the joint

structure and von Mises and log-normal marginals.

The first models (CC1-CC5) of the circular-circular case include also paramet-
ric densities with independent components and different kinds of marginals (von Mises,
wrapped Cauchy, cardioid and mixtures of them). Models CC6—-CC?7 represent two para-
metric choices of the sine model given by Singh et al. (2002). This model introduces
elliptical contours for bivariate circular densities and also allows for certain multimodal-
ity. Models CC8-CC9 are two densities of the semiparametric models of Wehrly and
Johnson (1979), which are based on the previous work of Johnson and Wehrly (1978)
and comprise as a particular case the bivariate von Mises model of Shieh and Johnson
(2005). Models CC10-CC11 are two parametric choices of the wrapped normal torus
density given in Johnson and Wehrly (1977), a natural extension of the circular wrapped
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normal to the circular-circular setting. Finally, CC12 employs the copula density of Kato
(2009) with von Mises marginals.

Density name Expression
Normal In(z;m,o) = le exp {— (22_072)2 }

og z—m 2
Log-normal fen(zym, o) = Z\/;Tm exp {—(l s ) } L(0,00)(2)
Gamma fr(z;a,p) = FEZ;) 2P7le T 1 (0,00 (2)

Bivariate normal fn(z1,22;m1,ma, 01,02, p) = %
2701094/ 1—p2

% exp{ _ 2(1;,2) ((21;?1)2 + (w;gtzf _ 2?(2177;1113(;27"&))}
Von Mises fom (05 p, k) = m exp {rcos(6 — p)}
Cardioid fea(O; 1, p) = 5= (1 +2pcos( — p))

1—p2
27r(1+p272p cos(Qf,u,))

Wrapped Normal | fwn(0;u,p) = >207 _ far(60 + 27pym, o)

Wrapped Cauchy | fwc(6;m,o0) =

Table A.2: Notation for the densities described in Tables A.3 and A.4.

The notation and density expressions used for the construction of the parametric
models are collected in Table A.2, whereas Tables A.3 and A.4 show the explicit ex-
pressions and parameters for the circular-linear and circular-circular models displayed
in Figure 6.1. Most of the circular densities considered in the simulation study are
purely circular (and hence not directional) and their circular formulation has been used
in order to simplify expressions. The directional notation can be obtained taking into
account that x = (cos6,sinf), y = (cost,sine) and g = (cos p,sin ). The distribu-
tion function of a circular variable with density f, with § € [0,27) will be denoted by

F(O) = [} f(e)dep.

S3.2 Estimation

In the scenarios considered, for most of the marginal densities, MLE are available through
specific libraries of R. For the normal and log-normal densities closed expressions are
used and for the gamma density the fitdistr function of the MASS (Venables and Rip-
ley (2002)) library is employed. The estimation of the von Mises parameters is done
exactly for the mean and numerically for the concentration parameter, whereas for the
wrapped Cauchy and wrapped normal densities the numerical routines of the circular
(Agostinelli and Lund (2011)) package are used. The MLE for the cardioid density are

S45
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obtained by numerical optimization. Finally, the fitting of mixtures of normals and von
Mises was carried out using the Expectation-Maximization algorithms given in packages
norimix (Méchler (2013)) and movMF (Hornik and Griin (2012)), respectively.

The fitting of the independent models CL1-CL5 and CC1-CC5 is easily accom-
plished by marginal fitting of each component. For models CL6—-CL7, the closed expres-
sions for the MLE given in Mardia and Sutton (1978) are used. For models CL8-CL9,
CL11-CL12, CC8-CC9 and CC12 a two-step Maximum Likelihood (ML) estimation
procedure based on the copula density decomposition is used: first, the marginals are
fitted by ML and then the copula is estimated by ML using the pseudo-observations
computed from the fitted marginals. This procedure is described in more detail in Sec-
tion 3 of Garcia-Portugués et al. (2013a). In models CL8-CL9 and CC8-CC9 the MLE
for the copula are obtained by estimating univariate von Mises or mixtures of von Mises,
whereas numerical optimization is required for the copula estimation. For models CC6—
CC7 and CC10-CC11, MLE can be also carried out by numerical optimization. Finally,
MLE for model CL10 in Johnson and Wehrly (1978) were obtained analytically: given

the circular-linear sample {(6;, Z;)}"_,,

A= e A=V A2 and Y Zisin(®; - ) =0,
c =1

with Z=23" 7, and Z, = L 3" | Z; cos(©; — f1).

\N]]

S3.3 Simulation

Simulating from the linear marginals is easily accomplished by the built-in functions in R.
The simulation of the wrapped Cauchy and wrapped normal is done with the circular
library, the von Mises is sampled implementing the algorithm described in Wood (1994)
and the cardioid by the inversion method, whose equation is solved numerically. Sam-
pling from the independence models is straightforward. Conditioning on the circular
variable, it is easy to sample from models CL6—CL7 (sample the circular observation
from a von Mises and then the linear from a normal with mean depending on the circu-
lar), CL10 (von Mises marginal and exponential with varying rate) and CC6-CC7 (using
the properties detailed in Singh et al. (2002) and the inversion method). Simulation in
CC10-CC11 is straightforward: sample from a bivariate normal and then wrap around
[0,27) by applying a modulus of 27. Finally, simulation in two steps using copulas was
required for models CL8—CL9, CL12, CC8-CC9 and CC12, where first a pair of uniform
random variables (U, V) is sampled from the copula of the density and then the inver-
sion method is applied marginally. See Section 3.1 of Garcia-Portugués et al. (2013a) for
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more details. The simulation of the pair (U, V') was done by the conditional and inversion
methods and, specifically, for the models based on the densities given by Johnson and
Wehrly (1978) and Wehrly and Johnson (1979), a transformation method was obtained.

It is summarized in the following algorithm.

Algorithm 2. Let g be a circular density. A pair (U, V) of uniform variables with joint
density cq(u,v) = 2wg(2n(u £ v)) is obtained as follows:

i. Sample ¥, a random variable with circular density g.

it. Sample V', a uniform variable in [0, 1].

_ (F27V) mod 27
ii. Set U = ——————.

S3.4 Alternative models

The alternative hypothesis for the goodness-of-fit test, both in the circular-linear and

circular-circular cases, is stated as:
Hyps:f=(1-0)f5, +0A, 0<5<1.

Three mixing densities A are considered, two for the circular-linear situation and one

for the circular-circular:

7Z) = fVM(a;lJ’l)K) X fN(Z;ml,O'l),
72) = fVM(e;/Llﬂ%) X fLN(Z;m2,02)7
A3(0,9) = fum(O; p2, k) X fom(¥; pa, k),

where 1 =7, o =0, k=3, my =2, 01 =1 and mo = 03 = % To account for similar
ranges in the linear data obtained under Hy, ¢ and under Hy, 5, A1 is used in models CL1,
CL4-CL11 and CL13, whereas A, in the other models. In the circular-circular case, the

deviation for all models is As.

S3.5 Bandwidth choice

The delicate issue of the bandwidth choice for the testing procedure has been approached
as follows. In the simulation results presented in Section 6, a fixed pair of bandwidths
was chosen based on a Likelihood Cross Validation criterion. Ideally, one would like to
run the test in a grid of several bandwidths to check how the test is affected by the

bandwidth choice. This was done for six circular-linear and circular-circular models,
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Model 7 Density Parameters 7 Description
CL1 7 Fort (05 1, 5) X far(z;m, o) = u%, k=2, m=0,0=1 7 Indep. von Mises and normal
CL2 fweO;u,p) X fear(z;m, o) uw= w@au p=o0c= w“ m= w Indep. wrapped Cauchy and
log-normal
CL3 (p1fore (6 p1, 51) + P2 fors (6; p2, 52)) p =%, 2 =55 k1 =Ky =2p1 =p2= | Indep. mixture of von Mises
X fr(z; a,p) wanwuBHw and gamma
CL4 Jwn(0;m1,01) m1 = m%q o1 =03 =1 me2 =0, 02 = w“ Indep. wrapped normal and
X (p1fn(z5m2,02) + p2 fa(23m3, 03)) m3=2,p =ps =3 mixture of normals
CL5 AE\ESQ w1, k1) + p2 for (0; p2, k2 v H1 = ,Wﬁ Ho = Wﬁ k1 =10, kg = 3, m1 = | Indep. mixture of von Mises
Aﬁw\\/\?« mi,01) + pafa(z;ma, o2 v —1,mg =2,01 =1, 02 =p1 =p2 = wu and of normals
_ 3 _ 1
pP3 =3, P4a= 73
CL6 7 Jom (03 1, ) X far(z3m(60),0(1 — p1 — p2)), n= w%v k=1, m=0, p1 = p = w See equation (1.1) of Mardia
cL7 with m(0) = 3+sz3?0mn 0) — cos(u)) =30 k=5 m=0p =1 pp=-3 and Sutton (1978)
+pa(sin(0) — sin(k)) o3
CLS8 fom AMAA% + Fn(z;m, viwtm“amv m=0,0=1, ug = &Mﬁ Kg = w See Theorem 5 of Johnson
X far(z;m, o) and Wehrly (1978) considering
CL9 9(2r(L — Far(zm,0))) X far(zim,0), with | m = 0, 0 = pg, = pgy = %, g, = %, | * 70 Kamm and & BEES.&
& 5o von Mises as the link functions
9(0) = pgy fort (05 gy, kgy) Kgy = Kgy =3, gy = °f
+Pgs furt (05 kgs, Kgs)
1
R 1
CL10 Cm‘vm exp{—Az + kzcos(6 — )} n= w@:v K=2,A=3 See Theorem 1 of Johnson and
Wehrly (1978)
CL11 {14 2racos(2nFeq(6; 1, p)) uw= w%, p= %o, m=10= wq a= W See equation (7) of Garcia-
(1 =2Fn(2;m,0))} X fea(0; 1, p) far(zsm, o) Portugués et al. (2013a)
2 . .
CL12 7 A—pt) X fong (Biitre)fiepy (2im,0) p=2 k=1,m=1%o=p=2 See Section 4.1 in Kato (2009)

4m2 (1=2pFy a1 (030,5) Fo s (z5m,0) +p2)

Table A.3: Circular-linear models.
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Figure A.6: Empirical size and power of the goodness-of-fit tests for a 10 x 10 grid of band-
widths. First two rows, from left to right and up to down: models CL1, CL5, CL7, CL8, CL9
and CL11. Last two rows: CC1, CC5, CC7, CC8, CC9 and CC11. Lower surface represents
the empirical rejection rate under Hy oo and upper surface under Hy.15. Green colour represent
that the empirical rejection is in the 95% confidence interval of & = 0.05, blue that is lower and
orange that is larger. Black points represent the sized and powers obtained with the median of

the LCV bandwidths (for model CC1 under Hyp is outside the grid).
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Sample size n and significance level «

Model \ n =100 \ n = 500 \ n = 1000

| @=0.10 a=0.05 a=0.01]|a=0.10 a=0.05 a=0.01|a=0.10 a=0.05 a=0.01
Hiooo | 0111 0051 0010 | 0107 0052 0.013 | 0.102 0.048 0.013
Hzoo00 | 0.094 0051 0013 | 0.096 0.049 0.010 | 0.107 0.050  0.009
Hszo00 | 0.095 0048 0014 | 0.101 0.046 0.014 | 0.090 0.050  0.009
Hioo00 | 0102 0.045 0.009 | 0.096 0.039 0.011 | 0.102 0.045 0.008
Hsoo00 | 0.094 0049 0.009 | 0.102 0.049 0.009 | 0.101 0.041  0.009
Heoo00 | 0.095 0.039 0010 | 0.104 0043 0.010 | 0.110 0.050 0.015
Hr7oo00 | 0.086 0042 0013 | 0.093 0.043 0.008 | 0.091 0.049 0.016
Hgoo00 | 0.095 0049 0011 | 0.108 0.050 0.003 | 0.108 0.044  0.006
Hgooo | 0106 0.062 0016 | 0.086 0043 0.010 | 0.104 0.064 0.015
Hi00.00| 0.094 0045 0.007 | 0.103 0.056 0.018 | 0.097 0.045 0.005
Hii000| 0102 0059 0.009 | 0.104 0.056 0.010 | 0.113 0.056 0.013
Hi2000| 0120 0073 0020 | 0.113 0054 0.013 | 0.109 0.051 0.010
Hioi0 | 0665 0552 0.355 | 1.000 0.997 0.981 | 1.000 1.000  1.000
Hapio | 0361 0244 0.107 | 0.885 0.805 0.579 | 0.995 0.982  0.898
Hso10 | 0185 0107 0.032 | 0.502 0.362 0.166 | 0.775 0.659  0.421
Hioi10 | 0255 0.172  0.060 | 0.687 0.568 0.322 | 0.927 0.868  0.697
Hso10 | 0416 0272  0.087 | 0.987 0972 0.894 | 1.000 1.000  0.999
Hgo10 | 0997 0996 0.988 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hr7o10 | 1.000 1.000 0999 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hgoi0 | 0325 0204 0.069 | 0.940 0.893 0.723 | 1.000 1.000  0.983
Hoo10 | 0947 0914 0.796 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hio010| 0340 0218 0089 | 0.829 0.723 0481 | 0.962 0944 0.838
Hi1010| 0618 0510 0296 | 0.996 0993 0963 | 1.000 1.000  1.000
Hizo10| 0230 0152 0.057 | 0.788 0.655 0.442 | 0.991 0.969  0.895
Hiois | 0883 0822 0.621 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hapo1s | 0.650 0525 0311 | 1.000 0.997 0.977 | 1.000 1.000  1.000
Hszo1s | 0281  0.163 0.055 | 0.776 0.682 0.420 | 0.970 0.940  0.860
Hioa1s | 0399 0297  0.127 | 0910 0.869 0.724 | 0.998 0.993  0.981
Hso1s | 0.663 0514 0235 | 0999 0999 0999 | 1.000 1.000  1.000
Heo1s | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hr7o1s | 1.000  1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hgo1s | 0522 0379  0.168 | 0.999 0997 0976 | 1.000 1.000  1.000
Hoo1s | 0.996 0989 0962 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hipo1s| 0505 0378  0.154 | 0.988 0.975 0.893 | 1.000 1.000  0.996
Hi1o01s| 0838  0.763 0567 | 1.000 1.000 1.000 | 1.000 1.000  1.000
Hizoa1s| 0373 0254  0.114 | 0989 0967 0.872 | 1.000 1.000  1.000

Table A.5: Empirical size and power of the circular-linear goodness-of-fit test for models CL1-

CL12 with different sample sizes, deviations and significance levels.
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‘ Sample size n and significance level «
Model ‘

n =100 \ n = 500 \ n = 1000

| @=0.10 a=0.05 a=0.01]|a=0.10 a=0.05 a=0.01|a=0.10 a=0.05 a=0.01

Hjy 0.00 0.102 0.061 0.016 | 0.094 0.047 0.004 | 0.103 0.048 0.008
Hs 0.00 0.094 0.054 0.007 | 0.100 0.043 0.011 0.096  0.056  0.012
H3.0.00 0.103 0.061  0.009 | 0.096 0.042 0.011 0.113  0.058 0.011
Hy,0.00 0.094 0.049 0.010 | 0.089 0.048 0.008 | 0.108 0.052 0.016
Hs 0.00 0.117  0.059  0.011 0.091  0.050 0.003 | 0.090 0.051  0.009
Hg 0.00 0.101  0.069 0.055 | 0.082 0.045 0.009 | 0.074 0.034 0.009
H7.0.00 0.095 0.048 0.010 | 0.100 0.059 0.014 | 0.105 0.044 0.005
Hg 0.00 0.094 0.043 0.014 | 0.100 0.054 0.013 | 0.097 0.050 0.011
Hy 0.00 0.094 0.043 0.009 | 0.104 0.057 0.017 | 0.098 0.042 0.012
Hip,0.00| 0.095 0.047 0.005 | 0.096 0.041 0.006 | 0.088 0.042 0.010
Hi1,0.00| 0.088 0.041 0.008 | 0.096 0.047 0.010 | 0.108 0.053  0.013
Hi20.00| 0.117 0.062 0.023 | 0.116 0.068 0.013 | 0.092 0.048 0.016

Hy0.10 0.587 0.456  0.240 0.996 0.995 0.961 1.000 1.000 1.000
Hs0.10 0.634 0.506  0.300 0.998 0994 0.976 1.000 1.000 1.000
H30.10 0.786  0.706  0.466 1.000 1.000  1.000 1.000 1.000 1.000
Hy0.10 0.890 0.837  0.665 1.000 1.000 1.000 1.000 1.000 1.000
Hs0.10 0.601 0.431 0.176 1.000 1.000  0.999 1.000 1.000 1.000
Hg0.10 0.237  0.123  0.059 0.875  0.759  0.503 0.982  0.958  0.859
Hz70.10 0.210 0.112  0.025 0.838 0.724  0.429 0.996 0.989 0.916
Hg0.10 0.794  0.693  0.480 1.000 1.000  1.000 1.000 1.000 1.000
Hy 0.10 0.471 0.325  0.112 1.000 1.000  1.000 1.000  1.000 1.000
Hip,0.10 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hiy1010] 0985 0973  0.910 1.000 1.000 1.000 1.000 1.000 1.000
Hi2010| 0942 0.899 0.788 1.000 1.000  1.000 1.000  1.000 1.000

Hy0.15 0.847 0.751  0.521 1.000  1.000  1.000 1.000  1.000  1.000
Hs .15 0.862 0.798  0.627 1.000  1.000 1.000 1.000  1.000  1.000
H30.15 0.958  0.932  0.830 1.000  1.000  1.000 1.000  1.000  1.000
Hyp0.15 0.981  0.958  0.885 1.000  1.000  1.000 1.000  1.000  1.000
Hs0.15 0.847 0.720  0.445 1.000  1.000 1.000 1.000  1.000 1.000
Hg0.15 0.443 0.270 0.097 | 0.985 0.960 0.858 | 0.997 0.993 0.982
H70.15 0.357 0.201  0.043 | 0.990 0.976  0.879 1.000  1.000  1.000
Hg .15 0.969 0.945  0.842 1.000  1.000 1.000 1.000 1.000  1.000
Hy .15 0.719  0.600  0.345 1.000 1.000  1.000 1.000 1.000 1.000
Hip,0.15| 1.000 1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000
Hy10.15| 1.000 1.000  0.993 1.000  1.000 1.000 1.000 1.000  1.000
Hi20.15| 0999 0.993  0.975 1.000 1.000  1.000 1.000 1.000  1.000

Table A.6: Empirical size and power of the circular-circular goodness-of-fit test for models

CC1-CC12 with different sample sizes, deviations and significance levels.
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as shown in Figure A.6. Specifically, Figure A.6 shows percentages of rejections under
the null (6 = 0.00, green) and under the alternative (6 = 0.15, orange), computed from
M = 1000 Monte Carlo samples for each pair of bandwidths (the same collection of
samples for each pair) on a logarithmic spaced 10 x 10 grid. The sample size considered

was n = 100 and the number of bootstrap replicates was B = 1000.

As it can be seen, the test is correctly calibrated regardless the bandwidths value.
In fact, for all the models explored, the rejection rates for each pair of bandwidths in
the grid are inside the 95% confidence interval of the proportion a = 0.05 (this happens
for 95.75% of the bandwidths in the grid). However, the power is notably affected by
the choice of the bandwidths, with rather different behaviours depending on the model
and on the alternative. Reasonable choices of the bandwidths based on an estimation
criterion such as the one obtained by the median of the LCV bandwidths (6.1) lead in

general to a competitive power.

S3.6 Further results

Tables A.5 and A.6 collect the results of the simulation study for each combination of
model (CL or CC), deviation (¢), sample size (n) and significance level (a)). When the
null hypothesis holds, the level of the test is correctly attained for all significance levels,
sample sizes and models. Under the alternative, the tests perform satisfactorily, having
both of them a quick detection of the alternative when only a 10% and a 15% of the

data come from a density not belonging to the null parametric family.

S4 Extended data application

The analysis of the two real datasets presented in Section 7 has been complemented by
exploring the effect of different bandwidths in the test. To that aim, Figure A.7 shows
the p-values computed from B = 1000 bootstrap replicates for a logarithmic spaced
10 x 10 grid, as well as bandwidths obtained by LCV for each dataset. The graphs
shows that there are no evidences against the model of Mardia and Sutton (1978) for
modelling the wildfires data and that the model used to describe the proteins dataset is
not adequate. This model employs the copula structure of Wehrly and Johnson (1979)
with marginals and link function given by circular densities based on NNT'S, specifying
Ferndndez-Durdn (2007) that the best fit in terms of BIC arises from considering three
components for the NNTS’s in the marginals and two for the link function. The fitting of
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the NNTS densities was performed using the nntsmanifoldnewtonestimation function
of the package CircNNTSR (Ferndndez-Durdn and Gregorio-Dominguez (2013)), which
computes the MLE of the NNTS parameters using a Newton algorithm on the hyper-
sphere. The two-step ML procedure described in Section S3 was employed to fit first the
marginals and then the copula. The resulting contour levels of the parametric estimate
are quite similar to the ones shown in Figure 5 of Ferndndez-Durdn (2007). The dataset
is available as ProteinsAAA in the CircNNTSR package.

Mean log-burn area

-90°

2.0
I
-180°
I

T T
EW NE/SW N/IS NW/SE EW -180° -90° 0° 90° 180°

Fires mean orieptation

Figure A.7: Upper row, from left to right: parametric fit (model from Mardia and Sutton
(1978)) to the circular mean orientation and mean log-burnt area of the fires in each of the 102
watersheds of Portugal; parametric fit (model from Ferndndez-Durdn (2007)) for the dihedral
angles of the alanine-alanine-alanine segments. Lower row: p-values of the goodness-of-fit tests
for a 10 x 10 grid, with the LCV bandwidth for the data.
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