Web-Based Supporting Materials for "Qualitative evaluation of associations by the transitivity of the association signs"

Zhichao Jiang ${ }^{1}$, Peng Ding ${ }^{2}$ and Zhi Geng ${ }^{1}$
${ }^{1}$ Peking University and ${ }^{2}$ Harvard University

In Appendix A, we first introduce a lemma, and then give the proofs of the Theorems and Corollaries. In Appendix B, we present the three examples stated in Section 3.1 .

Appendix A: Proofs of the Theorems and Corollaries

Lemma 1. If $h(y, a, r)$ is non-decreasing in y and in a, and $S(y \mid a, r)=P(Y>$ $y \mid A=a, R=r)$ is non-decreasing in a for all y, then $E\{h(Y, A, R) \mid A=a, R=r\}$ is non-decreasing in a.
Proof. A proof is given by VanderWeele and Robins (2009, page 710, line 7). As suggested by a reviewer, we give a proof for discrete variables. Suppose $a \geq a^{\prime}$
and Y is discrete, taking values $-\infty=y_{0}<y_{1}<y_{2}<\ldots<y_{k}$, then we have

$$
\begin{aligned}
& E\{h(Y, A, R) \mid A=a, R=r\}-E\left\{h(Y, A, R) \mid A=a^{\prime}, R=r\right\} \\
= & \sum_{i=1}^{k} h\left(y_{i}, a, r\right) P\left(Y=y_{i} \mid A=a, R=r\right)-\sum_{i=1}^{k} h\left(y_{i}, a^{\prime}, r\right) P\left(Y=y_{i} \mid A=a^{\prime}, R=r\right) \\
= & \sum_{i=1}^{k} h\left(y_{i}, a, r\right)\left\{S\left(y_{i-1} \mid a, r\right)-S\left(y_{i} \mid a, r\right)\right\}-\sum_{i=1}^{k} h\left(y_{i}, a^{\prime}, r\right)\left\{S\left(y_{i-1} \mid a^{\prime}, r\right)-S\left(y_{i} \mid a^{\prime}, r\right)\right\} \\
= & \sum_{i=1}^{k} h\left(y_{i}, a, r\right)\left\{S\left(y_{i-1} \mid a, r\right)-S\left(y_{i-1} \mid a^{\prime}, r\right)\right\}+\sum_{i=1}^{k}\left\{h\left(y_{i}, a, r\right)-h\left(y_{i}, a^{\prime}, r\right)\right\} S\left(y_{i-1} \mid a^{\prime}, r\right) \\
& -\sum_{i=1}^{k} h\left(y_{i}, a, r\right)\left\{S\left(y_{i} \mid a, r\right)-S\left(y_{i} \mid a^{\prime}, r\right)\right\}-\sum_{i=1}^{k}\left\{h\left(y_{i}, a, r\right)-h\left(y_{i}, a^{\prime}, r\right)\right\} S\left(y_{i} \mid a^{\prime}, r\right) \\
= & \sum_{i=2}^{k}\left\{h\left(y_{i}, a, r\right)-h\left(y_{i-1}, a, r\right)\right\}\left\{S\left(y_{i-1} \mid a, r\right)-S\left(y_{i-1} \mid a^{\prime}, r\right)\right\} \\
& +\sum_{i=1}^{k}\left\{h\left(y_{i}, a, r\right)-h\left(y_{i}, a^{\prime}, r\right)\right\}\left\{S\left(y_{i-1} \mid a^{\prime}, r\right)-S\left(y_{i} \mid a^{\prime}, r\right)\right\} .
\end{aligned}
$$

The final expression is non-negative since all differences in brackets are nonnegative for $a \geq a^{\prime}$.

Proof of Theorem 1. We need only to prove that $\partial \ln f(z \mid x) / \partial x \geq \partial \ln f\left(z^{\prime} \mid x\right) / \partial x$ for all $z>z^{\prime}$. When X is continuous, we deduce from $X \Perp Z \mid Y$ that

$$
\begin{align*}
\frac{\partial \ln f(z \mid x)}{\partial x} & =\frac{\partial f(z \mid x)}{\partial x} / f(z \mid x)=\frac{\partial}{\partial x}\left\{\int_{-\infty}^{+\infty} f(z, y \mid x) d y\right\} / f(z \mid x) \\
& =\int_{-\infty}^{+\infty} \frac{\partial f(y \mid x)}{\partial x} \frac{f(z \mid y)}{f(z \mid x)} d y=\int_{-\infty}^{+\infty} \frac{\partial \ln f(y \mid x)}{\partial x} \frac{f(z \mid y) f(y \mid x)}{f(z \mid x)} d y \\
& =\int_{-\infty}^{+\infty} \frac{\partial \ln f(y \mid x)}{\partial x} f(y \mid x, z) d y \\
& =E\left\{\left.\frac{\partial \ln f(Y \mid x)}{\partial x} \right\rvert\, X=x, Z=z\right\} . \tag{1}
\end{align*}
$$

From $\partial^{2} \ln f(y \mid x) / \partial y \partial x \geq 0$, we know that $\partial \ln f(y \mid x) / \partial x$ is non-decreasing in y. Again from $X \Perp Z \mid Y$, we have $\ln f(x, y, z)=\ln f(y)+\ln f(z \mid y)+\ln f(x \mid y)$.
By condition (2) in Theorem 1, we obtain

$$
\frac{\partial^{2} \ln f(y, z \mid x)}{\partial y \partial z}=\frac{\partial^{2} \ln f(z \mid y, x)}{\partial y \partial z}=\frac{\partial^{2} \ln f(z \mid y)}{\partial y \partial z}=\frac{\partial^{2} \ln f(y, z)}{\partial y \partial z} \geq 0 .
$$

From Property 1, we get $\partial F(y \mid z, x) / \partial z \leq 0$, and thus $P(Y>y \mid X=x, Z=z)$ is non-decreasing in z for all y. Applying Lemma 1 to equation (11), we conclude that $\partial \ln f(z \mid x) / \partial x$ is non-decreasing in z.

When X is discrete, we need only to prove that, for all $z>z^{\prime}$,

$$
\frac{f(z \mid x=1)}{f(z \mid x=0)} \geq \frac{f\left(z^{\prime} \mid x=1\right)}{f\left(z^{\prime} \mid x=0\right)},
$$

or, equivalently,

$$
\frac{f(z \mid x=1)-f(z \mid x=0)}{f(z \mid x=0)} \geq \frac{f\left(z^{\prime} \mid x=1\right)-f\left(z^{\prime} \mid x=0\right)}{f\left(z^{\prime} \mid x=0\right)} .
$$

We compute that

$$
\begin{aligned}
\frac{f(z \mid x=1)-f(z \mid x=0)}{f(z \mid x=0)} & =\int_{-\infty}^{+\infty} \frac{f(z \mid y)\{f(y \mid x=1)-f(y \mid x=0)\}}{f(z \mid x=0)} d y \\
& =\int_{-\infty}^{+\infty} \frac{f(y \mid x=1)-f(y \mid x=0)}{f(y \mid x=0)} \frac{f(z \mid y) f(y \mid x=0)}{f(z \mid x=0)} d y \\
& =\int_{-\infty}^{+\infty} \frac{f(y \mid x=1)-f(y \mid x=0)}{f(y \mid x=0)} f(y \mid z, x=0) d y \\
& =E\left\{\left.\frac{f(Y \mid x=1)-f(Y \mid x=0)}{f(Y \mid x=0)} \right\rvert\, X=0, Z=z\right\} .
\end{aligned}
$$

From conditions (1) and (2) in Theorem 1, we have that $\{f(y \mid x=1)-f(y \mid x=$ $0)\} / f(y \mid x=0)$ is non-decreasing in y and that $P(Y>y \mid X=x, Z=z)$ is nondecreasing in z for all y. Thus by Lemma 1 , we conclude that $f(z \mid x=1) / f(z \mid x=$ $0) \geq f\left(z^{\prime} \mid x=1\right) / f\left(z^{\prime} \mid x=0\right)$.

Proof of Theorem 2. By $X \Perp Z \mid Y$, we have

$$
F(z \mid x)=\int_{-\infty}^{+\infty} F(z \mid y) F(d y \mid x)=E\{F(z \mid Y) \mid X=x\}
$$

From conditions (1) and (2) in Theorem 2, $F(z \mid y)$ is non-increasing in y, and $P(Y>y \mid X=x)$ is non-decreasing in x for all y. By Lemma $1, F(z \mid x)$ is nonincreasing in x.

Proof of Theorem 4. For the exponential family, we have that $\partial^{2} \ln f(x, y) / \partial x \partial y=$ $\left(\partial \theta_{x} / \partial x\right) / a(\phi)$ and $\partial E(Y \mid x) / \partial x=\partial b^{\prime}\left(\theta_{x}\right) / \partial x=b^{\prime \prime}\left(\theta_{x}\right)\left(\partial \theta_{x} / \partial x\right)=\operatorname{var}(Y \mid x) \times$
$\left(\partial \theta_{x} / \partial x\right) / a(\phi)$. Thus we obtain that $\partial^{2} \ln f(x, y) / \partial x \partial y$ and $\partial E(Y \mid x) / \partial x$ have the same sign, which implies the conclusion.

Proof of Corollary 2. The implication relationships from the signs of association measures between X and Y to the signs of association measures between X and Z can be deduced from Theorems 1 to 4 . Below we show three implication relationships from the signs of measures between X and Z to the signs of measures between X and Y. From result (1) of Theorem 4, we need to show that $E(Z \mid x)$ increasing in x implies $E(Y \mid x)$ increasing in x. By $X \Perp Z \mid Y$, we have from the proof of Theorem 3 that

$$
E(Z \mid x)-E\left(Z \mid x^{\prime}\right)=-\int_{-\infty}^{+\infty} \frac{\partial E(Z \mid y)}{\partial y}\left\{F(y \mid x)-F\left(y \mid x^{\prime}\right)\right\} d y
$$

We use proof by contradiction; suppose that there exists $x>x^{\prime}$ such that $E(Y \mid x)<E\left(Y \mid x^{\prime}\right)$. Then from the property of the exponential family in Theorem 4, we have $F(y \mid x)>F\left(y \mid x^{\prime}\right)$ for all y. Because $\partial E(Z \mid y) / \partial y$ is strictly positive for a non-zero measure set, we get that $E(Z \mid x)-E\left(Z \mid x^{\prime}\right)<0$ from Theorem 3, which contradicts the condition of a non-negative association between X and Z.

Results (2) and (3) of Corollary 2 can be obtained immediately from the above result (1) and Theorem 4.

Proof of Theorem 5. We need only to prove that $\partial \ln f(z \mid x) / \partial x$ is non-decreasing in z. When X is continuous, for $z>z^{\prime}$, we have

$$
\begin{aligned}
& \frac{\partial \ln f(z \mid x)}{\partial x}=\frac{\partial f(z \mid x)}{\partial x} / f(z \mid x)=\left\{\frac{\partial}{\partial x} \int_{-\infty}^{+\infty} f(z \mid y, x) f(y \mid x) d y\right\} / f(z \mid x) \\
= & \int_{-\infty}^{+\infty}\left\{\frac{\partial f(z \mid y, x)}{\partial x} \cdot \frac{f(y \mid x)}{f(z \mid x)}+\frac{\partial f(y \mid x)}{\partial x} \cdot \frac{f(z \mid y, x)}{f(z \mid x)}\right\} d y \\
= & \int_{-\infty}^{+\infty}\left\{\frac{\partial f(z \mid y, x)}{\partial x} / f(z \mid y, x)+\frac{\partial f(y \mid x)}{\partial x} / f(y \mid x)\right\} \cdot \frac{f(y \mid x) f(z \mid y, x)}{f(z \mid x)} d y \\
= & \int_{-\infty}^{+\infty}\left\{\frac{\partial \ln f(z \mid y, x)}{\partial x}+\frac{\partial \ln f(y \mid x)}{\partial x}\right\} f(y \mid x, z) d y . \\
= & E\left\{\left.\frac{\partial \ln f(z \mid Y, x)}{\partial x} \right\rvert\, Z=z, X=x\right\}+E\left\{\left.\frac{\partial \ln f(Y \mid x)}{\partial x} \right\rvert\, Z=z, X=x\right\} .
\end{aligned}
$$

From the assumption and condition (3) in Theorem $5, \partial \ln f(z \mid Y, x) / \partial x$ is nondecreasing in y and z; from condition (1) in Theorem $5, \partial \ln f(Y \mid x) / \partial x$ is non-
decreasing in y; and from condition (2) in Theorem 5, $P(Y>y \mid X=x, Z=z)$ is non-decreasing in z for all y. By Lemma 1, we have that

$$
E\left\{\left.\frac{\partial \ln f(z \mid Y, x)}{\partial x} \right\rvert\, Z=z, X=x\right\}+E\left\{\left.\frac{\partial \ln f(Y \mid x)}{\partial x} \right\rvert\, Z=z, X=x\right\}
$$

is non-decreasing in z.
When X is discrete, we need only to prove that, for $z>z^{\prime}$,

$$
\frac{f(z \mid x=1)}{f(z \mid x=0)} \geq \frac{f\left(z^{\prime} \mid x=1\right)}{f\left(z^{\prime} \mid x=0\right)}
$$

We have that

$$
\begin{aligned}
& \frac{f(z \mid x=1)}{f(z \mid x=0)}=\int_{-\infty}^{+\infty} \frac{f(z \mid y, x=1) f(y \mid x=1)}{f(z \mid x=0)} d y \\
= & \int_{-\infty}^{+\infty} \frac{f(z \mid y, x=1)}{f(z \mid y, x=0)} \frac{f(y \mid x=1)}{f(y \mid x=0)} \frac{f(z \mid y, x=0) f(y \mid x=0)}{f(z \mid x=0)} d y \\
= & \int_{-\infty}^{+\infty} \frac{f(z \mid y, x=1)}{f(z \mid y, x=0)} \frac{f(y \mid x=1)}{f(y \mid x=0)} f(y \mid z, x=0) d y \\
= & E\left\{\left.\frac{f(z \mid Y, x=1)}{f(z \mid Y, x=0)} \frac{f(Y \mid x=1)}{f(Y \mid x=0)} \right\rvert\, X=0, Z=z\right\} .
\end{aligned}
$$

From the assumption and condition (1) in Theorem 5, $\{f(z \mid y, x=1) f(y \mid x=$ 1) $\} /\{f(z \mid y, x=0) f(y \mid x=0)\}$ is non-decreasing in y and z. From condition (2) in Theorem 5, $P(Y>y \mid X=0, Z=z)$ is non-decreasing in z for all y. Therefore, we have $f(z \mid x=1) / f(z \mid x=0) \geq f\left(z^{\prime} \mid x=1\right) / f\left(z^{\prime} \mid x=0\right)$.

Proof of Theorem 6. For $F(z \mid x)=E\{F(z \mid Y, x) \mid X=x\}$, we have from the assumption and condition (2) in Theorem 6 that $F(z \mid y, x)$ is non-increasing in y and x. From condition (1) in Theorem 6, $P(Y>y \mid X=x)$ is non-decreasing in x for all y. Thus we have that $\partial F(z \mid x) / \partial x \leq 0$.

Proof of Theorem 7. Since $E(Z \mid x)=E\{E(Z \mid Y, x) \mid X=x\}$, we prove that $\partial E(z \mid x) / \partial x \leq 0$ using a similar argument as in the proof of Theorem 5.

Proof of Theorem 8. From Theorem 7, we have $\partial E(Z \mid x) / \partial x \geq 0, \forall x$, and then from Theorem 4, we have $\partial^{2} \ln f(x, z) / \partial x \partial z \geq 0, \forall x, z$.

Proof of Corollary 3. We prove this only for Theorem 5. Obviously, the assumption $\partial^{2} \ln f(x, z \mid y) / \partial x \partial z \geq 0$ can be evaluated by $f(x, z \mid y)$. Condition (1) in Theorem 5 can be evaluated by $f(x \mid y)$, which can be obtained after marginalizing $f(x, z \mid y)$ over z. For conditions (2) and (3), we can rewrite them as $\partial^{2} \ln f(z, x \mid y) / \partial y \partial z \geq 0$ and $\partial^{2} \ln f(x, z \mid y) / \partial x \partial y \geq 0$ respectively. Therefore, the assumption and conditions can all be evaluated by $f(x, z \mid y)$.

Proof of Corollary 4. From the linear model, we have $E(Z \mid x)=\beta_{0}+\beta_{1} x+$ $\beta_{2} E(Y \mid x)$ and $\partial E(Z \mid x) / \partial x=\beta_{1}+\beta_{2} \partial E(Y \mid x) / \partial x=\beta_{1}+\beta_{2} \beta_{4}$. Thus, we have $\partial E(Z \mid x) / \partial x \geq 0$ if β_{1}, β_{2} and β_{4} are non-negative.

Suppose $a=-\beta_{2} / \beta_{1}$, and we need only to prove the result for the case that $\beta_{2}<0$ but $\partial E(Z \mid Y=y) / \partial y \geq 0$. We use proof by contradiction, and suppose that $\partial E(Z \mid x) / \partial x<0$ for some x. Then we have $\partial E(Y \mid x) / \partial x=\beta_{4}>-\beta_{1} / \beta_{2}=$ $1 / a$. Since $\partial E(Z \mid y) / \partial y=\beta_{1} \partial E(X \mid y) / \partial x+\beta_{2} \geq 0$, we have $\partial E(X \mid Y=y) / \partial y \geq$ $-\beta_{2} / \beta_{1}=a$. From the linear model of Y, we have $\partial E\left(Y-\beta_{4} X \mid X=x\right) / \partial x=0$. We deduce that

$$
\begin{equation*}
\operatorname{cov}(X, Y)=\beta_{4} \operatorname{var}(X)>\operatorname{var}(X) / a \tag{2}
\end{equation*}
$$

Define $b=\inf _{y}\{\partial E(X \mid Y=y) / \partial y\}$. We have $b \geq a$ and $\partial E(X-b Y \mid Y=$ y) $/ \partial y \geq b-b=0$. From Property 1, we get $\operatorname{cov}(X-b Y, Y) \geq 0$. Thus we obtain

$$
\begin{equation*}
\operatorname{cov}(X, Y)=\operatorname{cov}(X-b Y, Y)+b \operatorname{var}(Y) \geq b \operatorname{var}(Y) \geq a \operatorname{var}(Y) \tag{3}
\end{equation*}
$$

From equations (2) and (3), we have $\operatorname{cov}(X, Y)>\{\operatorname{var}(X) \operatorname{var}(Y)\}^{1 / 2}$, which is impossible since the correlation coefficient cannot be larger than 1.

Proof of Corollary 5. We first prove results (2) and (3). Since $F(z \mid x)=$ $E\{F(z \mid Y, x) \mid X=x\}=E_{Y}\{F(z \mid Y, x)\}$, and $E(Z \mid x)=E\{E(Z \mid Y, x) \mid X=x\}=$ $E_{Y}\{E(Z \mid Y, x)\}$, we only need $\partial F(z \mid y, x) / \partial x \leq 0, \forall x, y, z$ for Theorem 6 and $\partial E(Z \mid y, x) / \partial x \geq 0, \forall x, y$ for Theorem 7. For result (1), according to Theorem 4, when X or Z is binary, the density association is equivalent to the expectation association, thus we need only $\partial^{2} f(x, z \mid y) / \partial x \partial z \geq 0, \forall x, y, z$.

Appendix B: Three Examples

In Example 1, we illustrate that the expectation association of Y on X cannot
replace condition (1) of Theorem 3.
Example 1. We generate data under conditional independence: $X \sim \operatorname{Bernoulli}(1 / 2)$, $\varepsilon \sim \operatorname{Bernoulli}(p), Y=X+2 \varepsilon(1-X), Z=I(Y=2)$, where $p<1 / 2$ and $I(\cdot)$ is the indicator function. We have that $E(Y \mid X=1)-E(Y \mid X=0)=1-2 p \geq 0$, $E(Z \mid Y=2)-E(Z \mid Y=1)=1-0 \geq 0$ and $E(Z \mid Y=1)-E(Z \mid Y=0)=0$, but we calculate that $E(Z \mid x=1)-E(Z \mid x=0)=0-p \leq 0$.

In Example 1, we see that Z does not follow a linear model given Y, and thus we cannot infer the transitivity of association signs based on Corollary 1.

In Example 2, we illustrate that under $X \Perp Z \mid Y$, a non-negative expectation association of Y on X and even the most stringent non-negative density association between Y and Z do not imply a non-negative expectation association of Z on X.

Example 2. Assume $X \Perp Z \mid Y$ with the distributions $P(y \mid x)$ and $P(z \mid y)$ given in Table 3. Then we have $E(Y \mid X=1)-E(Y \mid X=0)=0.2$ and

$$
\ln \frac{P(Y=y, Z=0) P(Y=y+1, Z=1)}{P(Y=y, Z=1) P(Y=y+1, Z=0)} \geq 0
$$

for $y=0$ and 1 , but $E(Z \mid X=1)-E(Z \mid X=0)=-0.32$.

Table 3: Distributions $P(y \mid x)$ and $P(z \mid y)$ for Example 2

(a)			
	$Y=0$	$Y=1$	$Y=2$
$X=0$	0.6	0	0.4
$X=1$	0	1	0

In Example 3, we illustrate that under $X \Perp Z \mid Y$, a non-negative correlation of X and $Y(Y$ and $Z)$ and another non-negative association measure between Y and $Z(X$ and $Y)$ do not imply a non-negative correlation between X and Z.

Example 3. Assume $X \Perp Z \mid Y$ with the distributions $P(y \mid x)$ and $P(z \mid y)$ given in Table 4. Then we have $\operatorname{cov}(Y, Z)=0.0017>0$ and

$$
\ln \frac{P(Y=y, X=0) P(Y=y+1, X=1)}{P(Y=y, X=1) P(Y=y+1, X=0)} \geq 0
$$

for $y=0$ and 1, but $E(Z \mid X=1)-E(Z \mid X=0)=-0.005$.

Table 4: Distributions $P(y \mid x)$ and $P(z \mid y)$ for Example 3

(a)			
	$Y=0$	$Y=1$	$Y=2$
$X=0$	0.1	0.1	0.8
$X=1$	0.05	0.05	0.9

(b)			
	$Y=0$	$Y=1$	$Y=2$
$Z=0$	0.3	0	0.2
$Z=1$	0.7	1	0.8

School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail: (zhichaojiang@pku.edu.cn)
Department of Statistics, Harvard University, Cambridge 02138, U.S.A.
E-mail: (pengding@fas.harvard.edu)
Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail: (zhigeng@pku.edu.cn)

