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Abstract: Definitive screening (DS) designs, first proposed by Jones and Nachtsheim

(2011), have received much attention due to their good design properties and run-

size economy. This paper investigates the structure of three-level DS designs and

suggests a theoretically-driven approach to constructing DS designs for any number

of run size. This construction method is computationally efficient and universal to

designs with even or odd number of factors. Many constructed DS designs possess

high (if not optimal) D-efficiencies, that are comparable to those found in the

literature.
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1. Introduction

There is considerable scope for reducing resources used in research by de-

signing more efficient studies. Experiments are increasingly complex, and are

subject to rising experimental cost and competing resources. Careful design con-

siderations, even with only minor variation to traditional designs, can lead to a

more efficient study in terms of more precise estimates or the ability to estimate

more effects at the same cost.

Resolution III and IV two-level fractional factorial designs have been widely

used for early-stage screening experimentation (Box and Hunter (1961)). How-

ever, resolution III designs fail to disentangle the confounding between main

effects and two-factor interactions, and similar situations exist in resolution IV

designs a pair of two-factor interactions (Phoa, Wong, and Xu (2009)). A non-

regular design has the ability to disentangle the partial aliased structure, but it is

not simple to construct and analyze (Phoa, Xu, and Wong (2009)). Quaternary-

code designs (Phoa and Xu (2009); Phoa (2012)) possess similar structure as

regular designs, but their structure-based analysis is still under investigation.

In addition to confounding, two-level designs have no capability for capturing

curvature due to pure-quadratic effects, and this led to a new class of three-level

screening designs called definitive screening (DS) designs (Jones and Nachtsheim

(2011)). In essence, DS designs are 3-level designs, for studying m quantitative
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factors with the following desired properties: the number of required runs is

N = 2m + 1, so they is saturated for estimating the intercept, m main effects

and m quadratic effects; all main effects are orthogonal to other main effects, all

quadratic effects and all two-factor interactions.

Stylianou (2011) and Xiao, Lin, and Bai (2012) pointed out that the DS

designs can be constructed by stacking a positive and a negative C, plus a row

of zeros as the center points. C is generally known as a conference matrix of

order m: an m ×m matrix whose diagonal entries of C vanish, its off-diagonal

entries lie in {−1, 1} and C ′C = (m− 1)I, where I is the m×m identity matrix.

A conference matrix is only available for even m. Nguyen and Stylianou (2012)

connected conference matrices to incomplete block designs, and they proposed

a general algorithm to construct an m × m (0,±1)-matrix with zero diagonal.

This method shrinks the searching space and it faster than the computerized

enumeration in Jones and Nachtsheim (2011). Still, it is a purely computerized

search without structural information.

We propose a systematic approach to constructing an m×m (0,±1)-matrix

with zero diagonal, called a C matrix, and its corresponding DS design. Section

2 gives the notations and definitions that we use. The general structure of C is

given in this section. Section 3 states the properties of the components in the

structure of C: our results describe the criteria on how the C matrix is generated,

and the D-efficiency of the corresponding DS designs is discussed. Section 4

compares the DS designs generated in this paper to the best DS designs found

in the literature. Section 5 is for the discussion and conclusion. Proofs are given

in the Appendix.

2. Notations, Definitions and Structure

Let m be the number of factors, and set m = 2n+ 2 for even m and 2n+ 1

for odd m. We need two additional matrices, T and S. T can be obtained

cyclically via a generator vector t⃗ as follows. Given t⃗ = (0, t2, . . . , tn)
′, we form

the lower-triangular matrix

Ti =



0 0 0 · · · 0 0

t2 0 0 · · · 0 0

t3 t2 0 · · · 0 0

t4 t3 t2 · · · 0 0
...

...
...

. . .
...

...

tn tn−1 tn−2 · · · t2 0


,

and T = Tl + T ′
l δ, where T ′

l is the transpose of T and δ = 1 when n is even and

δ = −1 when n is odd. Similarly, S can be obtained cyclicly via a generator

vector s⃗ as follows.
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Given s⃗ = (s1, . . . , sn)
′, take

S =


s1 s2 s3 · · · sn−1 sn
s2 s3 s4 · · · sn s1
s3 s4 s5 · · · s1 s2
...

...
...

. . .
...

...

sn s1 s2 · · · sn−2 sn−1

 .

The C matrix is then

C =


0 δ δ⃗′ δ⃗′

1 0 δ⃗′ −δ⃗′

1⃗ 1⃗ T Sδ

1⃗ − 1⃗ S − Tδ

 ; when m is even;

C =

 0 −δ⃗ −δ⃗

1⃗ T Sδ

− 1⃗ S − Tδ

 ; when m is odd,

where 1⃗ and δ⃗ are column vectors of length n with all entries 1 and δ, respectively.
The design matrix D for the DS designs can be constructed as

D =

 C

−C

0⃗′

 ,

where 0⃗ is a column vector of 0’s of length m and C is an m×m (0,±1)-matrix
with zero diagonal. Ideally here, C is a conference matrix.

Let Do be a (hypothetical) D-optimal design of order m. For a fair com-
parison with DS designs in the literature, we adapt the D-efficiency criterion of
Jones and Nachtsheim (2011):

de(D,Do) =

(
|X(D)′X(D)|
|X(Do)′X(Do)|

)1/p

,

where X(D) and X(Do) are design matrices of designs D and Do respectively,
|M | is the determinant of a matrix M , p is the number of terms in the model
that consists of the intercept term and all linear effects.

3. Main Theorems

Some lemmas about the properties of T and S are stated for convenience.

Lemma 1. S is back-circulant and symmetric.

The back-circulant property of S is obvious from its structure, which implies
that the sums of columns and rows of S are all equal, say s =

∑n
i=1 si. It is

well-known that a back-circulant matrix is always symmetric.
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Lemma 2. For ti = tn+2−iδ in t⃗, T is back-circulant and symmetric when n is

even, T is back-circulant and anti-symmetric when n is odd.

When ti = tn+2−i, t⃗ = (0, t2, t3, . . . , t(n−1)/2, tn/2, t(n−1)/2, . . . , t3, t2) if n is

odd, and t⃗ = (0, t2, t3, . . . , tn/2−1,−tn/2−1, . . . ,−t3,−t2) if n is even. T is circu-

lant no matter which t⃗ is used as the generator. The circulant property implies

that the sums of columns and rows of T are all equal, say t =
∑n

i=1 ti.

Theorem 1. Let s⃗ and t⃗ be the generators of S and T , m even. If ti = tn+2−i

in t⃗, (s, t) = (0,−1) for even n or (1, 0) for odd n, and
∑

i(sis(i mod n)+k +

tit(i mod n)+k) = −2 for all integers k < (n+1)/2, then C is a (2n+2)× (2n+2)

conference matrix.

Theorem 2. Let D = (C,−C, 0⃗)′, where C is the (2n+2)× (2n+2) conference

matrix of Theorem 1. Then the D-efficiency of D is optimal and de(D,D0) =

((2n+ 1)/(2n+ 2))(2n+2)/(2n+3).

Notice that a D-optimal matrix does not exist when a conference matrix

structure is assumed. This is mainly because of the existence of zero entries in

each column of C: if D-optimal matrix exists, all entries have to be +1 or −1.

For D-efficiency, adding more zero entries in each column of C reduces the value

of the determinant of C ′C, so the best case is to add only one zero in each column

of C. The use of Theorems 1 and 2 in constructing DS designs with even m is

illustrated below.

Example 1. Consider a construction of DS designs with m = 12, a 25 × 12

matrix. An example of this kind is given as D, the formula (1) in Xiao, Lin, and

Bai (2012). Here m = 12, n = 5. To fulfill conditions (1) - (3) of Theorem 1, only

two combinations are possible: t⃗ = (0, 1, 1,−1,−1) and s⃗ = c(1, 1,−1, 1,−1) or

t⃗ = (0, 1,−1, 1,−1) and s⃗ = c(1, 1, 1,−1,−1). If we choose the first, then

C =



0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

+1 0 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1

+1 +1 0 −1 −1 +1 +1 −1 −1 +1 −1 +1

+1 +1 +1 0 −1 −1 +1 −1 +1 −1 +1 −1

+1 +1 +1 +1 0 −1 −1 +1 −1 +1 −1 −1

+1 +1 −1 +1 +1 0 −1 −1 +1 −1 −1 +1

+1 +1 −1 −1 +1 +1 0 +1 −1 −1 +1 −1

+1 −1 +1 +1 −1 +1 −1 0 −1 −1 +1 +1

+1 −1 +1 −1 +1 −1 +1 +1 0 −1 −1 +1

+1 −1 −1 +1 −1 +1 +1 +1 +1 0 −1 −1

+1 −1 +1 −1 +1 +1 −1 −1 +1 +1 0 −1

+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 0


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and D = (C,−C, 0⃗12)
′, where 0⃗12 is a vector of length 12 with all entries zeros,

and C is a 12×12 conference matrix. According to Theorem 2, D is a DS design

with D-efficiency 92.2823% which is optimal, and equivalent to those in Jones

and Nachtsheim (2011), Xiao, Lin, and Bai (2012), and Nguyen and Stylianou

(2012).

If the second coombination is chosen, a different 12 × 12 matrix C results

due to different T and S matrices. However, C is still a conference matrix and

the resulting DS design has optimal D-efficiency.

Theorem 3. Given s⃗ and t⃗ as the generators of S and T , m odd. If the conditions

of Theorem 1 hold, then

C =

 2n −1⃗′ −1⃗′

−1⃗ A 1n×n

− 1⃗ 1n×n A

 ,

where 1⃗ is a vector of length n that all entries are 1, 1n×n is a n× n matrix that

all entries are 1, and A is a n×n matrix such that the diagonal entries of A are

2n and the off-diagonal entries of A are −1.

Let {ai}, {oi}, and {bi} be sequences of length n+1, n, and 2n+1, repectively,

with a0 = b0 = 2n, a1 = b1 = 2n − (1/2n), and o1 = 1 − (1/2n). For i =

2, . . . , n+ 1, take the

ai = (2n+ 1)(2− 2n+ 1

ai − 1
),

oi = oi−1
2n+ 1

ai − 1
,

bi = bi−1 −
o2i ai−1

(2n+ 1)2
,

and i = n+ 2, . . . , 2n, take

bi = (2n+ 1)(2− 2n+ 1

bi − 1
).

Theorem 4. If D = (C,−C, 0⃗)′, where C is the (2n + 1) × (2n + 1) matrix in

Theorem 3, it has D efficiency (|C ′C|/(2n)2n+1)1/(2n+2), where |C ′C| is equal to∏2n
i=0 aiI(i ≤ n) + biI(i > n).

An example of the construction of a DS design with odd m is given below.

Example 2. Take m = 11 to find a 23× 11 matrix. As in Example 1, the first

combination of t⃗ and s⃗ is used for design construction and, according to Theorem

3,
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C ′C =



10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 10 −1 −1 −1 −1 1 1 1 1 1

−1 −1 10 −1 −1 −1 1 1 1 1 1

−1 −1 −1 10 −1 −1 1 1 1 1 1

−1 −1 −1 −1 10 −1 1 1 1 1 1

−1 −1 −1 −1 1 10 1 1 1 1 1

−1 1 1 1 1 1 10 −1 −1 −1 −1

−1 1 1 1 1 1 −1 10 −1 −1 −1

−1 1 1 1 1 1 −1 −1 10 −1 −1

−1 1 1 1 1 1 −1 −1 −1 10 −1

−1 1 1 1 1 1 −1 −1 −1 −1 10



.

Although C is not a conference matrix, its generated D possesses good D-

efficiency. We obtain sequences {a} = {10.0000, 9.9000, 9.7778, 9.6250, 9.4286,
9.1667} and {b} = {10.0000, 9.9000, 9.8182, 9.7159, 9.5844, 9.4091, 9.1636, 8.7956,
8.2432, 7.3212, 5.4726}, which leads to D-efficiency of the DS design D of

87.9553%, via Theoream 4.

4. A Table of Suggested DS Designs

Table 1 details some DS designs constructed via the proposed method.

For each n, or each pair of t⃗ and s⃗, one has in two DS designs. The first is

generated via the method when C is odd, see Example 2, the second is generated

via the method when C is even, see Example 1.

Except for n = 10, all t⃗ and s⃗ listed in Table 1 fulfill the conditions stated

in Theorem 1. Thus the D-efficiencies of all listed DS designs with even m are

optimal, while those with odd m are high but not optimal. For n = 10, a pair

t⃗ and s⃗ that fulfills all conditions of Theorem 1 does not exist. The t⃗ and s⃗ in

Table 1 fulfill the first two conditions, and the DS design with m = 22 may not

be D-optimal.

5. Discussions and Concluding Remarks

When C has an odd number of factors, one can search for some DS designs

with better D-efficiencies than ours, see the results in Jones and Nachtsheim

(2011) and Nguyen and Stylianou (2012). However, the proposed method sug-

gests itself because of its simple construction, its guaranteed high D-efficiency,

and its universality on all matrix orders.

As the dimension of DS designs increases, computer search is generally in-

efficient due to the increasingly large search space. Our construction method

reduces the search space to a manageable size via the conditions in Theorem 1.

Our construction method is universal to all matrix orders, and no matter if the
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Table 1. Some suggested DS designs for n = 3, . . . , 15.

n m de(D,Do) Generators

3 7 86.339 t⃗ = (0 +−)
8 88.808 s⃗ = (+ +−)

4 9 87.173 t⃗ = (0−+−)
10 90.866 s⃗ = (+ +−−)

5 11 87.955 t⃗ = (0 + +−−)
12 92.282 s⃗ = (+ +−+−)

6 13 88.664 t⃗ = (0 +−−−+)
14 93.317 s⃗ = (+ +−+−−)

7 15 89.298 t⃗ = (0 + +−+−−)
16 94.107 s⃗ = (+ ++−+−−)

8 17 89.863 t⃗ = (0 +−−+−−+)
18 94.729 s⃗ = (+ ++−+−−−)

9 19 90.369 t⃗ = (0 + ++−+−−−)
20 95.232 s⃗ = (+ +−+−++−−)

10 21 85.386 t⃗ = (0 +−−+−+−−+)
22 90.163 s⃗ = (+ ++−+−−−+−)

11 23 91.233 t⃗ = (0 + ++−+−+−−−)
24 95.997 s⃗ = (+ +−++−++−−−)

12 25 91.604 t⃗ = (0−++−−+−−++−)
26 96.293 s⃗ = (+ +++−+−+−−−−)

13 27 91.942 t⃗ = (0 + ++−++−−+−−−)
28 96.550 s⃗ = (+ +++−−+−+−+−−)

14 29 92.251 t⃗ = (0 + +−−−+−+−−−++)
30 96.772 s⃗ = (+ ++−++−+−−+−−−)

15 31 92.534 t⃗ = (0 + ++−++−+−−+−−−)
32 96.968 s⃗ = (+ ++−+−−−+−+++−−)

conference matrix exists in the given order. In contrast, the method in Xiao,

Lin, and Bai (2012) is workable only when the conference matrix exists, and the

method in Georgiou, Stylianou, and Aggarwal (2013) allows matrix of all even

orders to be constructed using weighing matrix W (m,m − 1) with s = 1. The

method in Nguyen and Stylianou (2012) allows matrix of even or odd orders to

be constructed, but see m =10,12, 20, 22, 24, 26, 28, 34, 36, 44, 48, 50 in their

Table 1 for even order; it is a computationally intensive search for odd order.

Fletcher, Gysin, and Seberry (2001) provided a list of GL(q)-pair from n

= 3 to 55 via exhaustive computer searches, some of which are similar to our

reported vectors t⃗ and s⃗ with the modification that the first entry in the first

sequence of GL(q)-pair changes from 1 to 0 in our t⃗ in order to cooperate with
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the zero-diagonal property of conference matrix. We note some other differences.

The GL(q)-pair sequences reported in Fletcher, Gysin, and Seberry (2001)

have odd length, these pairs do not exist for even lengths. The condition in The-

orem 1 greatly reduces the search space for our vectors, while their GL(q)-pairs

result from exhaustive computer searches. Hadamard matrices are constructed

via GL(q)-pairs, while conference matrix can only be obtained from a skew sym-

metric Hadamard matrix via C = H − In. This is only possible for an even

number of factors; conference matrices with an odd and even number of factors

can be constructed using the proposed method.
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