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Abstract: For a nonparametric regression model with a fixed design, we consider the
model specification test based on a kernel. We find that a bimodal kernel is useful
for the model specification test with a correlated error, whereas a conventional
unimodal kernel is useful only for an iid error. Another finding is that the model
specification test suffers from a convergence rate change depending on whether the
errors are correlated or not. These results are verified by deriving an asymptotic
null distribution and asymptotic (local) power, and by performing a simulation.
The validity of the bimodal kernel for testing is demonstrated with the “drum
roller” data (see Laslett (1994) and Altman (1994)).
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1. Introduction

Suppose that we are concerned with the nonparametric regression function
specification test given

Yi = m(xi) + ηi (i = 1, . . . , n), (1.1)

where m is a smooth function defined on [0,1], xi = i/n, and {ηi} is a zero-
mean, covariance stationary process. Here, the design points grow closer as the
sample size increases; while, the error process remains the same. Refer to Kim
et al. (2009) and references therein for detailed discussions about this model.
The testing problem under consideration is whether m(x) belongs to a specific
parametric family. This can be described as

H0 : m(x) = g(x, γ0) for all x ∈ [0, 1] with some γ0 ∈ B ⊂ Rq

versus
H1 : m(x) ̸= g(x, γ) for some x ∈ [0, 1] with all γ ∈ B ⊂ Rq.

For testing H0 nonparametrically, we consider a kernel-based test statistic

Tn = (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

K
(xi − xj

h

)
ϵ̂iϵ̂j , (1.2)
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where K is a kernel satisfying (C1) below, ϵi = Yi−g(xi, γ) and ϵ̂i = Yi−g(xi, γ̂),

with a consistent estimator γ̂ of γ0. Here, Tn is based on the average squared

error

dA(m̂,m) = n−1
n∑

i=1

(
m̂(xi)−m(xi)

)2
, (1.3)

where m̂(x) = (nh)−1
∑n

i=1K((x − xi)/h)Yi. In recent years, much research

has been performed on applying Tn to the model specification test for a random

design regression model. See, for example, Fan and Li (1999) Zheng (1996),

Luo, Kim, and Song (2011), and Khmaladze and Koul (2004). For the model

specification test for the fixed design regression model, not many results are

available. See, e.g., Eubank and Spiegelman (1990) or the monograph by Hart

(1997), which studies nonparametric lack-of-fit test with iid errors. We study Tn

as a nonparametric regression specification test for the fixed design regression

model, particularly when errors are correlated. The major strengths of Tn is its

consistency, since the existing parametric tests fail to be consistent against all

deviations from the null.

It is well known that when a nonparametric method such as m̂ is used to

recover m, correlated errors cause trouble. See Opsomer, Wang, and Yang (2001)

for a detailed discussion of this. We demonstrate that an analogous size distor-

tion problem arises for a nonparametric specification test when errors are corre-

lated. As a possible solution, we recommend the use of bimodal kernel K with

K(0) = 0. In addition, we find that Tn shows a power rate change, that yields a

continuous but non-monotonic power function over the hypothesis domain. We

proceed as follows. Section 2 proposes the specification test with bimodal kernel

and demonstrates its usefulness with the “drum roller” data (Laslett (1994) and

Altman (1994)). Section 3 discusses the power rate change of Tn and its impact.

Some other tests are discussed there. Section 4 reports on simulations that check

our theoretical results. All proofs are deferred to the Appendix.

2. Size Distortion and Bimodal Kernel

We need the following assumptions.

(C1) K is a square integrable symmetric probability density function with sup-

port [−κ, κ] for some κ > 0, and K is Lipschitz continuous.

(C2) Errors are a geometrically strong mixing sequence with mean zero and

E|ηi|r < ∞ for some r > 4.

(C3) nh3/2 → ∞ and h → 0.

(C4) (i) g(1)(x, ·) and g(2)(x, ·) are continuous in x ∈ [0, 1] and dominated by

a bounded function Mg(x), where g(1)(x, ·) and g(2)(x, ·) are the first and
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second partial derivatives with respect to γ, respectively. (ii) |g(1)(x, γ)2| ̸=
0 for γ in a neighborhood of γ∗ = limpγ̂.

(C5) The mean function m supported on the interval [0,1], and has a uniformly

continuous and square integrable second derivative m′′(x) on the interval

(0,1).

Here, (C1) is a standard assumption on the kernel. If, in addition, K(0) = 0,

the kernel is bimodal. For iid error, r = 4 suffices for (C2). If Mb
a be the σ-field

generated by {ξ(t) : a ≤ t ≤ b}, then {ξ(t) : t ∈ R} is strong mixing if

α(τ) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ M0
−∞ and B ∈ M∞

τ } = O(ρτ )

for some 0 < ρ < 1 when τ → ∞. If (C4) is a standard assumption adopted

in non-linear regression models: If γ∗ = argminγ∈BE(Yi − g(xi, γ))
2 and γ̂ =

argminγ∈B
∑n

i=1(Yi − g(xi, γ))
2, then under H0, γ∗ = γ0. And, uder (C4), γ∗ =

limpγ̂ and γ̂ − γ∗ = Op(n
−1/2) under both H0 and H1. One may refer to Fan

and Li (1999) for these results. (C5) is needed when H1 holds.

Theorem 1. Let (C1)−(C4) and H0 hold. If K is a bimodal kernel with K(0) =

0, then

nh1/2Tn

σ̂0
→ N(0, 1) (2.1)

in distribution, where σ̂2
0 is a consistent estimator of

σ2
0 =

∫
K2(u)du

[(
E(ϵ)2

)2
+

( ∞∑
j=−∞

E(ϵ0ϵj)
)2]

. (2.2)

Remark 1. Theorem 1 suggests an asymptotic one-sided test for H0 versus H1:

Reject H0 at the significance level α if nh1/2Tn/σ̂0 > zα, where zα is the upper

α-percentile of the standard normal distribution. Because

V ar(
n∑

i=1

ϵi) = n(Eϵ20 + 2
∞∑
j=1

E(ϵ0ϵj)) + o(n),

one possible estimator of σ2
0 is to use the block bootstrap variance estimator of

Vn =
∑n

i=1 ϵ̂i, or V ar∗(Vn), where ϵ̂i = Yi − ĝ(xi, γ̂):

σ̂2
0 =

∫
K2(u)du[(V ar∗

Vn

n
)2 + (

n∑
i=1

ϵ̂2i
n
)2]. (2.3)
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Table 1. Testing results for drum roller data.

Tu
230 T b

230 Tu
1150 T b

1150

p-value 0.088 0.988 0 0.55
Z score 1.34 -2.26 25.7792 -0.126

Remark 2. Correlated error causes size distortion to Tn when a unimodal kernel

is employed and a bimodal kernel can correct it. Indeed, we can show that

P [nh1/2Tn/σ̂0 > zα] = P
(
Z ≥ zα − 2h−1/2K(0)

n−1∑
i=1

Eϵ0ϵi
σ̂0

)
+ o(1), (2.4)

where Z is N(0, 1). Verification of (2.4) is given in the Appendix. It indicates

that the size inflated (deflated) by
∑

i=1Eϵ0ϵi > 0(< 0) leads to a frequent

(infrequent) rejection of H0 unless a bimodal kernel with K(0) = 0 is used,

and that when a unimodal kernel is used, the size distortion problem may be

avoided by over-smoothing (large h). For iid error, Theorem 1 holds trivially for

a unimodal kernel because E(η0ηi) = 0 for any i ̸= 0.

In order to demonstrate the usefulness of a bimodal kernel for Tn, the “drum

roller” data analyzed by Laslett (1994) and Altman (1994) are considered (the

data are available on Statlib). As noted there, the data appear to exhibit a

significant short-range positive correlation; so testing using a bimodal kernel is

warranted. Figure 1 shows two fits to the two datasets using cubic B spline basis

functions of order 5, where n =1,150 represents the full dataset and n = 230 uses

every fifth observation. We took the fit with n = 230 as ĝ230(x) for x ∈ [0, 1], and

then, use it as g0(x, γ) =
∑5

j=1 γjBj(x) = ĝ230(x), where Bj(x) is the j-th cubic

B-spline basis function. Testing H0 : m(x) = g0(x, γ) for x ∈ [0, 1] with n = 230

or n =1,150, we employed T u
n with the unimodal kernel and T b

n with the bimodal

kernel. The testing results are summarized in Table 1. Table 1 shows that T u
n

rejects H0 and T b
n accepts it regardless of size n, and that the effect of a bimodal

kernel is much more significant for n =1,150 than for n = 230, indicating that

the size distortion is more severe for a large n in our case.

3. Power Rate Change

We show that we reveal that Tn has different convergence rates under H1,

and that such rate change complicates power under the local alternatives near

H0.

Theorem 2. Let (C1)−(C5) and H1 hold. If K is a bimodal kernel with K(0) =

0, then
n1/2(Tn − µ)

21/2σ1
→ N(0, 1) (3.1)
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Figure 1. Scatterplots of drum roller data with fitted lines based on five
bases of cubic B-splines for n =1,150 (left) and n = 230 (right).

in distribution, where µ =
∫
(m(x)− g(x, γ̃))2dx and

σ2
1 =

∞∑
i=−∞

Cov[(Y0 −m(x0))(g(x0, γ̃)−m(x0)), (Yi −m(xi))(g(xi, γ̃)−m(xi))].

Theorems 1 and 2 have the test convergence rate at nh1/2 under H0, and n1/2

under H1. From Theorem 2, the test is consistent with rate n1/2, not nh1/2, as

suggested by Theorem 1. As n → ∞, P
(
Z ≥ n1/2(21/2σ1)

−1(zασ̂0(nh
1/2)−1 − µ)

)
→ 1. This is related to the fact that Tn is a good approximation to dA(m̂,m).

Since dA is decomposed as bias and variance components, and bias part goes to

zero under H0 but remains as a constant under H1, the constant dominating dA
(and hence Tn) under H1 forces the rate change.

We investigate the power rate change issue at a finer level of the local alter-

natives. Assume a sequence of local alternativesH1n : m(xt) = g(xt, γ0)+δnl(xt),

where the known function l(·) is continuously differentiable and bounded by an

integrable function M(·). We have σ1 ∼ δn under H1n.

Theorem 3. Let (C1)−(C5) and H1n hold. If K is a bimodal kernel with K(0) =

0, then

(i) If nhδ2n → 0, (nh1/2)(Tn − δ2nµ1)/σ0 → N(0, 1), where µ1 =
∫
l2(x)dx.

(ii) If nhδ2n → ∞, n1/2δ−1
n (Tn − δ2nµ1)/(2

1/2σ2) → N(0, 1), where σ2
2 =

∑∞
i=−∞

Cov[(Y0 −m(x0))l(x0), (Yi −m(xi))l(xi)].

(iii) If nhδ2n → λ > 0, nh1/2(Tn − λ(nh)−1µ1)/(σ
2
0 + 2σ2

2/λ)
1/2 → N(0, 1).

Remark 3. From Theorem 3, when the local alternative δn is of the rate

n−1/2h−1/4, the test starts to have (local) power. The power function or rate, say
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sn, is a continuous, but not monotonic, function of δn. This indicates that no par-

ticular asymptotic discontinuity is caused by the power rate change. Verification

of these facts is given in the Appendix.

Remark 4. Hart (1997) considered an analogy to Tn with iid error and estab-

lished a result corresponding to our Theorem 1. He also verified that when local

alternative δn is of the rate n−1/2h−1/4, the test starts to have (local) power, but

did not address the rate change and size distortion due to dependence. According

to Hart (1997) (see Section 6.2.1 there), if one employs the sup norm, it would

be possible to consider the test statistic

Rn = sup
x∈[0,1]

∣∣∣∣∣(nhσ̂2
r )

−1/2
n∑

i=1

K
(x− xi

h

)
ϵ̂i

∣∣∣∣∣ , (3.2)

where σ̂2
r is an estimator of σ2

r =
∫
K2(u)du

∑∞
−∞E(ϵ0ϵj), but Rn would suffer

from the inflated size distortion when errors are correlated. Glesser and Moore

(1983) mentioned that tests based on empiric distribution function are subject

to size distortion due to positive dependence, for example. Some numerical work

on this point is given in Table 5 of Section 4.

Remark 5. Following the approach of Khmaladze and Koul (2004), it would be

possible to consider a goodness-of-fit test for our problem,

ξn(y) = n−1/2
n∑

i=1

I(xi ∈ B)[I{ϵ̂i ≤ y} − Fϵ(y)],

where B ⊂ [0, 1] and Fϵ is the distribution function of ϵ if the underlying distribu-

tion of Fϵ. They show that ξn is an asymptotic distribution-free goodness-of-fit

test and derive Brownian motion as its asymptotic distribution under iid condi-

tions. If one replaces the indicator I by the kernel K in ξn(y) above, then we

have

Wn(y) = (nh)−1/2
n∑

i=1

K
(x− xi

h

)[
L
(y − ϵ̂i

h

)
− Fϵ(y)

]
,

where L(y) =
∫ y
−∞K(x)dx. If the sup norm is applied to Wn(y) for obtaining

goodness-of-fit test under positive dependence, the test would again suffer from

size distortion.

4. Simulation

In this section, we show through simulations that the size and power of Tn are

affected by correlated error and furthermore, that such distortions of Tn might be

effectively handled by a bimodal kernel. We recommend the use of such a kernel
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for a nonparametric regression specification test. As before, T u
n and T b

n denote

the test statistic Tn with a unimodal kernel and a bimodal kernel, respectively.

The simulated regression setting was concerned with testing

H0 : m(x) = 300x3(1− x)3 for all x ∈ [0, 1] versus,

H1 : m(x) ̸= γx3(1− x)3 for some x ∈ [0, 1] with all γ ∈ R.

The regression errors for the model Yj = m(xj) + ϵj for j = 1, . . . , n were pro-

duced by an AR(1) process ϵj = ϕϵj−1 +
√

1− ϕ2Zj , where xj = j/n with n =

100, 400, 800, Zj ’s was pseudo iid normal random variables N(0, 1), and ϵ1 was

N(0, 1). The AR(1) parameters ϕ = −0.95,−0.9,−0.8, . . . , 0, . . . , 0.8, 0.9, 0.95.

Here ϕ = −0.0.95 and 0.95 were added in order to consider severely correlated er-

rors. The kernel functions used were K(x) = 630(4x2 − 1)2x4I(−1/2 ≤ x ≤ 1/2)

as a bimodal kernel for T b
n, and K(x) = (15/16)(1− x2)2I(−1 ≤ x ≤ 1) as a uni-

modal kernel for T u
n . In addition, block bootstrap estimate σ̂2

0 with block length

n1/3 (refer to (2.3)) was employed. Thus, our test rejectedH0 if nh
1/2Tn/σ̂0 > zα.

Table 2 provides the simulation results regarding the size distortion and its correc-

tion by a bimodal kernel. Tables 3 and 4 provide simulation results regarding how

the power of Tn is affected by correlated errors when m(x) = 300x3(1−x)3+0.5

or m(x) = 300x3(1− x)3 + 1.

Table 2 calculates the size of T u
n and T b

n for various values of ϕ when H0 is

true. Indeed, we generated data from Yj = γx3j (1 − xj)
3 + ϵj for j = 1, . . . , n,

where γ = 300 and γ is estimated via least squares, assuming m(x) = γx3(1−x)3.

From Table 2, one sees that T u
n accepts H0 almost always when the errors are

correlated negatively (i.e., ϕ < 0), whereas it rejects H0 too often when ϕ > 0.3.

Further, the size distortion of T u
n becomes more severe as the errors becomes more

severely correlated. This verifies the size distortion of T u
n due to the correlated

errors. Table 2 also confirms that T b
n corrects the size distortion reasonably well

when the errors are positively correlated (ϕ > 0.3), as suggested by Theorem 1

and (2.4). When errors are negatively correlated or severely positively correlated

at small n, T b
n does not provide a sufficient correction to the size distortion. In

addition, there is not so much difference between T u
n and T b

n in simulated size for

iid errors or ϕ = 0.

Table 3 calculates the powers of T u
n and T b

n for various values of ϕ when H1

is true or when m(x) = 300x3(1−x)3+0.5. From Table 3, one may observe that

T u
n rejects H0 : m(x) = 300x3(1 − x)3 less frequently and T b

n improves it when

ϕ ≤ −0.7 at n = 100. Such improvements disappear as n increases or ϕ increases

to zero. When ϕ is positive, T u
n outdoes T b

n significantly in power, which suggests

that T b
n corrects the inflated power of T u

n at the cost of the reduced power. One

sees that such ineludible adjustments of T b
n remain strong across n as ϕ gets close

to 1. Table 4 calculates the powers of T u
n and T b

n by considering a more distant
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Table 2. Simulated size (%) for Tu
n with a unimodal kernel and T b

n with a
bimodal kernel at size α = 0.05 when m(x) = 300x3(1 − x)3 for x ∈ [0, 1]
and h = n−1/5.

ϕ Tu
100 T b

100 Tu
200 T b

200 Tu
400 T b

400 Tu
800 T b

800

-0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.5 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

-0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.3 0.001 0.001 0.000 0.005 0.000 0.003 0.000 0.000

-0.2 0.002 0.002 0.004 0.002 0.003 0.001 0.002 0.002

-0.1 0.004 0.011 0.010 0.008 0.005 0.007 0.007 0.007

0.0 0.017 0.022 0.019 0.009 0.015 0.013 0.022 0.022

0.1 0.042 0.026 0.047 0.034 0.051 0.040 0.068 0.037

0.2 0.077 0.040 0.083 0.057 0.088 0.037 0.120 0.064

0.3 0.121 0.072 0.132 0.072 0.170 0.103 0.202 0.092

0.4 0.215 0.088 0.242 0.120 0.250 0.125 0.306 0.135

0.5 0.307 0.138 0.373 0.166 0.372 0.149 0.467 0.174

0.6 0.460 0.181 0.476 0.188 0.531 0.190 0.598 0.232

0.7 0.606 0.216 0.658 0.222 0.713 0.253 0.769 0.268

0.8 0.785 0.301 0.817 0.282 0.848 0.280 0.905 0.342

0.9 0.928 0.494 0.941 0.429 0.957 0.360 0.982 0.342

0.95 0.974 0.734 0.995 0.691 0.997 0.513 0.995 0.412

Table 3. Simulated power (%) for Tu
n with a unimodal kernel and T b

n with
a bimodal kernel at size α = 0.05 when m(x) = 300x3(1 − x)3 + 0.5 for
x ∈ [0, 1] and h = n−1/5.

ϕ Tu
100 T b

100 Tu
200 T b

200 Tu
400 T b

400 Tu
800 T b

800

-0.95 0.458 0.553 0.928 0.969 1.000 1.000 1.000 1.000

-0.9 0.409 0.563 0.966 0.992 1.000 1.000 1.000 1.000

-0.8 0.368 0.491 0.981 0.994 1.000 1.000 1.000 1.000

-0.7 0.363 0.433 0.991 0.992 1.000 1.000 1.000 1.000

-0.6 0.426 0.426 0.985 0.984 1.000 1.000 1.000 1.000

-0.5 0.403 0.425 0.970 0.961 1.000 1.000 1.000 1.000

-0.4 0.457 0.393 0.968 0.948 1.000 1.000 1.000 1.000

-0.3 0.484 0.373 0.952 0.891 1.000 0.999 1.000 1.000

-0.2 0.536 0.363 0.937 0.875 0.999 0.999 1.000 1.000

-0.1 0.495 0.358 0.933 0.829 0.999 0.996 1.000 1.000

0.0 0.566 0.366 0.928 0.796 1.000 0.994 1.000 1.000

0.1 0.573 0.367 0.928 0.737 1.000 0.976 1.000 1.000

0.2 0.578 0.348 0.913 0.707 0.995 0.960 1.000 0.999

0.3 0.662 0.352 0.895 0.660 0.991 0.946 1.000 1.000

0.4 0.641 0.351 0.891 0.597 0.993 0.888 1.000 0.995

0.5 0.684 0.352 0.889 0.559 0.992 0.850 1.000 0.980

0.6 0.722 0.375 0.907 0.545 0.986 0.798 0.999 0.944

0.7 0.785 0.371 0.896 0.495 0.976 0.711 0.999 0.906

0.8 0.856 0.447 0.925 0.487 0.977 0.649 0.998 0.802

0.9 0.953 0.624 0.968 0.548 0.983 0.557 0.997 0.672

0.95 0.982 0.798 0.995 0.731 0.999 0.658 0.999 0.590



NONPARAMETRIC REGRESSION SPECIFICATION 1153

Table 4. Simulated power (%) for Tu
n with a unimodal kernel and T b

n with a
bimodal kernel at size α = 0.05 when m(x) = 300x3(1−x)3+1 for x ∈ [0, 1]
and h = n−1/5.

ϕ Tu
100 T b

100 Tu
200 T b

200 Tu
400 T b

400 Tu
800 T b

800

-0.95 0.995 0.994 1.000 1.000 1.000 1.000 1.000 1.000

-0.9 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000

-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.4 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.2 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000

-0.1 0.999 0.992 1.000 1.000 1.000 1.000 1.000 1.000

0.0 0.999 0.980 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.998 0.972 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.995 0.938 1.000 0.999 1.000 1.000 1.000 1.000

0.3 0.986 0.895 1.000 0.997 1.000 1.000 1.000 1.000

0.4 0.986 0.864 1.000 0.992 1.000 1.000 1.000 1.000

0.5 0.979 0.802 1.000 0.977 1.000 1.000 1.000 1.000

0.6 0.976 0.780 1.000 0.951 1.000 0.997 1.000 1.000

0.7 0.972 0.708 0.997 0.893 1.000 0.991 1.000 0.999

0.8 0.962 0.699 0.995 0.841 1.000 0.962 1.000 0.998

0.9 0.984 0.764 0.997 0.829 0.999 0.854 1.000 0.967

0.95 0.990 0.884 0.998 0.868 0.998 0.870 1.000 0.899

Table 5. Simulated mean and standard deviation for Rn = maxj=1,...,n∣∣(nhσ̂2
r)

−1/2
∑n

i=1 K((xj − xi)/h)ϵ̂i
∣∣ with a unimodal kernel when m(x) =

300x3(1− x)3 for x ∈ [0, 1] and h = n−1/5.

ϕ n = 100 n = 200 n = 400 n = 800

-0.95 40.90 18.81 41.77 17.24 43.30 17.93 46.06 17.55

-0.9 14.43 6.32 14.83 6.54 15.74 6.22 16.82 6.37

-0.8 5.22 2.31 5.60 2.33 5.93 2.44 6.31 2.51

-0.7 3.07 1.39 3.22 1.39 3.59 1.42 3.74 1.43

-0.6 2.15 0.98 2.29 1.02 2.53 1.05 2.67 1.05

-0.5 1.71 0.77 1.83 0.79 1.90 0.78 2.10 0.81

-0.4 1.44 0.68 1.57 0.67 1.69 0.69 1.74 0.69

-0.3 1.27 0.59 1.37 0.59 1.45 0.61 1.58 0.62

-0.2 1.17 0.53 1.28 0.56 1.35 0.55 1.45 0.56

-0.1 1.11 0.51 1.18 0.53 1.31 0.55 1.39 0.54

0.0 1.10 0.51 1.19 0.52 1.29 0.54 1.36 0.52

0.1 1.09 0.53 1.23 0.53 1.30 0.54 1.35 0.52

0.2 1.18 0.54 1.25 0.56 1.34 0.56 1.47 0.59

0.3 1.27 0.60 1.33 0.58 1.50 0.62 1.55 0.61

0.4 1.40 0.63 1.54 0.66 1.65 0.69 1.79 0.67

0.5 1.71 0.79 1.77 0.80 1.94 0.81 2.07 0.80

0.6 2.13 0.99 2.31 0.98 2.43 1.00 2.68 1.05

0.7 2.94 1.32 3.19 1.41 3.45 1.40 3.70 1.46

0.8 4.78 2.26 5.33 2.33 5.88 2.39 6.25 2.44

0.9 11.02 5.33 13.17 5.93 15.03 6.42 16.13 6.40

0.95 23.64 11.81 31.43 15.23 38.30 17.12 43.67 17.27
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m(x) = 300x3(1−x)3+1 as H1. From Table 4, the overall adjustments made by

T b
n tend to disappear as n increases. From Tables 3 and 4, one can infer that, as

we have more distant m and large n, T u
n and T b

n achieve similar powers whether

the errors are correlated or not. Conclusively, our simulation recommends the

use of T b
n because it corrects the size distortion due to correlated error reasonably

well, and performs similarly to T u
n for distant H1 and large n, irrespective of error

correlatedness.

Table 5 presents the mean and standard deviation of

Rn = max
j=1,...,n

∣∣∣∣∣(nhσ̂2
r )

−1/2
n∑

i=1

K
(xj − xi

h

)
ϵ̂i

∣∣∣∣∣
for various values of ϕ and n = 100, 200, 400, and 800 when H0 is true or m(x) =

300x3(1−x)3. There, as |ϕ| increases from 0 to 0.95 (or dependence gets strong),

both mean and standard deviation of Rn clearly increase. This shows strong effect

of dependency on Rn and hence likely size distortion, as discussed in Remark 4.

Also as n increases, the mean and standard deviation of Rn tend to grow.
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Appendix

Verification of (2.4). Assume that H0 is true and let

T1n = (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kijϵiϵj ,

where i, j = 1, . . . , n,Kij = K((i − j)/nh); then, from the proof of Theorem 1

below, it suffices to check that (2.4) holds for T1n. By using (C1)−(C3) and

Lemma A.1 below

T1n = (n2h)−1
{ n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +
n∑

i=1

n∑
j=1,j ̸=i

KijEϵiϵj

}
= (n2h)−1

{ n∑
i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +K(0)

n∑
i=1

n∑
j=1,j ̸=i

Eϵiϵj
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+

n∑
i=1

n∑
j=1,j ̸=i

[Kij −K(0)]Eϵiϵj

}
= (n2h)−1

{ n∑
i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +K(0)
n∑

i=1

n∑
j=1,j ̸=i

Eϵiϵj

}
+O

(
(n3h2)−1

n∑
i=1

n∑
j=1,j ̸=i

|i− j|Eϵiϵj

)

= (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj−Eϵiϵj ]+2(nh)−1K(0)
n−1∑
i=1

Eϵ0ϵi+O((n2h2)−1)

= (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ]+2(nh)−1K(0)

n−1∑
i=1

Eϵ0ϵi+o((nh1/2)−1)

= U1n + 2(nh)−1K(0)

n−1∑
i=1

Eϵ0ϵi + o((nh1/2)−1).

Since Un1 can be shown to converges to Z in distribution (see the proof of The-
orem 1), we have

P
[nh1/2Tn

σ̂0
> zα

]
= P

(
Z ≥ zα − 2h−1/2K(0)

n−1∑
i=1

Eϵ0ϵi
σ̂0

)
+ o(1).

Verification of Remark 3. If δn = (n−1/2h−1/4)ϵ for some ϵ, then by (i) of Theo-
rem 3 we have

pn0 = P
[nh1/2Tn

σ̂0
> zα] = P

(
Z ≥ zα − nh1/2δ2nµ1

σ̂0

)

= P
(
Z ≥ zα − (nh1/2)(1−ϵ)µ1

σ̂0

)
→


1, ϵ0 < ϵ < 1,

P
(
Z ≥ zα − µ1

σ0

)
, ϵ = 1,

P (Z ≥ zα) , ϵ > 1,

(A.1)

where 0 < ϵ0 = (1 − η)/(1 − η/2) if h = n−η for some 0 < η < 1. Note that
nhδ2n → λ > 0 when ϵ = ϵ0 and that nhδ2n → ∞ when 0 < ϵ < ϵ0. Thus,
(A.1) indicates that if the local alternative is of a rate slower than n−1/2h−1/4

(or ϵ0 < ϵ < 1), the test or pn0 has asymptotic power 1 with rate sn = (nh1/2)1−ϵ.
If the local alternative is of a rate faster than n−1/2h−1/4 (or 1 < ϵ), the test has
trivial power.

In order to prove that the power rate sn is a continuous, but a nonmonotonic
function of δn, we observe that if 0 < ϵ < ϵ0, then by (ii) of Theorem 3, we have

pn0 = P
[nh1/2Tn

σ̂0
> zα

]
= P

(
Z ≥ (21/2σ2)

−1(zασ̂0(n
1/2h1/2δn)

−1 − n1/2δnµ1)
)
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= P
(
Z ≥ (21/2σ2)

−1(zασ̂0(n
1/2h1/4)(1−ϵ)h1/4 − n(1−ϵ)/2h−ϵ/4µ1)

)
→ 1.(A.2)

If ϵ = ϵ0, then by (iii) of Theorem 3, we have

pn0 = P
[nh1/2Tn

σ̂0
> zα

]
= P

(
Z ≥

(2σ2
2

λ
+ σ2

0

)−1/2
(zασ̂0 − λh−1/2µ1)

)
→ 1.

(A.3)

Here pn0 has power rate sn = h−1/2 under the local alternative rate of δn with

ϵ = ϵ0 and, in addition, it has power rate sn = n1/2(nh)−ϵ/2 under the local

alternative rate δn with 0 < ϵ < 1. Thus, (A.1)−(A.3) may be summarized in

terms of power rate sn as follows;

sn =



0 ϵ ≥ 1;

(nh1/2)(1−ϵ) = n(1−η/2)(1−ϵ), ϵ0 =
1−η

1−η/2 < ϵ < 1;

h−1/2 = n−η/2, ϵ = ϵ0;

n(1−ϵ)/2h−ϵ/4 = n1/2−(1−η/2)ϵ/2 0 < ϵ < ϵ0;

n1/2 ϵ = 0.

(A.4)

From (A.4), as ϵ decreases to ϵ0 (or the rate of the local alternative slows down),

the power rate sn slows down to h−1/2 (or ϵ = ϵ0) and then increases to n1/2.

Proof of Theorem 1. Under H0, ϵ̂i = ϵi − [g(xi, γ̂) − g(xi, γ0)], and we can

rewrite Tn as

Tn =
1

n2h

n∑
i=1

n∑
j=1,j ̸=i

ϵiϵjKij −
2

n2h

n∑
i=1

n∑
j=1,j ̸=i

[g(xi, γ̂)− g(xi, γ0)]ϵjKij

+
1

n2h

n∑
i=1

n∑
j=1,j ̸=i

[g(xi, γ̂)− g(xi, γ0)][g(xj , γ̂)− g(xj , γ0)]Kij

= T1n − 2T2n + T3n, (A.5)

where Kij = K( i−j
nh ). We prove Theorem by showing that (i) nh1/2T1n →

N(0, σ2
0) in distribution; (ii) T2n = op((nh

1/2)−1); (iii) T3n = Op(n
−1).

Proof of (i). First note that

T1n = (n2h)−1
{ n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +
n∑

i=1

n∑
j=1,j ̸=i

KijEϵiϵj

}
= (n2h)−1

{ n∑
i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +
n∑

i=1

n∑
j=1,j ̸=i

[Kij −K(0)]Eϵiϵj

}
= (n2h)−1

n∑
i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +O((n3h2)−1
n∑

i=1

n∑
j=1,j ̸=i

|i− j|Eϵiϵj)
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= (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] +O((n2h2)−1)

= (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kij [ϵiϵj − Eϵiϵj ] + o((nh1/2)−1). (A.6)

We have used K(0) = 0, (A.1)−(A.3), and Lemma A.1. Let

U1n = (n2h)−1
n∑

i=1

n∑
j=1,j ̸=i

Kijϵiϵj .

Then the proof of (i) is complete if one shows

(n2h)1/2[U1n − EU1n] → N(0, σ2
0). (A.7)

We sketch the proof because its details are established by following the proof

of Theorem 2 of Kim et al. (2014) which is a CLT for reduced U statistics

under dependence. Here U1n is basically a reduced degenerate U statistics in

its structure because K is compactly supported by (A.1) and K(0) = 0. The

reduced U statistics is defined as

Unr =

∑
1≤|i−j|≤κn

Ψ(Zi, Zj)

N(κn)
, (A.8)

where Ψ is a symmetric function, N(κn) is the number of distinct pairs satisfying

1 ≤ |i− j| ≤ κn and 1 ≤ κn ≤ n. Following the verification of (15) of Lemma 1

of Kim et al. (2014), we can obtain the variance of n2hU1n as follows.

V ar(

n∑
i=1

n∑
j=1,j ̸=i

Kijϵiϵj)

=

n∑
i=1

n∑
j=1,j ̸=i

K2
ijE(ϵ20)E(ϵ21) +

n∑
i=1

n∑
j=1,j ̸=i

n∑
k=1,k ̸=i,j

KijKikE(ϵ20)E(ϵjϵk)

+
∑

all different indices,i,j,k,l

KijKklE(ϵiϵk)E(ϵjϵl).

Refer to σ2
3 of (2) of Kim et al. (2014). Using

n∑
i=1

n∑
j=1,j ̸=i

K2
ijE(ϵ20)E(ϵ21) = 2n2h

∫
K2[E(ϵ20)]

2 + o(n2h),

n∑
i=1

n∑
j=1,j ̸=i

n∑
k=1,k ̸=i,j

KijKikE(ϵ20)E(ϵjϵk)
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= 4n2h

∫
K2E(ϵ20)

∑
j

E(ϵ0ϵj) + o(n2h),

∑
all different indices,i,j,k,l

KijKklE(ϵiϵk)E(ϵjϵl)

= 8n2h

∫
K2

∑
i

E(ϵ0ϵi)
∑
j

E(ϵ0ϵj) + o(n2h),

we have

V ar
( n∑

i=1

n∑
j=1,j ̸=i

Kijϵiϵj

)
=n2h

∫
K2(u)du

[
(E(ϵ)2)2+(

∞∑
j=−∞

E(ϵ0ϵj))
2+o(n2h)

]
.

For establishing a CLT for nh1/2T1n, one can follow the proof of Theorem 2 of

Kim et al. (2014). Indeed, since

E(

n∑
i=1

n∑
j=1,j ̸=i

Kijϵiϵj)
r =

∑
i1

∑
i2

· · ·
∑
i2r

Ki1i2 · · ·Ki2r−1i2rE(ϵi1ϵi2 · · · ϵi2r−1ϵi2r),

the proof of Theorem 2 of Kim et al. (2014) applies in a straightforward fashion,

and the proof of (i) is complete.

Proof of (ii). Using g(xt, γ̂)−g(xt, γ0) = g(1)(xt, γ0)(γ̂−γ0)+1/2g(2)(xt, γ̃)(γ̂−
γ0)

2, where γ̃ is between γ̂ and γ0, we get

T2n=
1

n2h

(
(γ̂ − γ0)

∑∑
t ̸=s

ϵsg
(1)(xt, γ0)Kts + (γ̂ − γ0)

2
∑∑

t ̸=s

ϵsg
(2)(xt, γ̃)

Kts

2

)
.

Then it is not hard to check that, under the conditions of the Theorem,∑∑
t ̸=s

ϵsg
(1)(xt, γ0)Kts = Op(n

3/2h) and
∑∑

t̸=s

ϵsg
(2)(xt, γ̃)Kts = Op(n

3/2h).

(A.9)

Also refer to Theorem 2 of Kim, Luo, and Ha (2012). Thus

1

n2h
(γ̂ − γ0)

∑∑
t ̸=s

ϵsg
(1)(xt, γ0)Kts = Op(n

−1) = op((nh
1/2)−1)

1

n2h
(γ̂ − γ0)

2
∑∑

t ̸=s

ϵsg
(2)(xt, γ̃)Kts = Op(n

−1) = op((nh
1/2)−1).

We have also used (γ̂ − γ0) = Op(n
−1/2) and H0. This completes the proof of

(ii).
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Proof of (iii). This follows from the Mean Value Theorem, (A4)(i), and the fact

that γ̂ − γ0 = Op(n
−1/2). It is trivial to check that

∑∑
s ̸=tMg(xt)Mg(xs)Kst =

O(n2h). This completes the proof of (iii).

Proof of Theorem 2. Since, under H1, ϵ̂i = θi − [g(xi, γ̂) − g(xi, γ∗)] where

θi = Yi − g(xi, γ∗) = ηi +m(xi)− g(xi, γ∗), we can rewrite Tn as

Tn =
1

n2h

∑∑
i ̸=j

θiθjKij −
2

n2h

∑∑
i̸=j

[g(xi, γ̂)− g(xi, γ∗)]θiKij

+
1

n2h

∑∑
i̸=j

[g(xi, γ̂)− g(xi, γ∗)][g(xj , γ̂)− g(xj , γ∗)]Kij

= T1n − 2T2n + T3n. (A.10)

Now, T1n may be rewritten as T1n = T11n + 2T12n + T13n where

T11n =
1

n2h

∑∑
i̸=j

Kij(θi − Eθi)(θj − Eθj),

T12n =
1

n2h

∑∑
i̸=j

Kij(θi − Eθi)Eθj ,

T13n =
1

n2h

∑∑
i̸=j

KijEθiEθj ,

and Eθi = m(xi)− g(xi, γ∗). Now one can show that under the conditions of the

Theorem

T11n = Op(n
−1h−1/2) = op(n

−1/2), (A.11)

T12n =
1

n

∑
i

ηi(m(xi)− g(xi, γ∗)) + op(n
−1/2), (A.12)

T13n =

∫
[m(x)− g(x, γ∗)]

2dx+ o(1), (A.13)

by using Theorem 2 of Kim, Luo, and Ha (2012). Application of the CLT for

triangular array of random variables (see Lemma A.2 of Kim et al. (2014)) yields

n1/2(σ1)
−1T12n → N(0, 1) (A.14)

in distribution where

σ2
1 =

∞∑
i=−∞

Cov[(Y0 −m(x0))(g(x0, γ̃)−m(x0)), (Yi −m(xi))(g(xi, γ̃)−m(xi))].

From the above results we have n1/2(2σ1)
−1T1n → N(µ, 1) where µ =

∫
[m(x)−

g(x, γ∗)]
2dx. Using γ̂ − γ∗ = op(1) under H1, it is easy to see that T2n =
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op(n
−1/2) and T3n = op(n

−1/2), which proves n1/2(2σ1)
−1Tn → N(µ, 1) where

µ =
∫
[m(x)− g(x, γ∗)]

2dx.

Proof of Theorem 3. (i) If nhδ2n → 0, then nh1/2T12n = Op(n
1/2h1/2δn) =

op(1) and

nh1/2T13n = nh1/2
∫

[m(x)− g(x, γ∗)]
2dx+ o(1) = nh1/2δ2nµ1 + o(1).

Application of Theorem 2 of Kim, Luo, and Ha (2012) yields nh1/2T11n →
N(0, σ2

0). Thus under H1n we have nh1/2(Tn − δ2nµ1) → N(0, σ2
0) in distribu-

tion.

(ii) If nhδ2n → ∞, then n1/2δ−1
n T11n = op(1) since T11n = Op(n

−1h−1/2). Appli-

cation of CLT for triangular array of random variables (see Lemma A.2 of Kim

et al. (2014)) to T12n yields n1/2δ−1
n T12n → N(0, σ2

2) where

σ2
2 =

∞∑
i=−∞

Cov[(Y0 −m(x0))l(x0), (Yi −m(xi))l(xi)].

Then since

n1/2δ−1
n T13n = n1/2δ−1

n [

∫
[m(x)− g(x, γ∗)]

2dx+ o(1)],

under H1n we have n1/2δ−1
n (Tn − δ2nµ1) → N(0, 2σ2

2) in distribution.

(iii) If nhδ2n → λ > 0, then nh1/2T11n → N(0, σ2
0) and nh1/2T12n → N(0, σ2

2/λ).

It is then easy to check that, under the conditions the of Theorem, nh1/2T13n =

λh−1/2[µ1 + o(1)]. Thus under H1n we have nh1/2(Tn − λ(nh)−1µ1) → N(0, σ2
0 +

2σ2
2/λ) in distribution. This can be proved by Cramer-Wold device, as in Lemma

6 of Kim, Luo, and Kim (2011).

Lemma A.1. Let ζi ∈ Mti
si be α-mixing random variables, where s1 < t1 <

s2 < t2 < · · · < tm and si+1 − ti ≥ τ for all i. Assume that, for a positive integer

ℓ, ∥ ζi ∥pi= (E|ηi|pi)1/pi < ∞, for some pi > 1 with q =
∑m

i=1 p
−1
i < 1. Then∣∣∣E m∏

i=1

ζi −
m∏
i=1

E ζi

∣∣∣ ≤ 10(m− 1)α(τ)1−q
m∏
i=1

∥ ζi ∥pi .

For complex valued random variables, it holds that∣∣∣E m∏
i=1

ζi −
m∏
i=1

E ζi

∣∣∣ ≤ 40(m− 1)α(τ)1−q
m∏
i=1

∥ ζi ∥pi .

Proof of Lemma A.1. The proof can be found at Theorem 7.4 of Roussas and

Ioannides (1987).
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