
Statistica Sinica 25 (2015), 1207-1229

doi:http://dx.doi.org/10.5705/ss.2014.153

CENTRAL LIMIT THEOREMS FOR DIRECTIONAL AND

LINEAR RANDOM VARIABLES WITH APPLICATIONS
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Abstract: A central limit theorem for the integrated squared error of the directional-

linear kernel density estimator is established. The result enables the construction

and analysis of two testing procedures based on squared loss: a nonparametric inde-

pendence test for directional and linear random variables and a goodness-of-fit test

for parametric families of directional-linear densities. Limit distributions for both

test statistics, and a consistent bootstrap strategy for the goodness-of-fit test, are

developed for the directional-linear case and adapted to the directional-directional

setting. Finite sample performance for the goodness-of-fit test is illustrated in a

simulation study. This test is also applied to datasets from biology and environ-

mental sciences.
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1. Introduction

Statistical inference on random variables comprises estimation and testing

procedures that allow one to characterize the underlying distribution, regardless

the variables nature and/or dimension. Specifically, density estimation stands out

as a basic problem in statistical inference, for which parametric and nonparamet-

ric approaches have been explored. In nonparametrics, kernel density estimation

(see Silverman (1986), Scott (1992), or Wand and Jones (1995), as comprehen-

sive references for scalar random variables) provides a simple and intuitive way to

explore and do inference on random variables. Among other contexts, kernel den-

sity estimation has been also adapted to directional data (see Mardia and Jupp

(2000)). This data on the q-dimensional sphere arises, for example, in meteorol-

ogy when measuring wind direction; in proteomics, when studying the angles in

protein structure (circular data, q = 1, see Fernández-Durán (2007)); in astron-

omy, with the stars positions in the celestial sphere (q = 2, see Garćıa-Portugués

(2013)); in text mining, when codifying documents in the vector space model

(large q, see Chapter 6 in Srivastava and Sahami (2009)). Some early works on
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kernel density estimation with directional data are the papers by Hall, Wat-

son, and Cabrera (1987) and Bai, Rao, and Zhao (1988), who introduced kernel

density estimators and their properties (bias, variance and uniformly strong con-

sistency, among others). The estimation of the density derivatives was studied by

Klemelä (2000), and Zhao and Wu (2001) stated a Central Limit Theorem (CLT)

for the Integrated Squared Error (ISE) of the directional kernel density estimator.

Some recent works deal with the bandwidth selection problem, such as Taylor

(2008) and Oliveira, Crujeiras, and Rodŕıguez-Casal (2012), devoted to circular

data and Garćıa-Portugués (2013), for a general dimension. In some contexts,

joint density models for directional and linear random variables are useful (e.g.

for describing wind direction and SO2 concentration Garćıa-Portugués, Crujeiras,

and González-Manteiga (2013a)). In this setting, a kernel density estimator for

directional-linear data was proposed and analysed by Garćıa-Portugués, Cru-

jeiras, and González-Manteiga (2013b).

Regardless of estimation purposes, kernel density estimators have been exten-

sively used for the development of goodness-of-fit tests (see González-Manteiga

and Crujeiras (2013) for a review) and independence tests. For example, Bickel

and Rosenblatt (1973) and Fan (1994) provided goodness-of-fit tests for para-

metric densities for real random variables. Similarly, in the directional setting,

Boente, González-Manteiga, and Rodŕıguez (2014) presented a goodness-of-fit

test for parametric directional densities. For assessing independence between

two linear random variables, Rosenblatt (1975) proposed a test statistic based

on the squared difference between the joint kernel density estimator and the

product of the marginal ones (see also Rosenblatt and Wahlen (1992)). This idea

was adapted to the directional-linear setting by Garćıa-Portugués et al. (2014),

who derived a permutation independence test and compared its performance with

the testing proposals given by Mardia (1976), Johnson and Wehrly (1978), and

Fisher and Lee (1981) in this context.

The main device for the goodness-of-fit and independence tests is the CLT

for the ISE of the kernel density estimator, and the aim of this work is to provide

such a result for the directional-linear kernel estimator, and use it to derive

a goodness-of-fit test for parametric families of directional-linear densities and

an independence test for directional and linear variables. The CLT is obtained

by proving an extended version of Theorem 1 in Hall (1984). The goodness-

of-fit test follows by taking the ISE between the joint kernel estimator and a

smoothed parametric estimate of the unknown density as a test statistic. For

the independence test, the test statistic introduced in Garćıa-Portugués et al.

(2014) is considered and its asymptotic properties are studied. Jointly with

the asymptotic distribution, a bootstrap resampling strategy to calibrate the

goodness-of-fit test is investigated. Finite sample performance of the goodness-of-

fit test is checked through an extensive simulation study, and this methodology is
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applied to analyse datasets from forestry and proteomics. In addition, the results

obtained for the directional-linear case are adapted to the directional-directional

context.

The rest of this paper is organized as follows. Section 2 presents some back-

ground on kernel density estimation for directional and linear random variables.

Section 3 includes the CLT for the ISE of the directional-linear estimator and

its extension to the directional-directional setting. The independence test for

directional and linear variables is presented in Section 4. The goodness-of-fit test

for simple and composite null hypotheses, its bootstrap calibration and exten-

sions are given in Section 5. The empirical performance of the goodness-of-fit

test is illustrated with a simulation study in Section 6 and with applications to

datasets in Section 7. Appendix A collects the outline of the main proofs. Tech-

nical lemmas and further details on simulations and data analysis are provided

as supplementary material, as well as the extensions of the independence test.

2. Background

For simplicity, f denotes the target density along the paper, which may be

linear, directional, directional-linear, or directional-directional, depending on the

context.

Let Z denote a linear random variable with support supp(Z) ⊆ R and den-

sity f , and let Z1, . . . , Zn be a random sample of Z. The linear kernel density

estimator is defined as

f̂g(z) =
1

ng

n∑
i=1

K

(
z − Zi

g

)
, z ∈ R,

where K denotes the kernel function and g > 0 is the bandwidth parameter,

which controls the smoothness of the estimator (see Silverman (1986), among

others).

Let X denote a directional random variable with density f and support

the q-dimensional sphere, denoted by Ωq =
{
x ∈ Rq+1 : x21 + · · ·+ x2q+1 = 1

}
.

Lebesgue measure in Ωq is denoted by ωq and, therefore, a directional density

satisfies
∫
Ωq

f(x)ωq(dx) = 1. When there is no possible confusion, ωq will also

denote the surface area of Ωq: ωq = ωq (Ωq) = 2π(q+1)/2
/
Γ
(
(q + 1)/2

)
. The

directional kernel density estimator introduced by Hall, Watson, and Cabrera

(1987) and Bai, Rao, and Zhao (1988) for a directional density f , based on a

random sample X1, . . . ,Xn in the q-sphere, is

f̂h(x) =
ch,q(L)

n

n∑
i=1

L

(
1− xTXi

h2

)
, for x ∈ Ωq,
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where L is the directional kernel, h > 0 is the bandwidth parameter and the

scalar product of two vectors, x and y, is denoted by xTy, where xT is the

transpose of the column vector x. ch,q(L) is a normalizing constant depending

on the kernel L, the bandwidth h and the dimension q. Specifically, Bai, Rao,

and Zhao (1988) has the inverse of the normalizing constant as

ch,q(L)
−1 = λh,q(L)h

q ∼ λq(L)h
q, (2.1)

where λh,q(L) = ωq−1

∫ 2h−2

0 L(r)rq/2−1(2− rh2)q/2−1 dr and λq(L) = 2q/2−1ωq−1∫∞
0 L(r)rq/2−1 dr. The notation an ∼ bn means that an = bn(1 + o(1)).

A usual choice for the directional kernel is L(r) = e−r, also known as the

von Mises kernel due to its relation with the von Mises-Fisher density (Watson

(1983)), vM(µ, κ), given by

fvM(x;µ, κ) = Cq(κ) exp
{
κxTµ

}
, Cq(κ) =

κ(q−1)/2

(2π)(q+1)/2I(q−1)/2(κ)
,

where µ ∈ Ωq is the directional mean, κ > 0 is the concentration parameter

around the mean, and Iν is the modified Bessel function of order ν.

The kernel estimator for a directional-linear density f based on a random

sample (X1, Z1) , . . . , (Xn, Zn), with (Xi, Zi) ∈ Ωq×R, i = 1, . . . , n, was proposed

by Garćıa-Portugués, Crujeiras, and González-Manteiga (2013b):

f̂h,g(x, z) =
ch,q(L)

ng

n∑
i=1

LK

(
1− xTXi

h2
,
z − Zi

g

)
, (x, z) ∈ Ωq × R, (2.2)

where LK is a directional-linear kernel, h and g are the bandwidths for the

directional and the linear components, respectively, and ch,q(L) is the normalizing

constant. For simplicity, the product kernel LK(·, ·) = L(·)×K(·) is considered.
To quantify the error of the density estimator, the ISE,

ISE
[
f̂h,g

]
=

∫
Ωq×R

(
f̂h,g(x, z)− f(x, z)

)2
dz ωq(dx),

can be used. In this expression, the integral is taken with respect to the product

measure ωq ×mR, with mR denoting the usual Lebesgue measure in R.
It is possible to define a directional-directional kernel density estimator at

(x,y) ∈ Ωq1×Ωq2 from a random sample (X1,Y1) , . . . , (Xn,Yn), with (Xi,Yi) ∈
Ωq1 × Ωq2 , i = 1, . . . , n, that comes from a directional-directional density f :

f̂h1,h2(x,y) =
ch1,q1(L1)ch2,q2(L2)

n

n∑
i=1

L1

(
1− xTXi

h21

)
× L2

(
1− yTYi

h22

)
.
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To fix notation, R(φ) denotes the integral of the squared function φ2 along

its domain. The following integrals are needed:

µ2(K) =

∫
R
z2K(z) dz, bq(L) =

∫∞
0 L(r)rq/2 dr∫∞

0 L(r)rq/2−1 dr
.

Density derivatives of different orders are denoted as follows:

∇f(x, z) =

(
∂f(x, z)

∂x1
, . . . ,

∂f(x, z)

∂xq+1
,
∂f(x, z)

∂z

)T

= (∇xf(x, z),∇zf(x, z))
T ,

Hf(x, z) =

((
∂2f(x,z)
∂xi∂xj

)
∂2f(x,z)
∂x∂z

∂2f(x,z)
∂z∂xT

∂2f(x,z)
∂z2

)
=

(
Hxf(x, z) Hx,zf(x, z)

Hx,zf(x, z)
T Hzf(x, z)

)
.

3. Central Limit Theorem for the Integrated Squared Error

Our main result is the CLT for the ISE of the kernel density estimator (2.2).

3.1. Main result

We need the following conditions.

A1 If f is extended from Ωq×R to Rq+2\ {(0, z) : z ∈ R} as f(x, z) ≡ f(x/ ||x||,
z) for all x ̸= 0 and z ∈ R, f and its first three derivatives are bounded and

uniformly continuous with respect to the product Euclidean norm in Ωq×R,

||(x, z)|| =
√

||x||2 + |z|2.

A2 L : [0,∞) → [0,∞) and K : R → [0,∞) are continuous and bounded; L is

nonincreasing such that 0 < λq(L), λq(L
2) < ∞, ∀q ≥ 1 and K is a linear

density, symmetric around zero and with µ2(K) < ∞.

A3 h = hn and g = gn are sequences of positive numbers such that hn → 0,

gn → 0, and nhqngn → ∞ as n → ∞.

The uniform continuity and boundedness up to the second derivatives of f

is a common assumption that appears, among others, in Hall (1984) and Rosen-

blatt and Wahlen (1992), while the assumption on the third derivatives is needed

for uniform convergence. The assumption of compact support for the directional

kernel L, stated in Zhao and Wu (2001), is replaced by the nonincreasing re-

quirement and the finiteness of λq(L) and λq(L
2). These two conditions are less

restrictive and allow for consideration of the von Mises kernel. We provide the

limit distribution of the ISE for (2.2). The proof is based on a generalization of

Theorem 1 in Hall (1984), stated as Lemma 1 in Appendix A.
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Theorem 1 (CLT for the directional-linear ISE). Denote the ISE of f̂h,g by In.

If A1−A3 hold, then

(i) n1/2ϕ(h, g)−1/2 (In − E[In])
d−→ N (0, 1), if nϕ(h, g)hqg → ∞,

(ii) n(hqg)1/2 (In − E[In])
d−→ N

(
0, 2σ2

)
, if nϕ(h, g)hqg → 0,

(iii)n(hqg)1/2 (In − E[In])
d−→ N

(
0, δ + 2σ2

)
, if nϕ(h, g)hqg → δ,

where 0 < δ < ∞ and

ϕ(h, g) =
4bq(L)

2

q2
σ2
Xh4 + µ2(K)2σ2

Zg
4 +

4bq(L)µ2(K)

q
σX,Zh

2g2,

with σX,Z = Cov[tr[Hxf(X, Z)],Hzf(X, Z)], σ2
X = Var [tr[Hxf(X, Z)]] and

σ2
Z = Var [Hzf(X, Z)]. The remaining constants are

σ2 =R(f)× γqλq(L)
−4

∫ ∞

0
rq/2−1

{∫ ∞

0
ρq/2−1L(ρ)φq(r, ρ) dρ

}2

dr

×
∫
R

{∫
R
K(u)K(u+ v) du

}2

dv,

φq(r, ρ) =

{
L
(
r + ρ− 2(rρ)1/2

)
+ L

(
r + ρ+ 2(rρ)1/2

)
, q = 1,∫ 1

−1

(
1− θ2

)(q−3)/2
L
(
r + ρ− 2θ(rρ)1/2

)
dθ, q ≥ 2,

γq =

{
2−1/2, q = 1,

ωq−1ω
2
q−22

3q/2−3, q ≥ 2.

The same limit distributions hold in (i)−(iii) if E[In] is replaced by∫
Ωq×R

(
E[f̂h,g(x, z)]− f(x, z)

)2
dz ωq(dx) +

λq(L
2)λq(L)

−2R(K)

nhqg
.

Bearing in mind the CLT result in Hall (1984) for the linear case, a bandwidth-

free rate of convergence should be expected in (iii). Nevertheless, when nϕ(h, g)

hqg → δ, the analytical difficulty of joining the two rates of convergence of the

dominant terms forces the normalizing rate to be n(hqg)1/2, although the se-

quence of bandwidths is restricted to satisfy the constraint nϕ(h, g)hqg → δ.

To clarify this point, a corollary presents a special case with proportional band-

width sequences where the rate of convergence can be analytically stated in a

bandwidth-free form.

Corollary 1. Under A1−A3, and assuming gn = βhn for a fixed β > 0 and

0 < δ < ∞,

(i) n1/2h−2 (In − E[In])
d−→ N (0, ϕ(1, β)), if nhq+5 → ∞,
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(ii) nh(q+1)/2 (In − E[In])
d−→ N

(
0, 2σ2

)
, if nhq+5 → 0,

(iii)n(q+9)/2(q+5) (In − E[In])
d−→ N

(
0, ϕ(1, β)δ4/(q+5) + 2σ2δ−(q+1)/(q+5)

)
, if

nhq+5 → δ.

3.2. Extensions of Theorem 1

The previous results can be adapted to other contexts involving directional

variables, such as directional-directional or directional-multivariate random vec-

tors. Once the common structure and the effects of each component are deter-

mined, it is easy to reproduce the computations duplicating a certain component

or modifying it. This will be used to derive the directional-directional versions

of the most relevant results along the paper. By considering a single bandwidth

for the estimator defined in Rp (as in Hall (1984), for example), Theorem 1 can

be easily adapted to account for a multivariate component.

Considering the directional-directional estimator f̂h1,h2 , the corresponding

analogues of conditions A1−A3 are obtained (extending f from Ωq1 × Ωq2 to

{(x,y) ∈ Rq1+q2+2 : x ̸= 0, y ̸= 0} and assuming nhq11,nh
q2
2,n → ∞). Then, it is

possible to derive a directional-directional version of Theorem 1.

Corollary 2 (CLT for the directional-directional ISE). Denote the ISE of f̂h1,h2

by In =
∫
Ωq1×Ωq2

(f̂h1,h2(x,y) − f(x,y))2 ωq2(dy)ωq1(dx). Then, under the

directional-directional analogues of A1−A3,

(i) n1/2ϕ(h1, h2)
−1/2 (In − E[In])

d−→ Z, if nϕ(h1, h2)h
q1
1 hq22 → ∞,

(ii) n(hq11 hq22 )1/2 (In − E[In])
d−→ 21/2σZ, if nϕ(h1, h2)h

q1
1 hq22 → 0,

(iii)n(hq11 hq22 )1/2 (In − E[In])
d−→
(
δ + 2σ2

)1/2
Z, if nϕ(h1, h2)h

q1
1 hq22 → δ,

where 0 < δ < ∞ and

ϕ(h1, h2) =
4bq1(L1)

2

q21
σ2
Xh41 +

4bq2(L2)
2

q22
σ2
Yh42 +

8bq1(L1)bq2(L2)

q1q2
σX,Yh21h

2
2.

σ2 =R(f)× γq1λq1(L1)
−4

∫ ∞

0
rq1/2−1

{∫ ∞

0
ρq1/2−1L1(ρ)φq1(r, ρ) dρ

}2

dr

× γq2λq2(L2)
−4

∫ ∞

0
rq2/2−1

{∫ ∞

0
ρq2/2−1L2(ρ)φq2(r, ρ) dρ

}2

dr,

with σX,Y = Cov[tr[Hxf(X,Y)], tr[Hyf(X,Y)]], σ2
X = Var [tr[Hxf(X,Y)]]

and σ2
Y = Var [tr[Hyf(X,Y)]]. The same limit distributions hold in (i)−(iii)

if E[In] is replaced by∫
Ωq1×Ωq2

(
E
[
f̂h1,h2(x,y)

]
−f(x,y)

)2
ωq2(y)ωq1(x)+

λq1(L
2
1)λq2(L

2
2)

λq1(L1)2λq2(L2)2nh
q1
1 hq22

.
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4. Testing Independence with Directional Random Variables

Given a random sample (X1, Z1), . . . , (Xn, Zn) from a directional-linear vari-

able (X, Z), one may be interested in the assessment of independence between

components. If such a hypothesis is rejected, the joint kernel density estimator

may give an idea of the dependence structure between them.

Let f(X,Z) denote the directional-linear density of (X, Z), with fX and fZ the

directional and linear marginal densities. In this setting, the null hypothesis of

independence is stated as H0 : f(X,Z)(x, z) = fX(x)fZ(z), ∀(x, z) ∈ Ωq × R, and
the alternative as H1 : f(X,Z)(x, z) ̸= fX(x)fZ(z), for some (x, z) ∈ Ωq × R. A

statistic to test H0 can be constructed considering the squared distance between

the nonparametric estimator of joint density, denoted in this setting by f̂(X,Z);h,g,

and the product of the corresponding marginal kernel estimators, denoted by f̂X,h

and f̂Z,g,

Tn =

∫
Ωq×R

(
f̂(X,Z);h,g(x, z)− f̂X;h(x)f̂Z;g(z)

)2
dz ωq(dx).

This type of test was introduced by Rosenblatt (1975) and Rosenblatt and

Wahlen (1992) for bivariate random variables, considering the same bandwidths

for smoothing both components. The directional-linear context requires an as-

sumption on the degree of smoothness in each component.

A4 hqng−1
n → c, with 0 < c < ∞, as n → ∞.

Theorem 2 (Directional-linear independence test). Under A1−A4 and the null

hypothesis of independence,

n(hqg)1/2 (Tn −An)
d−→ N (0, 2σ2

I ),

where

An =
λq(L

2)λq(L)
−2R(K)

nhqg
− λq(L

2)λq(L)
−2R(fZ)

nhq
− R(K)R(fX)

ng
,

and σ2
I is defined as σ2 in Theorem 1, but with R(f) = R(fX)R(fZ).

Since the leading term is the same as in Theorem 1 for nϕ(h, g)hqg → 0, the

asymptotic variance is also the same. As in the CLT for the ISE, the effect of the

components can be disentangled in the asymptotic variance and in the bias term.

The a priori complex contribution of the directional part in Theorems 1 and 4 is

explained for a particular scenario in the supplementary material, together with

some numerical experiments for illustrating Theorem 2.
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5. Goodness-of-fit Test with Directional Random Variables

Testing methods for a specific parametric directional-linear density (simple

H0) or for a parametric family (composite H0) are presented in this section.

5.1. Testing a simple null hypothesis

Given a random sample {(Xi, Zi)}ni=1 from an unknown directional-linear

density f , the simple null hypothesis testing problem is stated as H0 : f = fθ0 ,

θ0 ∈ Θ, where fθ0 is a certain parametric density with known parameter θ0
belonging to the parameter spaceΘ ⊂ Rp, with p ≥ 1. The alternative hypothesis

is taken as H1 : f(x, z) ̸= fθ0(x, z), for some (x, z) ∈ Ωq × R in a set of positive

measure. The proposed test statistic is

Rn =

∫
Ωq×R

(
f̂h,g(x, z)− LKh,gfθ0(x, z)

)2
dz ωq(dx), (5.1)

where LKh,gfθ0(x, z) represents the expected value of f̂h,g(x, z) under H0. In

general, for a function f , this expected value is

LKh,gf(x, z) =
ch,q(L)

g

∫
Ωq×R

LK

(
1− xTy

h2
,
z − t

g

)
f(y, t) dt ωq(dy). (5.2)

Smoothing the parametric density was considered by Fan (1994), in the linear

setting, to avoid the bias effects in the integrand of the square error between

the nonparametric estimator under the alternative and the parametric estimate

under the null. A modification of the smoothing proposal was used by Boente,

González-Manteiga, and Rodŕıguez (2014) for the directional case.

Theorem 3. Under A1−A3 and the simple null hypothesis H0 : f = fθ0, with

θ0 ∈ Θ known,

n(hqg)1/2
(
Rn − λq(L

2)λq(L)
−2R(K)

nhqg

)
d−→ N

(
0, 2σ2

θ0

)
,

where σ2
θ0

follows from replacing f = fθ0 in σ2 from Theorem 1.

5.2. Composite null hypothesis

Consider the testing problem H0 : f ∈ FΘ = {fθ : θ ∈ Θ}, where FΘ is

a class of parametric densities indexed by the p-dimensional parameter θ, vs.

H1 : f /∈ FΘ. Under H0, a parametric density estimator fθ̂ can be obtained by

Maximum Likelihood (ML). The next conditions are required.

A5 The function fθ is twice continuously differentiable with respect to θ, with

derivatives that are bounded and uniformly continuous for (x, z).
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A6 There exists θ1 ∈ Θ such that θ̂−θ1 = OP
(
n−1/2

)
, and if H0 : f = fθ0 holds

for a θ0 ∈ Θ, then θ1 = θ0.

A5 is a regularity assumption on the parametric density, whereas A6 states

that the estimation of the unknown parameter must be
√
n-consistent in order

to ensure that the effects of parametric estimation can be neglected. The
√
n-

consistency is required under H0 (for Theorem 4) and H1 (for Theorem 6), which

is satisfied by the ML estimator. The test statistic is an adaptation of (5.1), but

plugging-in the estimator of the unknown parameter θ0 under H0 in the test

statistic expression:

Rn =

∫
Ωq×R

(
f̂h,g(x, z)− LKh,gfθ̂(x, z)

)2
dz ωq(dx). (5.3)

Theorem 4 (Goodness-of-fit test for directional-linear densities). Under A1−A3,

A5−A6 and the composite null hypothesis H0 : f = fθ0, with θ0 ∈ Θ unknown,

n(hqg)1/2
(
Rn − λq(L

2)λq(L)
−2R(K)

nhqg

)
d−→ N

(
0, 2σ2

θ0

)
.

Families of Pitman alternatives are a common way to measure power for

tests based on kernel smoothers (e.g., Fan (1994)). For the directional-linear

case, these alternatives can be written as

H1P : f(x, z) = fθ0(x, z) +
(
nhq/2g1/2

)−1/2
∆(x, z), (5.4)

where ∆(x, z) : Ωq×R → R is such that
∫
Ωq×R∆(x, z) dz ωq(dx) = 0. A necessary

condition to derive the limit distribution of Rn under H1P is that the estimator

θ̂ is a
√
n-consistent estimator for θ0.

A7 For the family of alternatives (5.4), θ̂ − θ0 = OP
(
n−1/2

)
.

Theorem 5 (Local power under Pitman alternatives). Under A1−A3, A5−A7

and the alternative hypothesis (5.4),

n(hqg)1/2
(
Rn − λq(L

2)λq(L)
−2R(K)

nhqg

)
d−→ N

(
R (∆) , 2σ2

θ0

)
.

5.3. Calibration in practise

In order to effectively calibrate the proposed test, a parametric bootstrap

procedure is investigated. The bootstrap statistic is defined as

R∗
n =

∫
Ωq×R

(
f̂∗
h,g(x, z)− LKh,gfθ̂∗(x, z)

)2
dz ωq(dx),
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where the superscript ∗ indicates that the estimators are computed from the

bootstrap sample {(X∗
i , Z

∗
i )}

n
i=1 obtained from the density fθ̂, with θ̂ computed

from the original sample. The bootstrap procedure, considering the composite

null hypothesis testing problem, is detailed in an algorithm. Calibration for the

simple null hypothesis test can be done replacing θ̂ and θ̂∗ by θ0.

Algorithm 1 (Testing procedure). Let {(Xi, Zi)}ni=1 be a random sample from

f . To test H0 : f = fθ0, with θ0 ∈ Θ unknown, proceed as follows.

1. Obtain θ̂, a
√
n-consistent estimator of θ0.

2. Compute Rn =
∫
Ωq×R

(
f̂h,g(x, z)− LKh,gfθ̂(x, z)

)2
dz ωq(dx).

3. Bootstrap strategy. For b = 1, . . . , B:

(a) Obtain a random sample {(X∗
i , Z

∗
i )}

n
i=1 from fθ̂.

(b) Compute θ̂∗ as in Step 1, from the bootstrap sample in (a).

(c) Compute R∗b
n =

∫
Ωq×R

(
f̂∗
h,g(x, z)−LKh,gfθ̂∗(x, z)

)2
dz ωq(dx), where f̂∗

h,g

is obtained from the bootstrap sample in (a).

4. Approximate the p-value of the test as p-value ≈ #
{
Rn ≤ R∗b

n

}
/B.

The consistency of this testing procedure is proved here, using the bootstrap

analogue of A6.

A8 θ̂∗ − θ̂ = OP∗
(
n−1/2

)
, where P∗ represents the probability of (X∗, Z∗) con-

ditioned on the sample {(Xi, Zi)}ni=1.

Theorem 6 (Bootstrap consistency). Under A1−A3, A5−A6 and A8, and

conditionally on {(Xi, Zi)}ni=1,

n(hqg)1/2
(
R∗

n − λq(L
2)λq(L)

−2R(K)

nhqg

)
d−→ N

(
0, 2σ2

θ1

)
in probability.

Then, the probability distribution function (pdf) of R∗
n conditioned on the

sample converges in probability to a Gaussian pdf, regardless of whether H0

holds or not. The asymptotic distribution coincides with the one of Rn if H0

holds (θ1 = θ0).

5.4. Extensions to directional-directional models

The directional-directional versions of the previous results follow under anal-

ogous assumptions (modifying A5, (5.2) and (5.4) accordingly). The directional-

directional test statistic for the composite hypothesis testing problem is

Rn =

∫
Ωq1×Ωq2

(
f̂h1,h2(x,y)− L1L2,h1,h2fθ̂(x,y)

)2
ωq2(dy)ωq1(dx).
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Corollary 3 (Goodness-of-fit test for directional-directional densities). Under

the directional-directional analogues of A1−A3, A5−A6 and the composite null

hypothesis H0 : f = fθ0, with θ0 ∈ Θ unknown,

n(hq11 hq22 )1/2
(
Rn − λq1(L

2
1)λq1(L1)

−2λq2(L
2
2)λq2(L2)

−2

nhq11 hq22

)
d−→ N

(
0, 2σ2

θ0

)
.

6. Simulation Study

The finite sample performance of the directional-linear and directional- di-

rectional goodness-of-fit tests is illustrated in this section for a variety of models,

sample sizes, and bandwidth choices. The study considered circular-linear and

circular-circular scenarios, although these tests can be easily applied in higher

dimensions, such as spherical-linear or spherical-circular, due to their general

definition and resampling procedures. Details on simulated models and further

results are included as supplementary material.

Circular-Linear (CL) and Circular-Circular (CC) parametric scenarios were

considered. Figures 1 and 2 show the density contours in the cylinder (CL) and

in the torus (CC) for the different models. The detailed description of each

model is given in the supplementary material. Deviations from the composite

null hypothesis H0 : f ∈ FΘ were obtained by mixing the true density fθ0 with

a density ∆ such that the resulting density does not belong to FΘ: Hδ : f =

(1 − δ)fθ0 + δ∆, 0 ≤ δ ≤ 1. The goodness-of-fit tests were applied using the

bootstrap strategy, for the whole collection of models, sample sizes n =100, 500,

1,000 and deviations δ = 0, 0.10, 0.15 (δ = 0 for the null hypothesis). The number

of bootstrap and Monte Carlo replicates was 1,000.

In each case (model, sample size and deviation), the performance of the

goodness-of-fit test is shown for a fixed pair of bandwidths, obtained from the

median of 1,000 simulated Likelihood Cross Validation (LCV) bandwidths

(h, g)LCV= argmaxh,g>0
∑n

i=1 log f̂
−i
h,g(Xi, Zi),

(h1, h2)LCV= argmaxh1,h2>0
∑n

i=1 log f̂
−i
h1,h2

(Xi,Yi),
(6.1)

where f̂−i
... denotes the kernel estimator computed without the ith datum. A

deeper insight on the bandwidth effect is provided for some scenarios, where

percentage of rejections are plotted for a grid of bandwidths (see Figure 3 for two

cases, and supplementary material for extended results). The kernels considered

were the von Mises and the normal ones.

Table 1 collects the results of the simulation study for each combination of

model (CL or CC), deviation (δ) and sample size (n). When the null hypothesis

holds, significance levels are correctly attained for α = 0.05 (see supplementary



CLTS FOR DIRECTIONAL LINEAR RANDOM VARIABLES 1219

Figure 1. Density models for the simulation study in the circular-linear case.
From left to right and up to down, models CL1 to CL12.

Figure 2. Density models for the simulation study in the circular-circular
case. From left to right and up to down, models CC1 to CC12.
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Table 1. Empirical size and power of the circular-linear and circular-circular
goodness-of-fit tests for models CL1–CL12 and CC1–CC12 (respectively)
with significance level α = 0.05 and different sample sizes and deviations.

Model

Sample size n and deviation δ
n = 100 n = 500 n =1,000

δ=0 δ=0.10 δ=0.15 δ=0 δ=0.10 δ=0.15 δ=0 δ=0.10 δ=0.15
CL1 0.051 0.552 0.997 0.052 0.822 1.000 0.048 1.000 1.000
CL2 0.051 0.244 0.805 0.049 0.525 0.997 0.050 0.982 1.000
CL3 0.048 0.107 0.362 0.046 0.163 0.682 0.050 0.659 0.940
CL4 0.045 0.172 0.568 0.039 0.297 0.869 0.045 0.868 0.993
CL5 0.049 0.272 0.972 0.049 0.514 0.999 0.041 1.000 1.000
CL6 0.039 0.996 1.000 0.043 1.000 1.000 0.050 1.000 1.000
CL7 0.042 1.000 1.000 0.043 1.000 1.000 0.049 1.000 1.000
CL8 0.049 0.204 0.893 0.050 0.379 0.997 0.044 1.000 1.000
CL9 0.062 0.914 1.000 0.043 0.989 1.000 0.064 1.000 1.000
CL10 0.045 0.218 0.723 0.056 0.378 0.975 0.045 0.944 1.000
CL11 0.059 0.510 0.993 0.056 0.763 1.000 0.056 1.000 1.000
CL12 0.073 0.152 0.655 0.054 0.254 0.967 0.051 0.969 1.000
CC1 0.061 0.456 0.751 0.047 0.995 1.000 0.048 1.000 1.000
CC2 0.054 0.506 0.798 0.043 0.994 1.000 0.056 1.000 1.000
CC3 0.061 0.706 0.932 0.042 1.000 1.000 0.058 1.000 1.000
CC4 0.049 0.837 0.958 0.048 1.000 1.000 0.052 1.000 1.000
CC5 0.059 0.431 0.720 0.050 1.000 1.000 0.051 1.000 1.000
CC6 0.069 0.123 0.270 0.045 0.759 0.960 0.034 0.958 0.993
CC7 0.048 0.112 0.201 0.059 0.724 0.976 0.044 0.989 1.000
CC8 0.043 0.693 0.945 0.054 1.000 1.000 0.050 1.000 1.000
CC9 0.043 0.325 0.600 0.057 1.000 1.000 0.042 1.000 1.000
CC10 0.047 1.000 1.000 0.041 1.000 1.000 0.042 1.000 1.000
CC11 0.041 0.973 1.000 0.047 1.000 1.000 0.053 1.000 1.000
CC12 0.062 0.899 0.993 0.058 1.000 1.000 0.048 1.000 1.000

material for α = 0.10, 0.01), for all sample sizes, models and deviations. When

the null hypothesis does not hold, the tests perform satisfactorily, having in both

cases a quick detection of the alternative when only a 10% and a 15% of the data

come from a density out of the parametric family. As expected, the rejection

rates grow as the sample size and the deviation from the alternative do.

Finally, the effect of the bandwidths is explored in Figure 3. For models CL1

and CC8, the empirical size and power of the tests are computed on a bivariate

grid of bandwidths, for sample size n = 100 and deviations δ = 0 (lower sur-

face, null hypothesis) and δ = 0.15 (upper surface). As it can be seen, the tests

are correctly calibrated regardless of the choice of the bandwidths. However, the

power is notably affected by the bandwidths, with different behaviours depending

on the model and the alternative. Reasonable choices of the bandwidths, such
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Figure 3. Empirical size and power of the circular-linear (left, model CL1)
and circular-circular (right, model CC8) goodness-of-fit tests for a 10 × 10
logarithmic spaced grid. Lower surface represents the empirical rejection
rate under H0.00 and upper surface under H0.15. Black points represent the
empirical size and power obtained with the median of the LCV bandwidths.

as the median of the LCV bandwidths (6.1), present a competitive power. Fur-

ther results supporting the same conclusions are available in the supplementary

material.

7. Data Application

The proposed goodness-of-fit tests were applied to study two datasets (see

supplementary material for further details). The first dataset comes from forestry

and contains orientations and log-burnt areas of 26,870 wildfires occurred in

Portugal between 1985 and 2005. Data was aggregated in watersheds, giving

102 observations of the circular mean orientation and mean log-burnt area for

each watershed (circular-linear example). Further details on the data acquisition

procedure, measurement of fires orientation and watershed delimitation can be

seen in Barros, Pereira, and Lund (2012) and Garćıa-Portugués et al. (2014).

The model proposed by Mardia and Sutton (1978) was tested for this dataset

(Figure 4, left) using the LCV bandwidths and B =1,000 bootstrap replicates,

resulting a p-value of 0.156, showing no evidence against the null hypothesis.

The second dataset contains pairs of dihedral angles of segments of the type

alanine-alanine-alanine in alanine amino acids in 1932 proteins. The dataset,

formed by 233 pairs of angles (circular-circular), was studied by Fernández-

Durán (2007) using Nonnegative Trigonometric Sums (NTSS) for the marginal

and link function of the model of Wehrly and Johnson (1979). The best model
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Figure 4. Left: parametric fit (model from Mardia and Sutton (1978)) to the
circular mean orientation and mean log-burnt area of the fires in each of the
102 watersheds of Portugal. Right: parametric fit (model from Fernández-
Durán (2007)) for the dihedral angles of the alanine-alanine-alanine seg-
ments.

in terms of BIC described in Fernández-Durán (2007) was implemented using a

two-step Maximum Likelihood Estimation (MLE) procedure and the tools of the

CircNNTSR package (Fernández-Durán and Gregorio-Domı́nguez (2013)) for fit-

ting the NTSS parametric densities (Figure 4, right). The resulting p-value with

the LCV bandwidths is 0.000, indicating that the dependence model of Wehrly

and Johnson (1979) is not flexible enough to capture the dependence structure

between the two angles. The reason for this lack of fit may be explained by a

poor fit in a secondary cluster of data around Ψ = 90◦, as can be seen in the

contour plot in Figure 4.
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Appendix A. Sketches of the Main Proofs

This section contains the sketches of the main proofs. Proofs for technical

lemmas, complete numerical experiments and simulation results, and further

details on data analysis are given in the supplementary material.

A.1. CLT for the integrated squared error

Proof of Theorem 1. The ISE can be decomposed into four addends, In =

In1 + In2 + In3 + In4 :

In1 =2
ch,q(L)

ng

n∑
i=1

∫
Ωq×R

LKn ((x, z), (Xi, Zi))
(
E[f̂h,g(x, z)]− f(x, z)

)
dz ωq(dx),

In2 =
ch,q(L)

2

n2g2

n∑
i=1

∫
Ωq×R

LK2
n ((x, z), (Xi, Zi)) dz ωq(dx),

In3 =
ch,q(L)

2

n2g2

∑
1≤i<j≤n

∫
Ωq×R

LKn ((x, z), (Xi, Zi))LKn ((x, z), (Xj , Zj)) dz ωq(dx),

In4 =

∫
Ωq×R

(
E[f̂h,g(x, z)]− f(x, z)

)2
dz ωq(dx),

where

LKn ((x, z), (y, t)) = LK

(
1− xTy

h2
,
z − t

g

)
− E

[
LK

(
1− xTX

h2
,
z − Z

g

)]
.

Except for the fourth term, which is deterministic, the CLT for the ISE is

derived by examining the asymptotic behaviour of each addend. The first two

can be written as In1 =
∑n

i=1 I
(i)
n1 and In2 = ch,q(L)

2/(n2g2)
∑n

i=1 I
(i)
n2 , where

I
(i)
n1 and I

(i)
n2 can be directly extracted from the previous expressions. Then, by

Lemma 2,

n1/2ϕ(h, g)−1/2In1

d−→ N (0, 1) (A.1)

and by Lemma 3,

In2 =
λq(L

2)λq(L)
−2R(K)

nhqg
+OP

(
n−3/2h−qg−1

)
. (A.2)

The third term can be written as

In3 = 2
ch,q(L)

2

n2g2

∑
1≤i<j≤n

Hn ((Xi, Zi), (Xj , Zj)) = 2
ch,q(L)

2

n2g2
Un, (A.3)

where Un is an U -statistic with kernel function Hn given in Lemma 4. Un is

degenerate since E[LKn ((x, z), (X, Z))] = 0.
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In order to properly apply Lemma 1 for obtaining the asymptotic distribu-

tion of Un in (A.3), Lemma 4 provides the explicit expressions for the required

elements. Then, considering φn ≡ 0 in Lemma 1, condition AnB
−2
n → 0 is sat-

isfied by A3 and, as a consequence, B
−1/2
n Un

d→ N (0, 1). Since the variance of

In3 is

Var [In3 ] = 4
ch,q(L)

4

n4g4
Var [Un] = 2

σ2

n2hqg
(1 + o(1)), (A.4)

by Slutsky’s theorem, (A.3) and (2.1),

n (hqg)1/2 In3

d−→ N
(
0, 2σ2

)
. (A.5)

From (A.1), (A.2) and (A.5), it follows that:

In − E[In] =n−1/2ϕ(h, g)1/2Nn1 +OP

(
n−3/2h−qg−1

)
+ 21/2σn−1(hqg)−1/2Nn3 , (A.6)

where Nn1 , Nn3

d−→ N (0, 1). By A3,
(
n3/2hqg

)−1
= o

(
(nhq/2g1/2)−1

)
and the

second addend In2 is asymptotically negligible compared with In3 . In order to

determine dominance between In1 and In3 , the squared quotient between their

orders is examined, being of order nϕ(h, g)hqg. Then if nϕ(h, g)hqg → ∞ the

last term on (A.6) is asymptotically negligible in comparison with the first, while

if nϕ(h, g)hqg → 0, the first term is negligible in comparison with the last. By

(A.2), (A.6) can be stated as

In −
(∫

Ωq×R

(
E
[
f̂h,g(x, z)

]
− f(x, z)

)2
dz ωq(dx) +

λq(L
2)λq(L)

−2R(K)

nhqg

)
=n−1/2ϕ(h, g)1/2Nn1 +OP

(
n−3/2h−qg−1

)
+ 21/2σn−1(hqg)−1/2Nn3 .

The case where nϕ(h, g)hqg → δ, 0 < δ < ∞, needs a special treatment

because none of the terms can be neglected. In this case,

In − E[In] =n−1/2ϕ(h, g)1/2Nn1 + 21/2σn−1(hqg)−1/2Nn3 +OP

(
n−3/2h−qg−1

)
=n−1(hqg)−1/2

(
δ1/2Nn1 + 21/2σNn3

)
+OP

(
n−3/2h−qg−1

)
.

In order to apply Lemma 1, set Ũn = In1 + In3 with

Ũn =
n∑

i=1

φn(Xi, Zi) +
∑

1≤i<j≤n

H̃n ((Xi, Zi), (Xj , Zj)) ,
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where φn(X1, Z1) = I
(1)
n1 , H̃n ((x, z), (y, t)) = 2ch,q(L)

2/(n2g2)Hn ((x, z), (y, t)),

and G̃n ((x, z), (y, t)) = E[H̃n ((X, Z), (x, z)) H̃n ((X, Z), (y, t))].

By Lemma 4 and the definitions of H̃n, G̃n, φn and Mn,

E[H̃2
n ((X1, Z1), (X2, Z2))] = 4n−4h−qg−1σ2 (1 + o(1)) ,

E[H̃4
n ((X1, Z1), (X2, Z2))] =O

(
n−8h−3qg−3

)
,

E[G̃2
n ((X1, Z1), (X2, Z2))] =O

(
n−8h−qg−1

)
,

E[φ2
n(X1, Z1)] =n−2ϕ(h, g) (1 + o(1)) ,

E[φ4
n(X1, Z1)] =O

(
n−4(h8 + g8)

)
,

E[M2
n(X1, Z1)] =O

(
n−6(h4 + g4)h−3q/2g−3/2

)
.

Applying these orders and using nϕ(h, g)hqg → δ,

An

B2
n

= O
(
n−1

)
+O

(
(nhqg)−1hq/2g

1
2

)
+O

(
(nhqg)−1

)
+O (hqg) .

Then, by A3, the four previous orders tend to zero and therefore B
−1/2
n Ũn

d−→
N (0, 1), where Bn ∼ n−1ϕ(h, g) + 2n−2(hqg)−1σ2 ∼ n−2(hqg)−1

(
δ + 2σ2

)
. Fi-

nally, n (hqg)1/2 21/2
(
δ + 2σ2

)−1/2
(In1 + In3)

d−→ N (0, 1) by Slutsky’s Theorem.

Proof of Corollary 1. As g = βh, for a fixed β > 0, nϕ(h, g)hqg = O
(
nhq+5

)
and the cases in Theorem 1 are given by the asymptotic behaviour of this se-

quence. When nhq+5 → ∞ and nhq+5 → 0, the result is obtained immediately,

whereas for nhq+5 → δ, 0 < δ < ∞, Lemma 1 gives

Bn ∼ ϕ(1, β)n−1h4 + 2σ2n−2h−(q+1) ∼ n
− q+9

q+5

(
ϕ(1, β)δ

4
q+5 + 2σ2δ

− q+1
q+5

)
.

Therefore, n
q+9

2(q+5)

(
ϕ(1, β)δ

4
q+5 + 2σ2δ

− q+1
q+5

)−1/2
(In1 + In3)

d−→ N (0, 1).

Proof of Corollary 2. The proof follows from an adaptation of the proof of

Theorem 1 to the directional-directional context.

A.2. Testing independence with directional data

Proof of Theorem 2. The test statistic is decomposed as Tn = Tn1 +Tn2 +Tn3

taking into account that, under independence, E[f̂h,g(x, z)] = E[f̂h(x)]E[f̂g(z)]:

Tn1 =

∫
Ωq×R

(
f̂h,g(x, z)− E[f̂h,g(x, z)]

)2
dz ωq(dx),

Tn2 =

∫
Ωq×R

(
f̂h(x)f̂g(z)− E[f̂h(x)]E[f̂g(z)]

)2
dz ωq(dx),
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Tn3 = − 2

∫
Ωq×R

(
f̂h,g(x, z)− E[f̂h,g(x, z)]

)
×
(
f̂h(x)f̂g(z)− E[f̂h(x)]E[f̂g(z)]

)
dz ωq(dx).

By Chebychev’s inequality and Lemmas 6 and 7, the sum of the second and

third addends is −E[Tn2 ]+OP
(
n−1(h−q+g−1)1/2

)
. Considering the test statistic

decomposition and using Lemma 5 yields

Tn =Tn1 − E[Tn2 ] +OP

(
n−1(h−q + g−1)1/2

)
=

λq(L
2)λq(L)

−2R(K)

nhqg
+ 21/2σn−1(hqg)−1/2Nn − λq(L

2)λq(L)
−2R(fZ)

nhq

− R(K)R(fX)

ng
+ o(n−1

(
h−q + g−1

)
) +OP

(
n−1(h−q + g−1)1/2

)
.

Now, OP
(
n−1(h−q + g−1)1/2

)
is negligible in comparison with the second addend

by A3 and the deterministic order o(n−1(h−q + g−1)) is also negligible by A3

and A4. Therefore, n(hqg)1/2 (Tn −An)
d−→ N (0, 2σ2

I ).

A.3. Goodness-of-fit test for models with directional data

Proof of Theorem 3. Under H0 : f = fθ0 , the test statistic Rn = In2 + In3 ,

where In2 and In3 are given by (A.2) and (A.5) in the proof of Theorem 1, so

n(hqg)1/2
(
In2 + In3 −

λq(L
2)λq(L)

−2R(K)

nhqg

)
d−→ N

(
0, 2σ2

θ0

)
. (A.7)

Proof of Theorem 4. The test statistic is decomposed as Rn = Rn1 + In2 +

In3 +Rn4 by adding and subtracting E[f̂h,g(x, z)] = LKh,gf(x, z), with

Rn1 =2

∫
Ωq×R

(
f̂h,g(x, z)− LKh,gf(x, z)

)
LKh,g

(
f(x, z)− fθ̂(x, z)

)
dz ωq(dx),

Rn4 =

∫
Ωq×R

(
LKh,g

(
f(x, z)− fθ̂(x, z)

))2
dz ωq(dx).

The limit of In2 + In3 is given by (A.7) whereas, by Lemma 8, Rn1 and Rn4

are negligible in probability. Then, the limit distribution of Rn is determined by

In2 + In3 .

Proof of Theorem 5. As in the proof of Theorem 4, Rn = R̃n1+In2+In3+R̃n4 ,

where In2 + In3 behaves as (A.7). The asymptotic variance remains σ2
θ0

since

R(f) = R(fθ0) +
R(∆)

nhq/2g1/2
+

∫
Ωq×R f(x, z)∆(x, z) dz ωq(dx)

n1/2hq/4g1/4
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and then the second and third addends are negligible with respect to the first

by A3, leaving the same asymptotic variance. The terms R̃n1 = Rn1 + R̃
(1)
n1 and

R̃n4 = Rn4 + R̃
(1)
n4 + R̃

(2)
n4 are decomposed as

R̃(1)
n1

=
2√

nhq/2g1/2

∫
Ωq×R

(
f̂h,g(x, z)− LKh,gf(x, z)

)
LKh,g∆(x, z) dz ωq(dx),

R̃(1)
n4

=
1

nhq/2g1/2

∫
Ωq×R

(LKh,g∆(x, z))2 dz ωq(dx),

R̃(2)
n4

=
2√

nhq/2g1/2

∫
Ωq×R

LKh,g

(
f(x, z)− fθ̂(x, z)

)
LKh,g∆(x, z) dz ωq(dx).

The remaining terms follow from Lemma 9.

Proof of Theorem 6. Similar to the proof of Theorem 4, R∗
n = R∗

n1
+ I∗n2

+

I∗n3
+R∗

n4
, where the terms involved are the bootstrap versions of the ones defined

in the aforementioned proof:

R∗
n1

=2

∫
Ωq×R

(
f̂∗
h,g(x, z)− LKh,gfθ̂(x, z)

)
LKh,g

(
fθ̂(x, z)−fθ̂∗(x, z)

)
dz ωq(dx),

I∗n2
=

ch,q(L)
2

n2g2

n∑
i=1

∫
Ωq×R

(LK∗
n ((x, z), (X

∗
i , Z

∗
i )))

2 dz ωq(dx),

I∗n3
=

ch,q(L)
2

n2g2

∑
1≤i<j≤n

∫
Ωq×R

LK∗
n ((x, z), (X

∗
i , Z

∗
i ))

× LK∗
n

(
(x, z), (X∗

j , Z
∗
j )
)
dz ωq(dx),

R∗
n4

=

∫
Ωq×R

(
LKh,g

(
fθ̂(x, z)− fθ̂∗(x, z)

))2
dz ωq(dx),

with

LK∗
n ((x, z), (y, t)) = LK

(
1− xTy

h2
,
z − t

g

)
− E∗

[
LK

(
1− xTX∗

h2
,
z − Z∗

g

)]
and where E∗ represents the expectation with respect to fθ̂, which is obtained

from the original sample.

Using the same arguments as in Lemma 8, but replacing assumption A6 by

A8, it follows that n(hqg)1/2R∗
n1

and n(hqg)1/2R∗
n4

converge to zero conditionally

on the sample, that is, in probability P∗. On the other hand, the terms I∗n2

and I∗n3
follow from considering similar arguments to the ones used for deriving

(A.2) and (A.5), but conditionally on the sample. Specifically, it follows that

I∗n2
= λq(L

2)λq(L)
−2R(K)/(nhqg)+OP∗

(
n−3/2h−qg−1

)
and, for a certain θ1 ∈ Θ,

(nhqg)1/2I∗n3

d−→ N
(
0, 2σ2

θ1

)
. The main difference with the proof of Theorem 4

concerns the asymptotic variance given by n(hqg)1/2I∗n3
: Var∗

[
n(hqg)1/2I∗n3

] p−→
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2σ2
θ1
, since by A5, R(fθ̂) = R(fθ1) +OP

(
n−1/2

)
. Hence,

n(hqg)1/2
(
R∗

n−
λq(L

2)λq(L)
−2R(K)

nhqg

)
= oP∗(1) +OP∗

(
(nhqg)−1/2

)
+ 21/2σθ1Nn + oP∗(1)

and bootstrap consistency follows.

Proof of Corollary 3. The proof follows by adapting the proof of Theorem 4.
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Garćıa-Portugués, E., Crujeiras, R. and González-Manteiga, W. (2013b). Kernel density esti-

mation for directional-linear data. J. Multivariate Anal. 121, 152-175.
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