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Abstract: We consider a likelihood ratio method for testing whether a monotone

baseline hazard function in the Cox model has a particular value at a fixed point.

We derive the asymptotic distribution of the likelihood ratio statistic, which is

identical for a nondecreasing and a nonincreasing baseline hazard. The asymptotic

distribution of the likelihood ratio test enables, via inversion, the construction of

pointwise confidence intervals. Simulations show that these confidence intervals

exhibit comparable coverage probabilities but shorter length, on average, than the

confidence intervals based on the asymptotic distribution of the nonparametric

maximum likelihood estimator of a monotone baseline hazard function.
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1. Introduction

In survival analysis, Cox (1972) proportional hazards model is the typical

choice to account for the effect of covariates on the lifetime distribution. Its at-

tractiveness resides in its form that allows for efficient estimation of the regression

coefficient, while leaving the baseline distribution completely unspecified, see e.g.,

Efron (1977), Oakes (1977) and Slud (1982). The regression coefficient estimator

is the well-known maximum partial likelihood estimator β̂n, Cox (1972, 1975).

In his discussion of Cox’s paper, Breslow proposed a different approach that

yields the maximum partial likelihood estimator β̂n, as well as Λn, the NPMLE

of the baseline cumulative hazard function Λ0. An impressive amount of research

rapidly followed Cox’s seminal paper, which focused primarily on deriving the

(asymptotic) properties of β̂n, as well as of the Breslow estimator Λn.

Even though the baseline hazard λ0 is usually left completely unspecified,

there are circumstances in which one might be interested in restricting λ0 quali-

tatively. This can be done by assuming the baseline hazard to be monotone, for

example, as suggested by Cox (1972) himself. Various studies have indicated that

a monotonicity constraint can be imposed occasionally on the baseline hazard,

which complies in these situations with the medical expertise. For an illustration
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of a nonincreasing baseline hazard estimator in the study of patients with acute

coronary syndrome, see van Geloven et al. (2013).

Lopuhaä and Nane (2013) proposed a nonparametric maximum likelihood

estimator and a Grenander type estimator of a monotone baseline hazard func-

tion. The Grenander type estimator is defined in terms of slopes of the greatest

convex minorant of the Breslow estimator Λn. The two estimators have been

proven strongly consistent and have been shown to exhibit the same distribu-

tional law. Furthermore, at a fixed point x0, the scaled difference between the

maximum likelihood estimator λ̂n and the true baseline hazard λ0 converges to

the distribution of the minimum of two-sided Brownian motion plus a parabola

times a constant depending on the underlying parameters. These results ad-

here to the general nonparametric shape constrained theory and, in particular,

prolong naturally the findings of Huang and Wellner (1995) in the case of the

random censorship model with no covariates.

Ensuing inference is pursued in this paper, by testing the hypothesis that

the underlying monotone baseline hazard has a particular value θ0, at a fixed

point x0. We use a likelihood ratio test of H0 : λ0(x0) = θ0 versus H1 : λ0(x0) ̸=
θ0. For the shape restricted problems, this approach was initially employed

for monotone distributions in the current status model by Banerjee and Wellner

(2001). The authors focused on deriving the limiting distribution of the likelihood

ratio test under the null hypothesis, and to obtaining a so-called fixed universal

distribution, defined in terms of slopes of the greatest convex minorant of the

two-sided Brownian motion plus a parabola. These findings were followed by a

stream of research, see, e.g., Banerjee and Wellner (2005), Banerjee (2007), and

Banerjee (2008), showing that the likelihood ratio method can be extended in

other shape constrained settings.

In this paper, we carry on this research for the monotone baseline hazard

function λ0 in the Cox model. In addition to directly extending the results of

Banerjee (2008) in the right censoring model with no covariates, we aim to pro-

vide a thorough description of the method and detailed proofs for the results.

The likelihood ratio method described here can be applied in other semiparamet-

ric models, including extensions of the monotone response models described by

Banerjee (2007), such as the partially linear regression and the semiparametric

logistic regression model.

Furthermore, based on the likelihood ratio method, we derive confidence sets

for λ0(x0). More specifically, we have that inverting the family of tests can yield,

in turn, pointwise confidence intervals for the baseline hazard function. Another

approach to pointwise confidence intervals is based on the asymptotic distribu-

tion, at a fixed point x0, of the nonparametric maximum likelihood estimator

λ̂n, derived by Lopuhaä and Nane (2013). Nonetheless, the method based on
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the asymptotic distribution entails estimating the nuisance parameter, and more

specifically, estimating the derivative of the baseline hazard function λ′
0(x0). This

proves to be a bothersome issue, since, to the author’s best knowledge, there is

no available smooth monotone estimator of the baseline hazard function in the

Cox model. One option would be to kernel smooth the NPMLE λ̂n, but this

would pose such extra difficulties, as an appropriate choice of a bandwidth. For

a discussion of these issues in the right censoring model, see Banerjee (2008).

The paper is organized as follows. Section 2 introduces the Cox model,

the notations, and the common assumptions. In Section 3, we introduce the

likelihood ratio method and characterize the maximum likelihood estimator λ̂n

of a nondecreasing baseline hazard function and the estimator λ̂0
n, such that

λ̂0
n(x0) = θ0, for a fixed x0 in the interior of the support of the baseline distri-

bution. The asymptotic distribution of the likelihood ratio statistic is provided,

along with preparatory lemmas, in Section 4. Finally, Section 5 is devoted to

constructing pointwise confidence intervals and comparing them, via simulations,

with the confidence intervals based on the asymptotic distribution of the NPMLE

λ̂n.

The proofs of some results are deferred to a supplement, which is available

online. Moreover, the Supplement contains the characterization of the estimators

for the nonincreasing baseline hazard function λ0.

2. Definitions and Assumptions

Suppose that the observed data consist of the independent and identically

distributed triplets (Ti,∆i, Zi), with i = 1, . . . , n. The event time, denoted by X

and commonly referred to as the survival time is subject to random censoring.

Thus, T = min(X,C), where T is the follow-up time and C denotes the censoring

time. The indicator ∆ = {X ≤ C} marks whether the follow-up time is an

event or a censoring time. Finally, Z ∈ Rp denotes the covariate vector of

the observed follow-up time T , which is assumed to be time invariant. The

event time X and censoring time C are assumed to be conditionally independent,

given the covariate vector Z. Let F be the distribution function of the non-

negative random variable X, G the distribution function of the non-negative

random variable C, and H the distribution function of T . The distribution

function F (x|z) is assumed to be absolutely continuous, with density f(x|z).
Similarly, the distribution functionG(c|z) is assumed to be absolutely continuous,

with density g(c|z). In addition, F (x|z) and G(c|z) share no parameters, thus

the censoring mechanism is assumed to be non-informative.

Let λ(x|z) be the hazard function of an individual with covariate vector

z ∈ Rp. The Cox model specifies that

λ (x|z) = λ0(x) e
β′
0z, (2.1)
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where λ0 represents the baseline hazard function, that corresponds to z = 0,
and β0 ∈ Rp is the vector of the underlying regression coefficients. Finally, we
consider the assumptions that are typically employed when deriving large sample
properties of estimators within the Cox model; e.g., see Tsiatis (1981).

(A1) Let τF , τG and τH be the end points of the support of F,G and H respec-
tively. Then,

τH = τG < τF ≤ ∞.

(A2) There exists ε > 0 such that

sup
|β−β0|≤ε

E
[
|Z|2 e2β′Z

]
< ∞,

where | · | denotes the Euclidean norm.

3. The Likelihood Ratio and the Characterization of the Estimators

By definition, Λ(x|z) = − log(1 − F (x|z)) is the cumulative hazard func-
tion. Thus, from (2.1), it follows that Λ(x|z) = Λ0(x) exp(β

′
0z), where Λ0(x) =∫ x

0 λ0(u)du is the baseline cumulative hazard function. Since, for a continuous
distribution, λ(t) = f(t)/(1− F (t)), for t ≥ 0, the full likelihood is given by

n∏
i=1

{f(Ti | Zi) [1−G(Ti | Zi)]}∆i {g(Ti | Zi) [1− F (Ti | Zi)]}1−∆i

=
n∏

i=1

λ(Ti | Zi)
∆i exp [−Λ(Ti | Zi)]×

n∏
i=1

[1−G(Ti | Zi)]
∆i g(Ti | Zi)

1−∆i .

As the censoring mechanism is assumed to be non-informative, and by (2.1),
maximizing the full likelihood is the same as maximizing

n∏
i=1

λ(Ti | Zi)
∆i exp [−Λ(Ti | Zi)] =

n∏
i=1

[
λ0(Ti)e

β′
0Zi

]∆i

exp
[
−eβ

′
0ZiΛ0(Ti)

]
,

which yields the following (pseudo) loglikelihood function, written as a function
of β ∈ Rp and λ0,

n∑
i=1

[
∆i log λ0(Ti) + ∆iβ

′Zi − eβ
′ZiΛ0(Ti)

]
.

Let T(1) < T(2) < · · · < T(n) be the ordered follow-up times and, for i = 1, . . . , n,
let ∆(i) and Z(i) be the censoring indicator and covariate vector corresponding
to T(i). Writing the above (pseudo) likelihood as a function of β and λ0 gives

Lβ(λ0) =

n∑
i=1

[
∆(i) log λ0(T(i)) + ∆(i)β

′Z(i) − eβ
′Z(i)

∫ T(i)

0
λ0(u)du

]
. (3.1)
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Following the approach of Lopuhaä and Nane (2013), we do not proceed with the

joint maximization of (3.1) over β and monotone λ0. Alternatively, for β ∈ Rp

fixed, we consider maximum likelihood estimation of a monotone baseline haz-

ard function λ0, and denote the estimator by λ̂n(x;β). Subsequently, we replace

β by β̂n, the maximum partial likelihood estimator, due to its commendable

asymptotic properties (see, e.g., Efron (1977), Oakes (1977) and Slud (1982)).

The proposed NPMLE is thus λ̂n(x) = λ̂n(x; β̂n) and is referred to as the uncon-

strained estimator of a monotone λ0. Furthermore, for β ∈ Rp fixed, we maximize

the loglikelihood function Lβ(λ0) in (3.1) over the class of all monotone baseline

hazard functions, under the null hypothesis H0 : λ0(x0) = θ0, for x0 ∈ (0, τH)

and θ0 ∈ (0,∞), fixed. We obtain λ̂0
n(x;β) and hence propose λ̂0

n(x) = λ̂0
n(x; β̂n)

as the constrained NPMLE.

Replacing β by β̂n in the loglikelihood function (3.1) yields the likelihood

ratio statistic for testing H0 : λ0(x0) = θ0,

2 log ξn(θ0) = 2Lβ̂n
(λ̂n)− 2Lβ̂n

(λ̂0
n). (3.2)

Thus, for computing the likelihood ratio statistic, we need to characterize the un-

constrained NPMLE λ̂n and the constrained NPMLE λ̂0
n of a monotone baseline

hazard function λ0.

3.1. Nondecreasing baseline hazard

We first consider maximum likelihood estimation of a nondecreasing baseline

hazard function λ0. Both the unconstrained estimator λ̂n and the constrained

estimator λ̂0
n are characterized in terms of the processes

Wn(β, x) =

∫ (
eβ

′z

∫ x

0
{u ≥ s}ds

)
dPn(u, δ, z), (3.3)

Vn(x) =

∫
δ{u < x}dPn(u, δ, z), (3.4)

with β ∈ Rp and x ≥ 0, and where Pn is the empirical measure of the (Ti,∆i, Zi),

with i = 1, . . . , n. The characterization of the unconstrained estimator λ̂n(x;β)

has already been provided in Lemma 1 in Lopuhaä and Nane (2013), which we

restate below. We also provide a closed form of the estimator on blocks of indices

on which the estimator is constant.

Lemma 1. Let T(1) < . . . < T(n) be the ordered follow-up times and consider a

fixed β ∈ Rp.
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(i) Let Wn and Vn be as in (3.3) and (3.4). Then the NPMLE λ̂n(x;β) of a
nondecreasing baseline hazard function λ0 is of the form

λ̂n(x;β) =


0 x < T(1),

λ̂i T(i) ≤ x < T(i+1), for i = 1, . . . , n− 1,

∞ x ≥ T(n),

where λ̂i is the left derivative of the greatest convex minorant (GCM) at the
point Pi of the cumulative sum diagram (CSD) consisting of the points

Pj =
(
Wn(β, T(j+1))−Wn(β, T(1)), Vn(T(j+1))

)
, (3.5)

for j = 1, . . . , n− 1 and P0 = (0, 0).

(ii) For k ≥ 1, let B1, . . . , Bk be blocks of indices such that λ̂n(x;β) is constant
on each block and B1 ∪ . . .∪Bk = {1, . . . , n− 1}. Denote by vnj(β) the value
of λ̂n(x;β) on block Bj. Then,

vnj(β) =

∑
i∈Bj

∆(i)∑
i∈Bj

[
T(i+1) − T(i)

]∑n
l=i+1 e

β′Z(l)
. (3.6)

The proof can be found in the Supplement. As mentioned beforehand, the
proposed unconstrained estimator is thus λ̂n(x) = λ̂n(x; β̂n). Equivalently, on
each block of indices Bj , for j = 1, . . . , k, we propose the estimate v̂nj = vnj(β̂n).
Under the null hypothesis H0 : λ0(x0) = θ0, the characterization of the con-
strained maximum likelihood estimator λ̂0

n is provided by the next lemma. The
proof of the lemma can be found in the Supplement.

Lemma 2. Let x0 ∈ (0, τH) be such that T(m) < x0 < T(m+1) for a given 1 ≤
m ≤ n− 1. Consider a fixed β ∈ Rp.

(i) For i = 1, . . . ,m, let λ̂L
i be the left derivative of the GCM at the point PL

i of
the CSD consisting of the points PL

j = Pj, for j = 1, . . . ,m, with Pj defined

in (3.5) and PL
0 = (0, 0). For i = m+1, . . . , n−1, let λ̂R

i be the left derivative
of the GCM at the point PR

i of the CSD consisting of the points PR
j = Pj,

for j = m, . . . , n − 1, with Pj defined in (3.5). Then, for θ0 ∈ (0,∞), the
NPMLE λ̂0

n(x;β) of a nondecreasing baseline hazard function λ0, under the
null hypothesis H0 : λ0 = θ0, is of the form

λ̂0
n(x;β) =



0 x < T(1),

λ̂0
i T(i) ≤ x < T(i+1), for i ∈ {1, . . . , n− 1} \ {m},

λ̂0
m T(m) ≤ x < x0,

θ0 x0 ≤ x < T(m+1),

∞ x ≥ T(n),

(3.7)
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where λ̂0
i = min(λ̂L

i , θ0) for i = 1, . . . ,m, and λ̂0
i = max(λ̂R

i , θ0) for i =

m+ 1, . . . , n− 1.

(ii) For k ≥ 1, let B0
1 , . . . , B

0
k be blocks of indices such that λ̂0

n(x;β) is constant

on each block and B0
1 ∪ . . . ∪ B0

k = {1, . . . , n − 1}. Then, there is one block,

say B0
r , on which λ̂0

n(x;β) is equal to θ0, and one block, say B0
p , that contains

m. On all other blocks B0
j , denote by v0nj(β) the value of λ̂0

n(x;β) on block

B0
j . Then,

v0nj(β) =

∑
i∈B0

j
∆(i)∑

i∈B0
j

[
T(i+1) − T(i)

]∑n
l=i+1 e

β′Z(l)
, (3.8)

for j = 1, . . . , p− 1, p+ 1, . . . , k. On the block B0
p that contains m,

v0np(β) =

∑
i∈B0

p
∆(i)∑

i∈B0
p\{m}

[
T(i+1) − T(i)

]∑n
l=i+1 e

β′Z(l) + [x0 − T(m)]
∑n

l=m+1 e
β′Z(l)

.

(3.9)

Similar to the unconstrained estimator, we propose λ̂0
n(x) = λ̂0

n(x; β̂n) as

the constrained estimator and v̂0nj = v0nj(β̂n), where β̂n is the maximum partial

likelihood estimator.

Remark 1. As already pointed out by Lopuhaä and Nane (2013), if we take

all covariates equal to zero, the characterization of the unconstrained estimator

differs slightly from the characterization of the nondecreasing hazard estimator

in the ordinary random censorship model provided by Huang and Wellner (1995).

Correspondingly, the characterizations in Lemma 1 and 2, with all Zl ≡ 0 differ

from the characterizations provided by Banerjee (2008) in the right censored

model. Although the estimators in Banerjee (2008) do not maximize the (pseudo)

loglikelihood function in (3.1) (in the absence of covariates and under the null

hypothesis) over nondecreasing λ0, the asymptotic distribution of the likelihood

ratio test based on these estimators coincide with our proposed distribution in

the case of no covariates.

Using the notations in Banerjee (2008), let slogcm(f, I) be the left-hand slope

of the greatest convex minorant of the restriction of the real-valued function f

to the interval I. Denote by slogcm(f) = slogcm(f,R). Moreover, let

slogcm0(f) = min (slogcm(f, (−∞, 0]), 0) 1(−∞,0]+max (slogcm(f, (0,∞)), 0) 1(0,∞).

For positive constants a and b, define

Xa,b(t) = aW(t) + bt2, (3.10)
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where W is a standard two-sided Brownian motion originating from zero. Let

ga,b(t) = slogcm(Xa,b)(t), (3.11)

the left-hand slope of the GCM Ga,b of the process Xa,b, at point t. The con-

strained analogous is defined as follows: for t ≤ 0, construct the GCM of Xa,b,

denoted by GL
a,b, and take its left-hand slopes at point t, denoted by DL(Xa,b)(t).

When the slopes exceed zero, replace them by zero. In the same manner, for

t > 0, denote the GCM of Xa,b by GR
a,b and its slopes at point t by DR(Xa,b)(t).

Replace the slopes by zero when they decrease below zero. This slope process is

denoted by g0a,b, and

g0a,b(t) =


min (DL(Xa,b)(t), 0) t < 0,

0 t = 0,

max (DR(Xa,b)(t), 0) t > 0.

(3.12)

Note that for t ≤ 0, there exists, almost surely s < 0 such that DL(Xa,b)(s) is

strictly positive for any point greater than or equal to s and the left derivative

at s is non-positive. Equivalently, for t > 0 there exists almost surely s > 0

such that DR(Xa,b)(s) is strictly negative for any point smaller than or equal to

s and the left derivative at s is non-negative. In addition, observe that g0a,b(t) =

slogcm0(Xa,b)(t), as defined and characterized by Banerjee and Wellner (2001).

The characterization of the unconstrained and constrained estimators for

nonincreasing baseline hazard functions is similar to the nondecreasing case and

can be found in the Supplement.

4. The Limit Distribution

Let Bloc(R) be the space of all locally bounded real functions on R, equipped
with the topology of uniform convergence on compact sets. Take Cmin(R) to be

the subset of Bloc(R) consisting of continuous functions f for which f(t) → ∞
when |t| → ∞, and f has a unique minimum. Let L be the space of locally

square integrable real-valued functions on R, equipped with the topology of L2

convergence on compact sets.

For a generic follow-up time T , consider Huc(x) = P(T ≤ x,∆ = 1), the sub-

distribution function of the uncensored observations. Moreover, let

Φ(β, x) =

∫
{u ≥ x} eβ′zdP (u, δ, z), (4.1)

for β ∈ Rp and x ∈ R, where P is the underlying probability measure corre-

sponding to the distribution of (T,∆, Z). For a fixed point x0 ∈ (0, τH), define

the processes
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Xn(x) = n1/3
(
λ̂n(x0 + n−1/3x)− θ0

)
,

Yn(x) = n1/3
(
λ̂0
n(x0 + n−1/3x)− θ0

)
.

(4.2)

Our result gives the joint asymptotic distribution of these processes. Its proof is

deferred to the online Supplement.

Lemma 3. Assume (A1) and (A2) and let x0 ∈ (0, τH). Suppose that λ0 is

nondecreasing on [0,∞) and continuously differentiable in a neighborhood of x0,

with λ0(x0) ̸= 0 and λ′
0(x0) > 0, and assume that the functions x 7→ Φ(β0, x)

and Huc(x) defined at (4.1) are continuously differentiable in a neighborhood of

x0. If the density of the follow-up times is continuous and bounded away from

zero in a neighborhood of x0, and

a =

√
λ0(x0)

Φ(β0, x0)
and b =

1

2
λ′
0(x0), (4.3)

then (Xn, Yn) converge jointly to (ga,b, g
0
a,b), in L × L, where the processes ga,b

and g0a,b have been defined in (3.11) and (3.12).

By making use of results in Lopuhaä and Nane (2013), a completely similar

result holds in the nonincreasing setting, which is stated in the Supplement.

Lemma 4. Let x0 ∈ (0, τH) fixed and let D̄n be the set on which the unconstrained

NPMLE λ̂n, defined in Lemma 1, differs from constrained NPMLE λ̂0
n, defined

in Lemma 2. Then, for any ε > 0, there exists kε > 0 such that

lim inf
n→∞

P
(
D̄n ⊂ [x0 − n−1/3kε, x0 + n−1/3kε]

)
≥ 1− ε.

Proof. The proof of this fact follows by the reasoning in the proof of Lemma 2.6

in Banerjee (2006), preprint for Banerjee (2007).

Lemma 5. Consider the processes Xn and Yn defined in (4.2). Then, for every

ε > 0 and k > 0, there exists an M > 0 such that

lim sup
n→∞

P
(

sup
x∈[−k,k]

|Xn(x)| > M
)
≤ ε,

lim sup
n→∞

P
(

sup
x∈[−k,k]

|Yn(x)| > M
)
≤ ε.

Proof. The monotonicity of the processes Xn and Yn yields that

sup
x∈[−k,k]

|Xn(x)| =max {|Xn(−k)| , |Xn(k)|} ,
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sup
x∈[−k,k]

|Yn(x)| =max {|Yn(−k)| , |Yn(k)|} .

Assume |Xn(k)| to be the maximum in the above display. Since for fixed k,

Xn(k)
d−→ ga,b(k), with a and b defined in (4.3), it results that the processes Xn

and Yn in (4.2) are, with high probability, uniformly bounded.

The limiting distribution of the likelihood ratio statistic of a nondecreasing
baseline hazard function λ0 is now supplied.

Theorem 1. Suppose (A1) and (A2) hold and let x0 ∈ (0, τH). Assume that λ0

is nondecreasing on [0,∞) and continuously differentiable in a neighborhood of
x0, with λ0(x0) ̸= 0 and λ′

0(x0) > 0, and that Huc(x) and x → Φ(β0, x), defined
at (4.1) are continuously differentiable in a neighborhood of x0. Let 2 log ξn(θ0)
be the likelihood ratio statistic for testing H0 : λ0(x0) = θ0, as at (3.2). Then,

2 log ξn(θ0)
d−→ D,

where D =
∫ [

(g1,1(u))
2 − (g01,1(u))

2
]
du, with g1,1 and g01,1 defined in (3.11) and

(3.12).

Proof. The likelihood ratio statistic 2 log ξn(θ0) = 2Lβ̂n
(λ̂n)− 2Lβ̂n

(λ̂0
n) can be

expressed as

2 log ξn(θ0) =2

n−1∑
i=1

∆(i) log λ̂n(T(i))− 2

n−1∑
i=1

∆(i) log λ̂
0
n(T(i))

− 2
n−1∑
i=1
i̸=m

[
T(i+1) − T(i)

] [
λ̂n(T(i))− λ̂0

n(T(i))
] n∑
l=i+1

eβ̂
′
nZ(l)

− 2
[
T(m+1) − x0

] [
λ̂n(T(m))− θ0

] n∑
l=m+1

eβ̂
′
nZ(l)

− 2
[
x0 − T(m)

] [
λ̂n(T(m))− λ̂0

n(T(m))
] n∑
l=m+1

eβ̂
′
nZ(l) .

For more details, please refer to the Supplement (eq. (S1.1) and (S2.1)). Let

Sn = 2

n−1∑
i=1

∆(i) log λ̂n(T(i))− 2

n−1∑
i=1

∆(i) log λ̂
0
n(T(i)), (4.4)

and denote by Dn, the set of indices i on which λ̂n(T(i)) differs from λ̂0
n(T(i)).

Hence, expanding both terms of Sn around λ0(x0) = θ0, we get

Sn = 2
∑
i∈Dn

∆(i)

λ̂n(T(i))− θ0

θ0
− 2

∑
i∈Dn

∆(i)

λ̂0
n(T(i))− θ0

θ0
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−
∑
i∈Dn

∆(i)

[
λ̂n(T(i))− θ0

]2
θ20

+
∑
i∈Dn

∆(i)

[
λ̂0
n(T(i))− θ0

]2
θ20

+Rn,

with

Rn =
1

3

∑
i∈Dn

∆(i)

[
λ̂n(T(i))− θ0

]3
[
λ̂∗
n(T(i))

]3 − 1

3

∑
i∈Dn

∆(i)

[
λ̂0
n(T(i))− θ0

]3
[
λ̂0∗
n (T(i))

]3
= Rn,1 −Rn,2,

where λ̂∗
n(T(i)) is a point between λ̂n(T(i)) and θ0 and λ̂0∗

n (T(i)) is a point between

λ̂0
n(T(i)) and θ0. We want to show that Rn,1 and Rn,2, hence Rn converge to zero,

in probability. As for the Rn,1 term, it can be inferred that

|Rn,1| ≤
1

3

∫
δ{u ∈ D̄n}

∣∣∣n1/3
(
λ̂n(u)− θ0

)∣∣∣3∣∣∣λ̂∗
n(u)

∣∣∣3 dPn(u, δ, z),

where D̄n is the time interval on which λ̂n differs from λ̂0
n. Choose ε > 0 and γ > 0

and, for x0 ∈ (0, τH) fixed and kε > 0, denote by In = [x0−n−1/3kε, x0+n−1/3kε].

We can write Rn,1 = Rn,1{D̄n ⊂ In}+Rn,1{D̄n ̸⊂ In}. Since, by Lemma 4,

P(|Rn,1{D̄n ̸⊂ In}| > γ) ≤ P(D̄n ̸⊂ In) < ε,

we further focus on bounding |Rn,1{D̄n ⊂ In}|. By Lemmas 4 and 5, there exists

kε > 0 such that supx∈[−kε,kε]

∣∣∣λ̂n(x0 + n−1/3x)− θ0

∣∣∣ is Op(n
−1/3). Furthermore,

since

sup
x∈[−kε,kε]

∣∣∣λ̂∗
n(x0 + n−1/3x)− θ0

∣∣∣ ≤ sup
x∈[−kε,kε]

∣∣∣λ̂n(x0 + n−1/3x)− θ0

∣∣∣ ,
it results that, for u ∈ D̄n,

∣∣∣n1/3
(
λ̂n(u)− θ0

)∣∣∣3 is uniformly bounded and∣∣∣λ̂∗
n(u)

∣∣∣3 is uniformly bounded away from zero. It then follows that there ex-

ists M > 0 such that

|Rn,1| ≤M

∫
δ{x0 − kεn

−1/3 ≤ u ≤ x0 + kεn
−1/3}d (Pn − P ) (u, δ, z)

+M

∫
δ{x0 − kεn

−1/3 ≤ u ≤ x0 + kεn
−1/3}dP (u, δ, z) + op(1).

Chebyshev’s inequality provides that the first term on the right-hand side is

Op(n
−2/3). As the functionHuc defined above (4.1) is assumed to be continuously

differentiable in a neighborhood of x0, the second term on the right-hand side is
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Op(n
−1/3). We can conclude that Rn,1 = op(1). Similarly, by using Lemmas 4

and 5, it can be shown that Rn,2 = op(1). Thus 2 log ξn(θ0) = An − Bn + op(1),

where

An =
2

θ0

∑
i∈Dn

∆(i)

[
λ̂n(T(i))− λ̂0

n(T(i))
]

−2
∑

i∈Dn\{m}

[
T(i+1) − T(i)

] [
λ̂n(T(i))− λ̂0

n(T(i))
] n∑
l=i+1

eβ̂
′
nZ(l)

−2
[
T(m+1) − x0

] [
λ̂n(T(m))− θ0

] n∑
l=m+1

eβ̂
′
nZ(l)

−2
[
x0 − T(m)

] [
λ̂n(T(m))− λ̂0

n(T(m))
] n∑
l=m+1

eβ̂
′
nZ(l) , (4.5)

and

Bn =
1

θ20

∑
i∈Dn

∆(i)

{[
λ̂n(T(i))− θ0

]2
−
[
λ̂0
n(T(i))− θ0

]2}
. (4.6)

Hence, An can be written as An = An1 −An2, where

An1 =
2

θ0

∑
i∈Dn

[
λ̂n(T(i))− θ0

]{
∆(i) − θ0

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}
,

An2 =
2

θ0

∑
i∈Dn\{m}

[
λ̂0
n(T(i))− θ0

]{
∆(i) − θ0

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

+
2

θ0

[
λ̂0
n(T(m))− θ0

]{
∆(m) − θ0

[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l)

}
.

For the term An1, partition the set of indices Dn into s consecutive blocks of

indices B1, . . . , Bs, such that λ̂n is constant on each block. Denote by v̂nj the

unconstrained estimator λ̂n(T(i)), for each i ∈ Bj , with j = 1, . . . , s. By (3.6), it

follows that

An1 =
2

θ0

s∑
j=1

∑
i∈Bj

(v̂nj − θ0)
{
∆(i) − θ0

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

=
2

θ0

s∑
j=1

(v̂nj − θ0)
{∑

i∈Bj

∆(i) − θ0
∑
i∈Bj

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

=
2

θ0

s∑
j=1

(v̂nj − θ0)
2
∑
i∈Bj

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)
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=
2

θ0
n
∑
i∈Dn

[
λ̂n(T(i))− θ0

]2 1

n

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l) .

Define

Φn(β, x) =

∫
{u ≥ x} eβ′zdPn(u, δ, z), (4.7)

and note that∫
[T(i),T(i+1))

Φn(β̂n, u)du =
1

n

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l) ,

for each i = 1, . . . , n− 1. The term An1 can then be written as

An1 =
2

θ0
n

∫ {
u ∈ D̄n

} [
λ̂n(u)− θ0

]2
Φn(β̂n, u)du,

where D̄n is the interval on which λ̂n and λ̂0
n differ. Similarly, for the term

An2, partition Dn into q consecutive blocks of indices B0
1 , . . . , B

0
q , such that the

constrained estimator λ̂0
n is constant on each block. There is one block, say B0

r ,

on which the constrained estimator is θ0, and one block, say B0
p , that contains

m. On all other blocks B0
j , denote by v̂0nj the constrained estimator λ̂0

n(T(i)), for

each i ∈ B0
j . Then

An2 =
2

θ0

q∑
j=1
j ̸=r,p

∑
i∈B0

j

(
v̂0nj − θ0

){
∆(i) − θ0

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

+
2

θ0

∑
i∈B0

p\{m}

(
v̂0np − θ0

){
∆(i) − θ0

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

+
2

θ0

(
v̂0np − θ0

){
∆(m) − θ0

[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l)

}

=
2

θ0

q∑
j=1
j ̸=r,p

(
v̂0nj − θ0

)
∑
i∈B0

j

∆(i) − θ0
∑
i∈B0

j

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)


+

2

θ0

(
v̂0np − θ0

){ ∑
i∈B0

p

∆(i) − θ0

[ ∑
i∈B0

p\{m}

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

+
[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l)

]}
.
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By (3.8) and (3.9),

An2 =
2

θ0

q∑
j=1
j ̸=r,p

(
v̂0nj − θ0

)2 ∑
i∈B0

j

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

+
2

θ0

(
v̂0np − θ0

)2{ ∑
i∈B0

p\{m}

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

+
[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l)

}

=
2

θ0
n

∑
i∈Dn\{m}

[
λ̂0
n(T(i))− θ0

]2 1

n

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

+
2

θ0
n
[
λ̂0
n(T(m))− θ0

]2 1

n

[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l) .

As λ̂0
n(x) = λ̂0

n(T(m)) on the interval [T(m), x0) and λ̂0
n(x) = θ0 on the interval

[x0, T(m+1)), one has∫ T(m+1)

T(m)

[
λ̂0
n(u)− θ0

]2
Φn(β̂n, u)du

=

∫ x0

T(m)

[
λ̂0
n(u)− θ0

]2
Φn(β̂n, u)du+

∫ T(m+1)

x0

[
λ̂0
n(u)− θ0

]2
Φn(β̂n, u)du

=
1

n

[
λ̂0
n(T(m))− θ0

]2 [
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l) .

This leads to

An2 =
2

θ0
n

∫ {
u ∈ D̄n

} [
λ̂0
n(u)− θ0

]2
Φn(β̂n, u)du,

so that An in (4.5) can be written as

An =
2

θ0
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}
Φn(β̂n, u)du.

In a similar manner, Bn in (4.6) can be expressed as

Bn =
1

θ20
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}
dVn(u),
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by (3.4), and by noting that for every i = 1, . . . , n− 1,∫
[T(i),T(i+1))

dVn(u) = Vn(T(i+1))− Vn(T(i)) =
1

n
∆(i).

Concluding,

2 log ξn(θ0) =
2

θ0
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)−θ0

]2}
Φn(β̂n, u)du

− 1

θ20
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)−θ0

]2
−
[
λ̂0
n(u)−θ0

]2}
dVn(u)+op(1).

Let V (x) =
∫
δ{u < x}dP (u, δ, z), and see that, in fact, V (x) = Huc(x), where

Huc has been defined above (4.1). Thus,

2 log ξn(θ0) =
2

θ0
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}
Φ(β0, u)du

− 1

θ20
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}
dV (u)

+R̄n + op(1),

where R̄n = R̄n1 − R̄n2, with

R̄n1 =
2

θ0
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}(
Φn(β̂n, u)− Φ(β0, u)

)
du,

R̄n2 =
1

θ20
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)− θ0

]2}
d (Vn(u)− V (u)) .

The aim is to show that R̄n1 and R̄n2, and thus R̄n is op(1). The term R̄n1 can

be written as

2

θ0
n1/3

∫ {
u ∈ D̄n

}{ [
n1/3

(
λ̂n(u)− θ0

)]2
−
[
n1/3

(
λ̂0
n(u)− θ0

)]2 }(
Φn(β̂n, u)− Φ(β0, u)

)
du.

Lemma 4 in Lopuhaä and Nane (2013) provides that

sup
x∈R

∣∣∣Φn(β̂n, x)− Φ(β0, x)
∣∣∣→ 0,
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with probability one. From Lemma 5 and since
∫
{u ∈ D̄n}du ≤ 2kεn

−1/3, by

Lemma 4 and by using similar arguments as for the term Rn,1, we can conclude

that R̄n1 is op(1). Analogously,

R̄n2 =
1

θ20
n1/3

∫ {
u ∈ D̄n

}{ [
n1/3

(
λ̂n(u)− θ0

)]2
−
[
n1/3

(
λ̂0
n(u)− θ0

)]2 }
δd(Pn − P )(u, δ, z).

Once more, by Lemmas 4 and 5, there exists M2 > 0 such that

|R̄n2| ≤
M2

2

θ20
n1/3

∫
δ
{
u ∈ D̄n

}
d(Pn − P )(u, δ, z),

with arbitrarily large probability. Chebyshev’s inequality along with the same

reasoning as for the term Rn,1 provides that R̄n2 = op(1). Hence,

2 log ξn(θ0) =
2

θ0
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)− θ0

]2
−
[
λ̂0
n(u)−θ0

]2}
Φ(β0, u)d(u)

− 1

θ20
n

∫ {
u ∈ D̄n

}{[
λ̂n(u)−!θ0

]2
−
[
λ̂0
n(u)−θ0

]2}
dV (u)+op(1).

Consider the change of variable x = n1/3(u − x0) and let D̃n = n1/3
(
D̄n − x0

)
.

This yields that

2 log ξn(θ0) =
2

θ0

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
Φ(β0, x0 + n−1/3x)dx

− 1

θ20

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

2
]
V ′(x0 + n−1/3x)dx+ op(1)

=
2

θ0
Φ(β0, x0)

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
dx

− 1

θ20
V ′(x0)

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
dx+ op(1).

As inferred in Lopuhaä and Nane (2013),

λ0(x) =
dV (x)/dx

Φ(β0, x)
,

which gives that

2 log ξn(θ0) =
1

θ0
Φ(β0, x0)

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
dx+ op(1).

Thus

2 log ξn(θ0) =
1

a2

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
dx+ op(1),
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where a has been defined in (4.3). From Lemma 4, for every ε > 0, we can find

an interval [−kε, kε] such that P(D̃n ⊂ [−kε, kε]) > 1− ε, for n sufficiently large.

In order to prove the theorem, we apply Lemma 4.2 in Prakasa Rao (1969), by

taking

Qn =
1

a2

∫
{x ∈ D̃n}

[
X2

n(x)− Y 2
n (x)

]
dx,

Qnε =
1

a2

∫
{x ∈ [−kε, kε]}

[
X2

n(x)− Y 2
n (x)

]
dx,

Qε =
1

a2

∫
{x ∈ [−kε, kε]}

[
(ga,b(x))

2 −
(
g0a,b(x)

)2]
dx,

Q =
1

a2

∫
{x ∈ Da,b}

[
(ga,b(x))

2 −
(
g0a,b(x)

)2]
dx,

whereDa,b denotes the set on which ga,b and g0a,b differ. Condition (i) in Lemma 4.2

of Prakasa Rao follows by Lemma 4. In addition, Lemmas 4 and 3 yield

condition (ii), since for every ε > 0, we can find kε > 0 such that P(Da,b ⊂
[−kε, kε]) > 1 − ε. The third condition follows, for every fixed ε, by Lemma 3

and the Continuous Mapping Theorem. Thus (Xn, Yn) converges to (ga,b, g
0
a,b) as

a process in L × L and (f, g) 7→
∫
{x ∈ [−c, c]}(f2(x)− g2(x))dx is a continuous

function defined on L × L with values in R. Conclusively,

1

a2

∫ [
X2

n(x)−Y 2
n (x)

]
{x∈D̃n}dx

d−→ 1

a2

∫ [
(ga,b(x))

2−
(
g0a,b(x)

)2] {x∈Da,b}dx

d
=

∫ [
(g1,1(x))

2−
(
g01,1(x)

)2] {x∈D1,1}dx

by the Continuous Mapping Theorem and by Brownian scaling, as derived in

Banerjee and Wellner (2001). This completes the proof.

The asymptotic distribution of the likelihood ratio statistic in the nonincreas-

ing baseline hazard setting can be derived completely analogous and is stated in

the supplement.

Remark 2. The same limiting distribution D is obtained for the loglikleihood

ratio statistic in the absence of covariates in Banerjee (2008), as well as in other

censoring frameworks, as derived by Banerjee and Wellner (2001). In fact, it

has been shown in Banerjee (2007) that the same holds true for a wide class of

monotone response models. This distribution differs from the usual χ2
1 distri-

bution obtained in the regular parametric setting. It is noteworthy that D does

not depend on any of the parameters of the underlying model, and this property

turns out to be particularly useful in constructing confidence intervals for the

parameters of interest.
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5. Pointwise Confidence Intervals via Simulations

Once having derived the asymptotic distribution of the likelihood ratio statis-
tic, the practical application at hand is to construct, for fixed x0 ∈ (0, τH),
pointwise confidence intervals.

To compute the likelihood ratio statistic for a nondecreasing λ0, suppose
that λ0(x0) = θ, for fixed θ ∈ (0,∞) and let m such that T(m) < x0 < T(m+1).
Then,

2 log ξn(θ) = 2

n−1∑
i=1

{
∆(i) log λ̂n(T(i))− λ̂n(T(i))

[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

−2

m−1∑
i=1

{
∆(i) log λ̂

0
n(T(i))− λ̂0

n(T(i))
[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}

−2
{
∆(m) log λ̂

0
n(T(m))− λ̂0

n(T(m))
[
x0 − T(m)

] n∑
l=m+1

eβ̂
′
nZ(l)

−θ
[
T(m+1) − x0

] n∑
l=m+1

eβ̂
′
nZ(l)

}

−2

n−1∑
i=m+1

{
∆(i) log λ̂

0
n(T(i))− λ̂0

n(T(i))
[
T(i+1) − T(i)

] n∑
l=i+1

eβ̂
′
nZ(l)

}
.

Write

2 log ξn(θ) = 2
n−1∑
i=1

∆(i)[log λ̂n(T(i))− log λ̂0
n(T(i))]

−2

n−1∑
i=1
i̸=m

[
T(i+1) − T(i)

] [
λ̂n(T(i))− λ̂0

n(T(i))
] n∑
l=i+1

eβ̂
′
nZ(l)

−2
[
T(m+1) − x0

] [
λ̂n(T(m))− θ

] n∑
l=m+1

eβ̂
′
nZ(l)

−2
[
x0 − T(m)

] [
λ̂n(T(m))− λ̂0

n(T(m))
] n∑
l=m+1

eβ̂
′
nZ(l) .

The characterization of the estimators λ̂n and λ̂0
n in Lemmas 1 and 2 is then

sufficient to compute the statistic.
Let 2 log ξn(θ) denote the likelihood ratio statistic defined in (3.2), for testing

H0 : λ0(x0) = θ versus H1 : λ0(x0) ̸= θ. A 1− α confidence interval is obtained
by inverting 2 log ξn(θ) for different values of θ:

C1
n,α ≡ {θ : 2 log ξn(θ) ≤ q(D, 1− α)} ,
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where q(D, 1− α) is the (1− α)th quantile of the distribution D. Quantiles of D,
based on discrete approximations of Brownian motion, are provided in Banerjee

and Wellner (2005), and we use q(D, 0.95) = 2.286922. The parameter θ is chosen

to take values on a fine grid between 0 and 6. It can be shown immediately that,

for large enough n, the coverage probability of C1
n,α is approximately 1− α.

Furthermore, given the covariate vectors z0, z ∈ Rp, we can write

λ(x|z) = λ0(x)e
β′
0z = λ0(x)e

β′
0z0eβ

′
0(z−z0).

If we consider now the covariate vector Z̃ = Z − z0, then, according to the Cox

model, the hazard function of an individual with covariate vector z̃ ∈ Rp can be

written as

λ(x|z̃) = λ̃0(x)e
β′
0z̃,

where λ̃0 is the baseline function that corresponds to z̃ = 0. The baseline hazard

function λ̃0 is, in fact,

λ̃0(x) = λ(x|z̃ = 0) = λ(x|z − z0 = 0) = λ(x|z = z0) = λ0(x)e
β′
0z0 ,

the hazard function of an individual with covariate vector z0. Hence testing

whether λ̃0 has a particular value θ0 at a fixed point x0 is equivalent to testing

that λ(x0|z0) = θ0. Therefore, the likelihood ratio method presented in this paper

can also be used for constructing confidence intervals for the hazard function,

given a covariate vector z0 and a fixed point x0.

Pointwise confidence intervals for λ0(x0) can also be constructed based on the

asymptotic distribution of the NPMLE λ̂n. According to Theorem 2 in Lopuhaä

and Nane (2013), for fixed x0,

n1/3
(
λ̂n(x0)− λ0(x0)

)
d−→
(
4λ0(x0)λ

′
0(x0)

Φ(β0, x0)

)1/3

argmin
x∈R

{W(t) + t2} ≡ C(x0)Z,

where W is standard two-sided Brownian motion starting from zero, and the

constant C(x0) depends on x0 and on the underlying parameters. An estimator

Ĉn(x0) of C(x0) will then yield an 1− α confidence interval for λ0(x0):

C2
n,α ≡

[
λ̂n(x0)− n−1/3Ĉn(x0)q(Z, 1−

α

2
), λ̂n(x0) + n−1/3Ĉn(x0)q(Z, 1−

α

2
)
]
,

where q(Z, 1 − α/2) is the (1 − α/2)th quantile of the distribution Z. These

quantiles have been computed in Groeneboom and Wellner (2001), and we use

q(Z, 0.975) = 0.998181.

For simulation purposes, we propose

Ĉn(x0) =

(
4λ̂n(x0)λ̂

′
n(x0)

Φn(β̂n, x0)

)1/3

,
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where Φn(β, x) has been defined in (4.7), and β̂n is the maximum partial likeli-

hood estimator. Lemma 4 in Lopuhaä and Nane (2013) ensures that Φn(β̂n, ·) is
a strong uniform consistent estimator of Φ(β0, ·). As an estimate for λ′

0(x0), we

chose the numerical derivative of λ̂n on the interval that contains x0, the slope

of the segment [λ̂n(T(m)), λ̂n(T(m+1))].

For the performance analysis, we constructed and compared, from simulated

data, the confidence intervals C1
n,α and C2

n,α, for α = 0.05 and various n. As the

baseline hazard function was assumed to be nondecreasing, we chose a Weibull

baseline distribution function for the event times, with shape parameter 2 and

scale parameter 1. For simplicity, we took the covariate as single-valued and

uniformly (0, 1) distribute, with β0 = 0.5. Given the covariate, the censoring

times were assumed to be uniformly (0, 1) distributed. We chose x0 =
√
log 2,

the median of the baseline distribution of the event times. For each chosen sample

size, we generated 1,000 replicates and computed the empirical coverage and the

average length of the corresponding confidence intervals.

Since we were simulating from a Weibull distribution with shape parameter

2 and scale parameter 1, and hence the true baseline hazard function λ0 and its

derivative were known, as well as the true underlying regression coefficient, we

could also consider a confidence interval C̄2
n,α given by

C̄2
n,α ≡

[
λ̂n(x0)− n−1/3C0(x0)q(Z, 1−

α

2
), λ̂n(x0) + n−1/3C0(x0)q(Z, 1−

α

2
)
]
,

where C0 is a deterministic function given by

C0(x0) =

(
4λ0(x0)λ

′
0(x0)

Φ(β0, x0)

)1/3

.

Table 1 shows the performance, for various sample sizes, of the confidence interval

C1
n,0.05 based on the likelihood ratio method (LR), the confidence interval C2

n,0.05,

based on the asymptotic distribution (AD) of the scaled differences between the

NPMLE λ̂n and the true baseline hazard at a fixed point, as well as the confidence

interval C̄2
n,0.05 based on the Weibull distribution (TD).

For each sample size, the likelihood ratio method gave, on average, shorter

pointwise confidence intervals in comparison with the confidence intervals based

on the asymptotic distribution of the NPMLE estimator λ̂n. Moreover, the confi-

dence intervals based on the likelihood ratio exhibit comparable coverage proba-

bilities with the confidence intervals C2
n,0.05, based on the asymptotic distribution.

As expected, the highest coverage rate was attained by the confidence intervals

C̄2
n,0.05, for all sample sizes. Furthermore, they gave confidence intervals with

the shortest length, on average. For the largest sample sizes, of 5,000 observa-

tions, the likelihood ratio method yielded comparable confidence intervals with
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Table 1. Simulation results for constructing 95% pointwise confidence in-
tervals using the likelihood ratio method C1

n,0.05 (LR) or the asymptotic

distribution C2
n,0.05 (AD) and C̄2

n,0.05 (TD), in terms of average length (AL)
and empirical coverage (CP).

LR AD TD
n AL CP AL CP AL CP
50 4.275 0.917 5.203 0.932 1.506 0.964
100 3.837 0.923 4.838 0.941 1.317 0.953
200 3.009 0.931 4.605 0.947 1.247 0.947
500 2.734 0.947 3.372 0.948 0.961 0.964
1000 1.454 0.942 2.259 0.940 0.713 0.957
5000 0.879 0.945 1.768 0.952 0.546 0.953

C̄2
n,0.05 in terms of interval length, on average, as well as for empirical coverage.

The simulations are readily extendable to more than one covariate, and similar

findings are obtained.
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