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Abstract: We propose new approaches for choosing the shrinkage parameter in

ridge regression, a penalized likelihood method for regularizing linear regression

coefficients, when the number of observations is small relative to the number of

parameters. Existing methods may lead to extreme choices of this parameter, ei-

ther shrinking the coefficients insufficiently or by too much. Within this “small-n,

large-p” context, we suggest a correction to the common generalized cross-validation

(GCV) method that preserves the asymptotic optimality of the original GCV. We

also introduce the notion of a “hyperpenalty”, which shrinks the shrinkage parame-

ter itself, and make a specific recommendation regarding the choice of hyperpenalty

that empirically works well in a broad range of scenarios. A simple algorithm jointly

estimates the shrinkage parameter and regression coefficients in the hyperpenalized

likelihood. In a comprehensive simulation study of small-sample scenarios and in

the analysis of a gene-expression dataset, our proposed approaches offer superior

prediction over nine other existing methods.

Key words and phrases: Akaike’s information criterion, cross-validation, generalized

cross-validation, hyperpenalty, marginal likelihood, penalized likelihood.

1. Introduction

Suppose we have data, {y,x}, comprising n observations of a continuous

outcome Y and p covariates X, with the covariate matrix x regarded as fixed.

The quantity n is assumed to be approximately equal to or less than p. We relate

Y and X by a linear model, Y = β0 +X⊤β + σε, with ε ∼ N{0, 1}. Up to an

additive constant, the log-likelihood is

ℓ(β, β0, σ
2) = −n

2
ln(σ2)− 1

2σ2
(y − β01n − xβ)⊤(y − β01n − xβ). (1.1)

We center y and standardize x to have unit variance. As a consequence of this,

although β0 is estimated in the fitted model, our notation will implicitly reflect

the assumption β0 = 0.

We consider penalized estimation of β, with our primary interest being pre-

diction of future observations, rather than variable selection. Thus, we focus on

L2-penalization, also called ridge regression (Hoerl and Kennard (1970)), which,
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from a prediction perspective, can have favorable properties compared to other

penalization methods (e.g., Frank and Friedman (1993); Tibshirani (1996); Fu

(1998); Zou and Hastie (2005)). Ridge regression may be viewed as a hierarchical

linear model, similar to mixed effects modeling, where the “random effects” are

the elements of β. An L2-penalty on β implicitly assumes these are jointly and

independently Normal with mean zero and variance σ2/λ, because the penalty

term matches the negative Normal log-density, up to a normalizing constant not

depending on β:

pλ(β, σ
2) =

λ

2σ2
β⊤β − p

2
ln(λ) +

p

2
ln(σ2). (1.2)

The scalar λ is the ridge parameter, controlling the shrinkage of β toward zero;

larger values yield greater shrinkage. Given λ, the maximum penalized likelihood

estimate of β is

βλ = argmaxβ|λ
{
ℓ(β, σ2)− pλ(β, σ

2)
}
= (x⊤x+ λIp)

−1x⊤y. (1.3)

When n− 1 ≥ p, a key result from Hoerl and Kennard (1970, Thm. 4.3) is that

λ∗ = argminλ≥0E[(β − βλ)
⊤(β − βλ)] > 0, that is, there exists λ∗ > 0 for which

the mean squared error (MSE) of βλ decreases relative to λ = 0. If x⊤x/n = Ip,

then λ∗ = pσ2/β⊤β; however, there is no closed-form solution for λ∗ in the

general x⊤x case. A strictly positive λ introduces bias in βλ but decreases

variance, making a bias-variance tradeoff. A choice of λ that is too small leads to

overfitting the data, and one that is too large shrinks β by too much. To contrast

these extremes, we hereafter refer to this latter scenario as “underfitting.” The

existence of λ∗ is relevant because prediction error, E[(β−βλ)
⊤x⊤x(β−βλ)], is

closely related to MSE and may correspondingly benefit from such a bias-variance

tradeoff.

To approximate λ∗, one cannot simply maximize ℓ(β, σ2)− pλ(β, σ
2) jointly

with respect to β, σ2, and λ, because the expression can be made arbitrarily

large by plugging in β = 0 and letting λ → ∞. Typically, λ is selected by

optimizing some other objective function. Our motivation for this paper is to

investigate selection strategies for λ when n is “small”, by which we informally

mean n < p or n ≈ p, the complement being a more standard n ≫ p situation.

This small-n situation increasingly occurs in modern genomic studies, whereas

common approaches for selecting λ are often justified asymptotically in n.

In this paper, we present new ideas for choosing λ, including both a small-

sample modification to a common existing approach and novel proposals. Our

framework categorizes existing strategies into two classes, based on whether a

goodness-of-fit criterion or a likelihood is optimized. Methods in either class

may be susceptible to over- or underfitting; a third, new class extends the hierar-

chical perspective of ridge regression, the first level being ℓ(β, σ2) and the second
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pλ(β, σ
2). Following ideas of Takada (1979), who showed that Stein’s Positive

Part Estimator corresponds to a posterior mode given a certain prior, and, more

recently, Strawderman and Wells (2012), who place a hyperprior on the Lasso

penalty parameter, we add a third level, defining a “hyperpenalty” on λ. This

hyperpenalty induces shrinkage on λ itself, thereby protecting against extreme

choices of λ. We then present a comprehensive evaluation of all methods, both

existing and newly proposed, in this small-n situation via simulation studies.

The remainder of this paper is organized as follows. We review current ap-

proaches for choosing λ (the first and second classes discussed above) in Sections

2 and 3 and propose a small-sample modification to one of these methods, gener-

alized cross-validation (gcv, Craven and Wahba (1979)). In Section 4, we define

a generic hyperpenalty function and explore a specific choice for the form of hy-

perpenalty. Section 5 presents a comprehensive simulation study, and Section 6

applies our methods to the analysis of a gene expression data-set. The goal is

to predict expression of a gene causative for Bardet-Biedl syndrome. Our results

suggest that the existing approaches for choosing λ can be improved upon in

many small-n cases. Section 7 concludes with a discussion of useful extensions

of the hyperpenalty framework.

2. Goodness-of-fit-based Methods for Selection of λ

These methods define an objective function in terms of λ which is to be

minimized. Commonly used is K-fold cross-validation, which partitions observa-

tions into K groups, κ(1), . . . , κ(K), and calculates βλ K times using (1.3), each

time leaving out group κ(i), to get β
−κ(1)
λ ,β

−κ(2)
λ , etc. For β

−κ(i)
λ , cross-validated

residuals are calculated on the observations in κ(i), which did not contribute to

estimating β. The objective function estimates prediction error and is the sum

of the squared cross-validated residuals:

λK-cv = argminλ ln
K∑
i=1

(yκ(i) − xκ(i)β
−κ(i)
λ )⊤(yκ(i) − xκ(i)β

−κ(i)
λ ). (2.1)

A suggested choice is K = 5 (Hastie, Tibshirani, and Friedman (2009)). When

K = n, some simplification (Golub, Heath, and Wahba (1979)) gives

λn-cv = argminλ ln
n∑

i=1

(Yi −X⊤
i βλ)

2

(1− Pλ[ii] − 1
n)

2
(2.2)

with Pλ = x(x⊤x+ λIp)
−1x. (2.3)

Pλ[ii] is the ith diagonal element of Pλ and measures the ith observation’s influ-

ence in estimating β. Further discussion of its interpretation is given in Section

2.1. From (2.2), influential observations, meaning those for which Pλ[ii] is large,
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have greater weight. Re-centering y at each fold implies β0 is re-estimated; this is

reflected by the “−1/n” term in (2.2). This term does not appear in the deriva-

tions by Golub, Heath, and Wahba (1979), which assume β0 is known, but this

difference in assumptions is important with regard to both gcv and our proposed

extension of gcv.

gcv multiplies each squared residual in (2.2) by (1 − Pλ[ii] − 1/n)2/(1 −
Trace(Pλ)/n− 1/n)2, thereby giving equal weight to all observations. Using the

equality y − xβλ = (In − Pλ)y, further simplification yields

λgcv = argminλ

{
lny⊤(In − Pλ)

2y − 2 ln(1− Trace(Pλ)

n
− 1

n
)

}
. (2.4)

Although derived using different principles, other methods reduce to a “model

fit + penalty” or “model fit + model complexity” form similar to (2.4): Akaike’s

Information Criterion (aic, (Akaike (1973))) and the Bayesian Information Cri-

terion (bic, Schwarz (1978)). These choose λ according to

λaic = argminλ

{
lny⊤(In − Pλ)

2y +
2(Trace(Pλ) + 2)

n

}
, (2.5)

λbic = argminλ

{
lny⊤(In − Pλ)

2y +
ln(n)(Trace(Pλ) + 2)

n

}
. (2.6)

Asymptotically in n, gcv chooses the value of λ that minimizes the predic-

tion criterion E
[
(β − βλ)

⊤x⊤x(β − βλ)
]
(Golub, Heath, and Wahba (1979); Li

(1986)). Further, Golub, Heath, and Wahba observe that gcv and aic asymp-

totically coincide. bic asymptotically selects the true underlying model from a

set of nested candidate models (Sin and White (1996); Hastie, Tibshirani, and

Friedman (2009)), so its justification for use in selecting λ, a shrinkage parame-

ter, is weak. For all of these methods, optimality is based upon the assumption

that n≫ p. When n is small, extreme overfitting is possible (Wahba and Wang

(1995); Efron (2001)), giving small bias/large variance estimates. A small-sample

correction of aic (aicC , Hurvich and Tsai (1989); Hurvich, Simonoff, and Tsai

(1998)) and a robust version of gcv (rgcvγ , Lukas (2006)) exist:

λaicC = argminλ

{
lny⊤(In − Pλ)

2y +
2(Trace(Pλ) + 2)

(n− Trace(Pλ)− 3)

}
, (2.7)

λrgcvγ = argminλ

{
lny⊤(In − Pλ)

2y − 2 ln
(
1− Trace(Pλ)

n
− 1

n

)
+ ln

(
γ +

(1− γ)Trace(P 2
λ )

n

)}
. (2.8)

For aicC , the modified penalty is the product of the original penalty, 2(Trace(Pλ)+

2)/n, and n/(n−Trace(Pλ)− 3). The authors do not consider the possibility of
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n−Trace(Pλ)−3 < 0, which would inappropriately change the sign of the penalty,

and we have found no discussion of this in the literature. In our implementation

of aicC , we replace n−Trace(Pλ)−3 with its positive part, (n−Trace(Pλ)−3)+,
effectively making the criterion infinitely large in this case. As a rule of thumb,

Burnham and Anderson (2002) suggest using aicC over aic when n < 40p (their

threshold for small n) and thus also when n ≈ p. rgcvγ subtracts another

penalty from gcv based on a tuning parameter γ ∈ (0, 1], as in (2.8); we use

γ = 0.3 based on Lukas’ recommendation. Small choices of λ are more severely

penalized, thereby offering protection against overfitting. To the best of our

knowledge, the performance of aicC or rgcvγ in the context of selecting λ in

ridge regression has not been extensively studied.

2.1. Small-sample GCV

Trace(Pλ), with Pλ defined in (2.3), is the effective number of model param-

eters, excluding β0 and σ2. It decreases monotonically with λ > 0 and lies in

the interval (0,min{n− 1, p}). The upper bound on Trace(Pλ) is not min{n, p}
because the standardization of x reduces its rank by one when n ≤ p. Although

the parameters β0 and σ2 are counted (in the literal sense) in the model com-

plexity terms of aic and bic, they have only an additive effect, being represented

by the “+2” expressions in (2.5) and (2.6). For this reason, β0 and σ2 may be

ignored in considering model complexity. However, from (2.4), gcv counts β0,

which is given by the “−1/n” term, but not σ2; counting both will change the

penalty, since the model complexity term is on the log-scale. This motivates our

proposed small-sample correction to gcv, called gcvC , which does count σ2 as

a parameter:

λgcvC = argminλ

{
lny⊤(In − Pλ)

2y − 2 ln
((

1− Trace(Pλ)

n
− 2

n

)
+

)}
. (2.9)

As with aicC , 1−Trace(Pλ)/n− 2/n may be negative. In this case, subtracting

the log of the positive part of 1−Trace(Pλ)/n−2/n makes the objective function

infinite. This is only a small-sample correction because the objective functions

in (2.4) and (2.9) coincide as n → ∞, and the asymptotic optimality of gcv

transfers to gcvC .

An explanation of why gcvC corrects the small-sample deficiency of gcv is

as follows. If n − 1 = p, the model-fit term in the objective function of (2.4),

lny⊤(In − Pλ)
2y, tends to −∞ as λ decreases. When λ = 0, the fitted values,

Pλy, perfectly match the observations, y, and the data are overfit. The penalty

term, −2 ln(1−Trace(Pλ)/n−1/n), tends to∞ as λ decreases, because Trace(Pλ)

approaches n− 1. The rates of convergence for the model-fit and penalty terms

determine whether gcv chooses a too-small λ. If the model-fit term approaches
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−∞ faster than the penalty approaches ∞, the objective function is minimized

by setting λ as small as possible, which is λ = 0 when n − 1 = p. Although

this phenomenon is most striking in cases for which n− 1 = p, as we will see in

Section 5, this finding appears to hold when n− 1 < p. In this case, predictions

will nearly match observations as λ decreases but remains numerically positive to

allow for the matrix inversion in Pλ, and the penalty term still approaches∞ as λ

decreases. Like gcv, the penalty function associated with gcvC also approaches

∞ as λ decreases. In contrast to gcv, however, the gcvC penalty equals ∞
when λ = λ̃ > 0, where λ̃ is the solution to 1 − Trace(Pλ)/n − 2/n = 0, or,

equivalently, Trace(Pλ) = n− 2. Thus, when fitting gcvC , the effective number

of remaining parameters, beyond σ2 and β0, is less than n− 2, and perfect fit of

the observations to the predictions, given by λ = 0, cannot occur.

Remark 1. A reviewer observed that the gcvC penalty can be generalized

according to −2 ln((1 − Trace(Pλ)/n − c/n)+) for c ≥ 1; special cases of this

include gcv (c = 1) and gcvC (c = 2). Extending the interpretation given

above, this ensures that the effective number of remaining parameters, beyond

σ2 and β0, is less than n−c, rather than n−2. Preliminary results from allowing

c to vary did not point to a uniformly better choice of c > 2. Also, using c = 2

is consistent with our original motivation for proposing gcvC , namely properly

counting the model parameters.

3. Likelihood-based Methods for Selection of λ

A second approach treats the ridge penalty in (1.2) as a negative log-density.

One can consider a marginal likelihood, where λ is interpreted as the variance

component of a mixed-effects model:

m(λ, σ2) = ln

∫
β
exp{ℓ(β, σ2)− pλ(β, σ

2)}dβ

= − 1

2σ2
y⊤(In − Pλ)y −

n

2
ln(σ2) +

1

2
ln
∣∣In − Pλ

∣∣. (3.1)

From this, y|λ, σ2 is multivariate Normal with mean 0n (y is centered) and

covariance σ2(In − Pλ)
−1. The maximum profile marginal likelihood (mpml)

estimate, originally proposed for smoothing splines (Wecker and Ansley (1983)),

profiles m(λ, σ2) over σ2, replacing each instance with σ̂2
λ = y⊤ (In − Pλ)y/n,

and maximizes the “concentrated” log-likelihood, m(λ, σ̂2
λ):

λmpml = argminλ

{
lny⊤ (In − Pλ)y −

1

n
ln

∣∣In − Pλ

∣∣} . (3.2)

Closely related is the generalized/restricted mpml (gmpml, Harville (1977);

Wahba (1985)), which adjusts the penalty to account for estimation of regression
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parameters that are not marginalized. Here, only β0 is not marginalized, so the

adjustment is by one degree of freedom (see Supplement S1):

λgmpml = argminλ

{
lny⊤ (In − Pλ)y −

1

n− 1
ln

∣∣In − Pλ

∣∣} . (3.3)

In a smoothing-spline comparison of gmpml to gcv, Wahba (1985) found mixed

results, with neither method offering uniformly better predictions. For scatter-

plot smoothers, Efron (2001) notes that gmpml may oversmooth, yielding large

bias/small variance estimates.

Remark 2. Rather than profiling over σ2, one could jointly maximize m(λ, σ2)

over λ and σ2. We have not found this approach previously used as a selection

criterion in ridge regression. Our initial investigation of this and its restricted

likelihood counterpart gave results similar to mpml and gmpml, and so we do

not consider it further.

An alternative to these marginal likelihood methods is to treat the objective

function in (1.3) as an h-log-likelihood, or “h-loglihood”, of the type proposed

by Lee and Nelder (1996) for hierarchical generalized linear models. The link be-

tween penalized likelihoods, like ridge regression, and the h-loglihood was noted

in the paper’s ensuing discussion. To estimate σ2 (the dispersion) and λ (the

variance component), Lee and Nelder suggested an iterative profiling approach,

yielding the maximum adjusted profile h-loglihood (maphl) estimate. In Sup-

plement S2, we show one iteration proceeds as follows:

σ2(i)←
(
y − xβ(i−1))⊤(y − xβ(i−1)

)
+ λ(i−1)β(i−1)⊤β(i−1)

n− 1
, (3.4)

λ(i)← argminλ

{
λβ(i−1)⊤β(i−1)

σ2(i)
− ln

∣∣In − Pλ

∣∣} , (3.5)

β(i)← βλ(i) (3.6)

and λmaphl = λ(∞).

The last selection method we consider is the the “Loss-rank” (lr) (Tran

(2009)). Its derivation, which we do not give, is likelihood-based, but the criterion

resembles that of aic in (2.5):

λlr = argminλ

{
lny⊤ (In − Pλ)

2 y − 2

n
ln

∣∣In − Pλ

∣∣} . (3.7)

Tran also suggested a modified penalty term, which is dependent on y, but this

did not give appreciably different results from λlr in their study.
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4. Maximization with Hyperpenalties

Some existing methods may choose extreme values of λ, particularly when

n is small, suggesting a need for a second level of shrinkage, that of λ itself. We

extend the hierarchical framework of (1.1) and (1.2) with a “hyperpenalty” on

λ, h(λ), which gives non-negligible support for λ over a finite range of values.

The “hyperpenalized log-likelihood” is

hpℓ(β, λ, σ2) = ℓ(β, σ2)− pλ(β, σ
2)− h(λ)− ln(σ2). (4.1)

From the Bayesian perspective, when h(λ) is in the form of a log-density, the

hyperpenalty corresponds to a hyperprior on λ, and the hyperpenalized likelihood

is the posterior (the expression − ln(σ2) is the log-density of an improper prior

on σ2). In contrast to fully Bayesian methods, which characterize the entire

posterior, we desire a single point estimate of β, σ2, and λ, and focus on mode

finding. Importantly, joint maximization with respect to β, σ2, and λ is now

possible.

For a general h(λ), we find the joint mode of (4.1): {β̂, λ̂, σ̂2} ← argmaxβ,λ,σ2

{hpℓ(β, λ, σ2)}. Alternatively, {β̂, λ̂, σ̂2} may be calculated using conditional

maximization steps:

σ2(i)← argmaxσ2

{
hpℓ(β(i−1), σ2, λ(i−1))

}
=

(
y − xβ(i−1))⊤(y − xβ(i−1)

)
+ λ(i−1)β(i−1)⊤β(i−1)

n+ p+ 2
, (4.2)

λ(i)← argmaxλ

{
hpℓ(β(i−1), σ2(i), λ)

}
, (4.3)

β(i)← argmaxβ

{
hpℓ(β, σ2(i), λ(i))

}
= βλ(i) , (4.4)

with {β̂, λ̂, σ̂2} = {β(∞), λ(∞), σ2(∞)}. The only step that depends on the choice

h(λ) is (4.3); the other steps are available in closed form regardless of h(λ).

Based on the expression for pλ(β, σ
2) given in (1.2), if exp{−h(λ)} = o(λ−p/2),

then, upon applying the maximization step in (4.3), λ(i) is guaranteed to be finite,

regardless of the values of β(i−1) and σ2(i). This relates to an earlier comment

in the Introduction that one cannot simply maximize ℓ(β, σ2)− pλ(β, σ
2) alone.

For example, using h(λ) = C, C constant, would yield the same result as maxi-

mizing ℓ(β, σ2)−pλ(β, σ
2), namely an infinite hyperpenalized log-likelihood. We

propose one such choice of h(λ) that satisfies exp{−h(λ)} = o(λ−p/2) and is

empirically observed to work well for the ridge penalty; different choices of h(λ)

may be better suited for other penalty functions.
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4.1. Choice of hyperpenalty

Crucial to this approach is the determination of an appropriate hyperpenalty

and accompanying hyperparameters. Our recommended hyperpenalty is based

on the gamma distribution, h(λ) = −(a − 1) ln(λ) + λ/b. From the Bayesian

perspective, this is natural because it is conjugate to the precision of the Nor-

mal distribution, which is one possible interpretation of λ (e.g., Tipping (2001);

Armagan and Zaretzki (2010)). From Supplement S3, the update for λ given in

(4.3) is

λ(i) =
p+ 2a− 2

β(i−1)⊤β(i−1)/σ2(i) + 2b
. (4.5)

This additionally requires choosing values for a and b. We do so by first choosing

a desired prior mean for λ, given by a/b, and a value for λ(i) in (4.5), and then

solving the two expressions for a and b. Necessary to this strategy is that the

chosen value of λ(i) must result in a and b that are free of σ2(i) and β(i−1). To

choose a/b, recall the key result from Hoerl and Kennard (1970): when x⊤x/n =

Ip, λ
∗ = argminλ≥0E[(β − βλ)

⊤(β − βλ)] = pσ2/β⊤β. While not of immediate

practical use, since σ2 and β are the parameters to be estimated, we note that

σ2/β⊤β ≈ (1/R2 − 1), where R2 = β⊤ΣXβ/(β⊤ΣXβ+ σ2) is the coefficient of

determination, and the approximation comes from substituting x⊤x/n = Ip for

ΣX . In contrast to σ2 or the individual elements of β, there may be knowledge

about R2. Alternatively, we propose a strategy to estimate R2 in Section 4.2.

Given an estimate or prior guess of R2 ∈ (0, 1), say R̂2, we set a/b = p(1/R̂2−1).

In addition to a sensible mean, it is important to have a and b be such

that λ(i), which is the resulting update for λ, is not extreme. Let the update

for λ given in (4.5) be λ(i) = (p − 1)H(i), where H(i) is the harmonic mean of

σ2(i)/β(i−1)⊤β(i−1) and (1/R̂2−1). Being a harmonic mean, the (1/R̂2−1) term,

which is typically less than 10 for most analyses, moderates potentially large

values of σ2(i)/β(i−1)⊤β(i−1), thereby preventing underfitting. Simultaneously,

λ(i) increases linearly with p, which prevents overfitting in n < p scenarios.

Solving the expressions a/b = p(1/R̂2 − 1) and λ(i) = (p− 1)H(i) yields a =

p/2 and b = (1/R̂2−1)−1/2. When the covariates are approximately uncorrelated

and R̂2 is close to R2, a/b is close to λ∗. However, the uncertainty coming from

the variance of λ makes this useful in the general x⊤x case, for which no closed-

form solution of λ∗ exists. As we will see in the simulation study, this holds true

even when R̂2 is far from R2.

It is important that the hyperpenalty strategy not be inferior in a standard

regression, when n≫ p. To establish this, in Supplement S4 we derive a large-n

approximation for λ∗ in the general x⊤x case: λ∗≈σ2Tr [(x⊤x)−1]/β⊤(x⊤x)−1β.

As n → ∞, this converges in probability to σ2Tr [Σ−1
X ]/β⊤Σ−1

X β < ∞, from
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which we can see that λ∗ asymptotes in n. From (1.3), because the crossproduct
term, x⊤x, increases linearly in n, βλ∗ , the ridge estimate of β at the opti-
mal value of λ, approaches the standard ordinary least squares (OLS) estimate,
βλ|λ=0. The x⊤x expression grows linearly in n, but λ∗ asymptotes in n, so the

effect of λ∗ is reduced. The implication is that any choice of λ induces the same
effective shrinkage for large n. The parameters a and b do not depend on n, and
so the effect of the hyperpenalty decreases with n, as desired.

Remark 3. Choosing a “flat” hyperpenalty, h(λ) = ln(λ), is untenable when
p > 2, because it does not satisfy exp{−h(λ)} = o(λ−p/2). Specifically, plugging

h(λ) = ln(λ) into (4.1), the expression hpℓ(β, λ, σ2) can be made arbitrarily large
in λ by setting β = 0p.

4.2. Estimating R2

For analyses in which one is unable or unwilling to make a prior guess of
R2 to use as R̂2, here we describe a strategy to estimate R2 from the data at
hand. We note first that R2 = Cor(Y,X⊤β)2, where ‘Cor’ denotes the Pearson
correlation. It is known that the empirical prediction error from using a vector

of fitted values, xβ̂, corresponding to the observed outcomes y will be optimistic
when β̂ depends on y. This means that the empirical R2, R̄2 = Ĉor(y,xβ̂)2,
will be upwardly biased for R2. In contrast, Efron (1983) showed how an es-
timate of prediction error using the bootstrap will be pessimistic. Applied
to our context, given B bootstrapped datasets, the bootstrap-estimate of R2,
R̂2

boot = (1/B)
∑B

b=1 Ĉor(y∗(−b),x∗(−b)β̂
∗(b))2, where the ∗(b) and ∗(−b) notation

indicates that the training and test datasets do not overlap, will be biased down-
ward from R2. Efron (1983) suggested that a particular linear combination of the
optimistic and pessimistic prediction error estimates would provide an approxi-
mately unbiased estimate of prediction error. Analogizing this to estimating R2,
the linear combination is given by 0.632R̂2

boot + 0.368R̄2. The weight is based
on a bootstrapped dataset containing, on average, about e−1n ≈ 0.632n unique

observations from the original dataset. When n > p, this “632-estimate” of R2,
using, say, OLS to estimate β in each bootstrap, would provide a reasonable es-
timate of R2 for our purposes. However, in the n < p scenarios that we focus on,
OLS is not an option, and other methods, e.g., ridge regression, must be used to
estimate β in each dataset. In addition, when p is large, the bootstrap may add
a non-trivial computational component, if determining β̂∗(b) is computationally
expensive. So as to minimize any added burden due to estimating R2, which is

only a preprocessing step before applying the hyperpenalty approach, we propose
to modify the 632-estimate by replacing the bootstrap with 5-cv:

R̂2
632 = 0.632× 1

5

5∑
i=1

Ĉor(yκ(i),xκ(i)βλ5-cv)
2 + 0.368× Ĉor(y,xβλ5-cv)

2, (4.6)
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where we use the κ(i) notation from Section 2. To summarize: first calculate

λ5-cv; then, calculate a weighted average of the cross-validated empirical corre-

lation and the standard empirical correlation over all the data; let hyp(R̂2
632) be

the data-dependent hyperpenalty approach using h(λ) = −(a − 1) ln(λ) + λ/b,

with a = p/2 and b = (1/R̂2
632 − 1)−1/2.

5. Simulation Study

Our simulation study is designed to mimic the current reality of the “-omics”

era in which many covariates are analyzed but few contribute substantial effect

sizes. The relevant quantities are described as follows.

Covariates (x). One simulated dataset consists of training and validation data

generated from the same model. The dimension of the training data was n× p,

with n ∈ {25, 100, 250, 4,000} and p ∈ {100, 4,000}. The n × p matrix x was

drawn from Np{0p,ΣX}. For the validation data, a 2000 × p matrix xnew was

sampled from this same distribution. We constructed ΣX according to “approx-

imately uncorrelated” and “positively correlated” scenarios. The construction of

ΣX is described in Supplement S5. Briefly: we began with a block-wise com-

pound symmetric matrix with 10 blocks. Within blocks, the correlation was

ρ = 0 (approximately uncorrelated) or ρ = 0.4 (positively correlated), and be-

tween blocks, there was zero correlation. We then stochastically perturbed the

matrix in such a way to generate ΣX , using algorithms by Hardin et al. (2013),

as to maintain positive-definiteness but mask the underlying structure. This

perturbation occurred at each simulation iterate, and, as we outline in the Sup-

plement, it was less extreme for the approximately uncorrelated case, so that the

resulting ΣX was close to Ip.

Parameters (β,σ2). To better account for many plausible configurations of the

coefficients, which would be difficult using a single, fixed choice of β, we specified

a generating distribution, drawing β once per simulation iterate and making

it common to all observations. We drew β from a mixture density. We let

Zi ∈ {1, 2, 3}, i = 1, . . . , p, be a random variable with Pr(Zi = 1) = Pr(Zi =

2) = 0.005 and constructed β as follows:

αi|Zi
ind∼


t3{σ2 = 1

3}, Zi = 1,

Exp{1}, Zi = 2,

N{0, σ2 = 10−6}, Zi = 3,

(5.1)

β = α×AR1(π), (5.2)

where AR1(π) is a p × p, first-order auto-regressive matrix with correlation co-

efficient π ∈ {0, 0.3}. The sampling density for α was a mixture of scaled
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t3, Exponential, and Normal distributions, and 99% of the coefficients have

small effect sizes, coming from the Normal component. The vector α was

scaled to obtain β, which encourages neighboring coefficients to have similar

effects, depending on π. So that some meaningful signal was present in every

dataset, we ensured #{i : Zi ̸= 3} ≥ 3, regardless of p. Given β, ΣX , and

R2 ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 0.95}, we calculated σ2 = β⊤ΣXβ(1/R2 − 1).

Outcomes (y|x). The outcomes from the training and validation data are y|x,β, σ2

and ynew|xnew,β, σ
2, respectively. For all 192 combinations of π, p, n, uncorre-

lated/correlated x, and R2, 10,000 (when p = 100) or 500 (p =4,000) training

and validation datasets are sampled.

We compare the 11 methods listed in Table 1. n-cv is left out, being ap-

proximated by gcv and computationally expensive. aic is replaced with its

small-sample correction, aicC . The new methods considered are gcvC and the

hyperpenalty-approach, hyp(R̂2
632). We also present hyp(R2), which is the hyper-

penalty method using the true, unknown value of R2. The difference in prediction

error between hyp(R̂2
632) and hyp(R2) quantifies any possible gain from improving

upon our strategy for estimating R2. All methods differ only in λ, which deter-

mines the estimate of β via (1.3). The criterion by which we evaluate methods

on the validation data is relative MSPE, rMSPE(λ):

rMSPE(λ) = 1, 000×
( MSPE(λ)

MSPE(λopt)
− 1

)
, (5.3)

where MSPE(λ)∝(ynew−xnewβλ)
⊤(ynew−xnewβλ) and λopt=argminλMSPE(λ).

Thus, rMSPE measures the percentage increase above the smallest possible

MSPE, and rMSPE = 0 is ideal. Equivalently, rMSPE measures the inefficiency

of each method. We used an iterative grid search to calculate λopt as well as

λ for all methods except maphl and hyp(R̂2
632), for which explicit maximization

steps are available.

We primarily focus on the subset of simulations for which π = 0.3 and

R2 ∈ {0.2, 0.4, 0.8}. Tables of the remaining rMSPEs are given in Supplement

S6. Table 2 gives rMSPE; values in boldface are the column-wise minima, ex-

cluding hyp(R2), and those with an asterisk are less than twice each column-wise

minimum. Figure 1 compares the rMSPE of hyp(R̂2
632) to the median rMSPE

of remaining methods, excluding gcvC , as an overall performance comparison;

Figure 2 compares the rMSPE of gcv to gcvC ; Figure 3 gives histograms of

ln(λ/λopt) for each of the methods from one scenario.

From Table 2, the new methods, hyp(R̂2
632) and gcvC , achieve the stated goal

of being useful in n ≈ p or n < p situations, as shown by the frequency of being

in boldface or annotated with an asterisks. This is most evident in the smaller
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Table 1. Annotation of all methods from the simulation study and the
corresponding Equations and References. The ‘⇒’ indicates a new method.

Abbrev. Name Eqn. Reference

5-cv Five-fold cross-validation (2.1) Hastie, Tibshirani, and Friedman (2009, Sec. 7.10)

bic Bayesian Information Criterion (2.6) Schwarz (1978)

aicC Corrected Akaike’s Information Criterion (2.7) Hurvich, Simonoff, and Tsai (1998)

gcv Generalized cross-validation (2.4) Craven and Wahba (1979)

⇒gcvC Corrected generalized cross-validation (2.9) Section 2.1

rgcvγ Robust generalized cross-validation (2.8) Lukas (2006)

mpml Maximum profile marginal likelihood (3.2) Wecker and Ansley (1983)

gmpml Generalized maximum profile marginal likelihood (3.3) Harville (1977); Wahba (1985)

maphl Maximum adjusted profile h-likelihood (3.4)-(3.6) Lee and Nelder (1996)

lr Loss-rank (3.7) Tran (2009)

⇒hyp(R̂2
632) Hyperpenalty, R̂2 based on “632” estimator (4.2)–(4.6)Section 4, Efron (1983)

Figure 1. Ratio of the rMSPE of hyp(R̂2
632) to the median rMSPE of remain-

ing methods, excluding gcvC , over log10(n). Values less than one indicate
that hyp(R̂2

632) has smaller prediction error.

R2 scenarios: either hyp(R̂2
632) or gcvC is frequently the best performing method

when R2 = 0.2 or R2 = 0.4, although some exceptions exist, e.g., the “4,000/0.8”

column in the bottom sub-table or “25/0.8” column in the second-from-bottom

sub-table. Some of this deficiency of hyp(R̂2
632) may be due to R̂2

632 being far

from R2. Figure S3 in Supplement S6 plots the empirical MSE of R̂2
632 and
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Figure 2. Locally-smoothed values of rMSPE of gcv and gcvC over n in
scenarios for which p = 100. The curve corresponding to gcv changes in
behavior near the point n− 1 = p, given by the vertical dashed line.

demonstrates that our strategy very accurately estimates R2 except for the n =

25 scenarios. However, even hyp(R2), which uses the true value of R2, has large

rMSPE in these settings, which suggests that the optimal choice of λ is not

well-approximated by the p(1/R2 − 1) expression discussed in Section 4.1. Also

competitive are gmpml and 5-cv; gcv performs well except in the n = 100

scenarios, in which n ≈ p. The remaining methods, bic, aicC , rgcv0.3, mpml,

maphl, and lr have large rMSPE in some scenarios.

To explore this further, Figure 1 plots the ratio of the rMSPE corresponding

to hyp(R̂2
632) to the median rMSPE from the existing methods, to represent the

performance of a typical method. When this ratio is less than one, hyp(R̂2
632)

has smaller rMSPE. When p = 100, the y = 1 line is sometimes crossed when

log10(n) = 2.5, or n = 250. When p =4,000, the y = 1 line is exceeded when

n =4,000 or, regardless of n, when R2 = 0.8 and the covariates are approximately

uncorrelated. Based on the discussion in 4.1, hyp(R̂2
632) will become equivalent

to the asymptotically optimal methods as n→∞.

As evidenced in the table, gcvC has markedly smaller rMSPE than gcv

when n is small. The two values of rMSPE coincide as n increases. We argued in



RIDGE REGRESSION 1201

Section 2.1 that the gcv penalty has the potential to elicit undesirable behavior

when p = n − 1, namely choosing λ = 0, or as close as possible thereto. Figure

2 gives the ramifications of this in terms of prediction error, plotting locally-

smoothed values of rMSPE of gcv and gcvC over many values of n for the p =

100 scenarios; n−1 is less than, equal to, and greater than p. In all eight panels,

which correspond to differentR2 and uncorrelated/correlated combinations, there

is a peak in the gcv curve beginning near n−1 = p. gcvC effectively eliminates

this behavior and has almost uniformly smaller rMSPE when n − 1 ≤ p and

nearly equal rMSPE when n− 1 > p.

Finally, we compare the choice of λ for each method. Figure 3 plots his-

tograms of ln(λ/λopt) for the eleven methods from one simulation setting in

Table 2: p =4,000, n = 100, π = 0.3, R2 = 0.2, and correlated covariates.

When ln(λ/λopt) = 0, the method has selected the optimal λ. In this small-n

scenario, all of the existing methods, at times, choose a very small or large λ.

In contrast, the shrinkage from hyperpenalization is evident: the histogram for

hyp(R̂2
632) has a considerably smaller range. It has the overall smallest rMSPE in

this scenario (Table 2). Finally, gcv has ln(λ/λopt) as small as −12, and gcvC

has ln(λ/λopt) slightly less than −2, providing additional evidence that gcvC

prevents overfitting.

6. Bardet-Biedl Data Analysis

To further evaluate these methods, we consider the rat gene-expression data

first reported in Scheetz et al. (2006). Tissue from 120 12-week old rats was

analyzed using microarrays (Affymetrix GeneChip Rat Genome 230 2.0 Array),

normalized, and log-transformed. The goal is to find genes associated with ex-

pression of the BBS11/TRIM32 gene, which is causative for Bardet-Biedl syn-

drome (Chiang et al. (2006)). Following the strategy of Huang, Ma, and Zhang

(2008), we considered 18,975 probesets that were sufficiently expressed and, of

these, reduced the number further to the p = 3, 000 probes displaying the largest

variation. We randomly selected n = 80 arrays as our training data, fit all

methods to these data, and measured rMSPE for predicting expression of the

BBS11/TRIM32 gene based on the remaining 40 arrays, repeating this 1,000

times. Figure 4 gives the boxplots of these 1,000 rMSPEs, ordered from left to

right in terms of the average rMSPE. The best-performing method is gcvC with

average rMSPE of 32.6, followed by hyp(R̂2
632) (47.0), gmpml (52.7), gcv (57.4),

and 5-cv (64.5). These rankings correspond closely to those from the simulation

study. The average empirical R2 from the 40 left-out arrays for these top five

methods ranged from 0.401−0.406, whereas the average value of R̂2
632 was 0.611,

which suggests that R̂2
632 is upwardly biased of the “true” R2. Despite this, the

hyp(R̂2
632) method has small prediction error.
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Figure 3. Histograms of ln(λ/λopt) for p =4,000, n = 100, π = 0.3, R2 = 0.2,
and correlated covariates. ln(λ/λopt) = 0 means that λ was chosen to yield
optimal shrinkage. All methods are described in Table 1.

7. Discussion

We have examined strategies for choosing the ridge parameter λ when the

sample size n is small relative to p. Our small-sample modification to gcv, called

gcvC , is conceptually trivial but uniformly dominates gcv in our simulation

study. This corrected gcv may be applied in other shrinkage or smoothing

situations that would otherwise use the standard gcv, such as smoothing splines
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Figure 4. Boxplots of rMSPEs from 1,000 training/testing partitions of the
Bardet-Biedl data, ordered from left to right in terms of average rMSPE.

(Wahba (1985)) or adaptively-weighted linear combinations of linear regression

estimates (Boonstra, Taylor, and Mukherjee (2013)).

We have also proposed a novel approach using what we call hyperpenalties,

which add another level of shrinkage, that of λ itself, by extending the hierarchical

model. A hyperpenalty based on the Gamma density with mean p(1/R̂2−1) was

shown to work well in the context of ridge regression. The approach is based

on the observation that the optimal tuning parameter λ is approximated by

the expression p(1/R2 − 1), and we proposed a simple strategy for estimating

the unknown R2. Relative to existing methods, our implementation can offer

superior prediction and protection against choosing extreme values of λ. One

area for improvement of this approach lies in the high-R2 scenarios, for which it

is clear that p(1/R2 − 1) does not approximate the optimal tuning parameter.

However, it is unusual in a high-dimensional regression to expect R2 larger than

0.6 or 0.7.

Another advantage of the hyperpenalty approach is its applicability in miss-

ing data problems: when implementing the Expectation-Maximization (EM) al-

gorithm (Dempster, Laird, and Rubin (1977)), it is not clear how one might

do ridge regression concurrently using goodness-of-fit or marginal likelihood ap-

proaches to select λ. On the other hand, by taking advantage of the conditional

independence, specified by the hierarchical framework, between λ and any miss-

ing data given the remaining parameters, it is conceptually straightforward to

embed a maximization step for λ, like expression (4.4), within a larger EM algo-

rithm. This is the focus of our current research.
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