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In Appendix A, we first introduce a lemma, and then give the proofs of the

Theorems and Corollaries. In Appendix B, we present the three examples stated

in Section 3.1 .

Appendix A: Proofs of the Theorems and Corollaries

Lemma 1. If h(y, a, r) is non-decreasing in y and in a, and S(y|a, r) = P (Y >

y|A = a,R = r) is non-decreasing in a for all y, then E{h(Y,A,R)|A = a,R = r}
is non-decreasing in a.

Proof. A proof is given by VanderWeele and Robins (2009, page 710, line 7). As

suggested by a reviewer, we give a proof for discrete variables. Suppose a ≥ a′



2

and Y is discrete, taking values −∞ = y0 < y1 < y2 < . . . < yk, then we have

E{h(Y,A,R)|A = a,R = r} − E{h(Y,A,R)|A = a′, R = r}

=
k∑

i=1

h(yi, a, r)P (Y = yi|A = a,R = r)−
k∑

i=1

h(yi, a
′, r)P (Y = yi|A = a′, R = r)

=
k∑

i=1

h(yi, a, r){S(yi−1|a, r)− S(yi|a, r)} −
k∑

i=1

h(yi, a
′, r){S(yi−1|a′, r)− S(yi|a′, r)}

=

k∑
i=1

h(yi, a, r){S(yi−1|a, r)− S(yi−1|a′, r)}+

k∑
i=1

{h(yi, a, r)− h(yi, a
′, r)}S(yi−1|a′, r)

−
k∑

i=1

h(yi, a, r){S(yi|a, r)− S(yi|a′, r)} −
k∑

i=1

{h(yi, a, r)− h(yi, a
′, r)}S(yi|a′, r)

=
k∑

i=2

{h(yi, a, r)− h(yi−1, a, r)}{S(yi−1|a, r)− S(yi−1|a′, r)}

+
k∑

i=1

{h(yi, a, r)− h(yi, a
′, r)}{S(yi−1|a′, r)− S(yi|a′, r)}.

The final expression is non-negative since all differences in brackets are non-

negative for a ≥ a′.

Proof of Theorem 1. We need only to prove that ∂ ln f(z|x)/∂x ≥ ∂ ln f(z′|x)/∂x

for all z > z′. When X is continuous, we deduce from X Z|Y that

∂ ln f(z|x)

∂x
=
∂f(z|x)

∂x
/f(z|x) =

∂

∂x

{∫ +∞

−∞
f(z, y|x)dy

}
/f(z|x)

=

∫ +∞

−∞

∂f(y|x)

∂x

f(z|y)

f(z|x)
dy =

∫ +∞

−∞

∂ ln f(y|x)

∂x

f(z|y)f(y|x)

f(z|x)
dy

=

∫ +∞

−∞

∂ ln f(y|x)

∂x
f(y|x, z)dy

= E

{
∂ ln f(Y |x)

∂x
|X = x, Z = z

}
. (1)

From ∂2 ln f(y|x)/∂y∂x ≥ 0, we know that ∂ ln f(y|x)/∂x is non-decreasing

in y. Again from X Z|Y , we have ln f(x, y, z) = ln f(y) + ln f(z|y) + ln f(x|y).

By condition (2) in Theorem 1, we obtain

∂2 ln f(y, z|x)

∂y∂z
=
∂2 ln f(z|y, x)

∂y∂z
=
∂2 ln f(z|y)

∂y∂z
=
∂2 ln f(y, z)

∂y∂z
≥ 0.
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From Property 1, we get ∂F (y|z, x)/∂z ≤ 0, and thus P (Y > y|X = x, Z = z)

is non-decreasing in z for all y. Applying Lemma 1 to equation (1), we conclude

that ∂ ln f(z|x)/∂x is non-decreasing in z.

When X is discrete, we need only to prove that, for all z > z′,

f(z|x = 1)

f(z|x = 0)
≥ f(z′|x = 1)

f(z′|x = 0)
,

or, equivalently,

f(z|x = 1)− f(z|x = 0)

f(z|x = 0)
≥ f(z′|x = 1)− f(z′|x = 0)

f(z′|x = 0)
.

We compute that

f(z|x = 1)− f(z|x = 0)

f(z|x = 0)
=

∫ +∞

−∞

f(z|y) {f(y|x = 1)− f(y|x = 0)}
f(z|x = 0)

dy

=

∫ +∞

−∞

f(y|x = 1)− f(y|x = 0)

f(y|x = 0)

f(z|y)f(y|x = 0)

f(z|x = 0)
dy

=

∫ +∞

−∞

f(y|x = 1)− f(y|x = 0)

f(y|x = 0)
f(y|z, x = 0)dy

= E

{
f(Y |x = 1)− f(Y |x = 0)

f(Y |x = 0)
|X = 0, Z = z

}
.

From conditions (1) and (2) in Theorem 1, we have that {f(y|x = 1)− f(y|x =

0)}/f(y|x = 0) is non-decreasing in y and that P (Y > y|X = x, Z = z) is non-

decreasing in z for all y. Thus by Lemma 1, we conclude that f(z|x = 1)/f(z|x =

0) ≥ f(z′|x = 1)/f(z′|x = 0).

Proof of Theorem 2. By X Z|Y , we have

F (z|x) =

∫ +∞

−∞
F (z|y)F (dy|x) = E {F (z|Y )|X = x} .

From conditions (1) and (2) in Theorem 2, F (z|y) is non-increasing in y, and

P (Y > y|X = x) is non-decreasing in x for all y. By Lemma 1, F (z|x) is non-

increasing in x.

Proof of Theorem 4. For the exponential family, we have that ∂2 ln f(x, y)/∂x∂y =

(∂θx/∂x)/a(φ) and ∂E(Y |x)/∂x = ∂b′(θx)/∂x = b′′(θx)(∂θx/∂x) = var(Y |x)×
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(∂θx/∂x)/a(φ). Thus we obtain that ∂2 ln f(x, y)/∂x∂y and ∂E(Y |x)/∂x have

the same sign, which implies the conclusion.

Proof of Corollary 2. The implication relationships from the signs of association

measures between X and Y to the signs of association measures between X

and Z can be deduced from Theorems 1 to 4. Below we show three implication

relationships from the signs of measures betweenX and Z to the signs of measures

between X and Y . From result (1) of Theorem 4, we need to show that E(Z|x)

increasing in x implies E(Y |x) increasing in x. By X Z|Y , we have from the

proof of Theorem 3 that

E(Z|x)− E(Z|x′) = −
∫ +∞

−∞

∂E(Z|y)

∂y
{F (y|x)− F (y|x′)}dy.

We use proof by contradiction; suppose that there exists x > x′ such that

E(Y |x) < E(Y |x′). Then from the property of the exponential family in Theorem

4, we have F (y|x) > F (y|x′) for all y. Because ∂E(Z|y)/∂y is strictly positive

for a non-zero measure set, we get that E(Z|x)− E(Z|x′) < 0 from Theorem 3,

which contradicts the condition of a non-negative association between X and Z.

Results (2) and (3) of Corollary 2 can be obtained immediately from the

above result (1) and Theorem 4.

Proof of Theorem 5. We need only to prove that ∂ ln f(z|x)/∂x is non-decreasing

in z. When X is continuous, for z > z′, we have

∂ ln f(z|x)

∂x
=
∂f(z|x)

∂x
/f(z|x) =

{
∂

∂x

∫ +∞

−∞
f(z|y, x)f(y|x)dy

}
/f(z|x)

=

∫ +∞

−∞

{
∂f(z|y, x)

∂x
· f(y|x)

f(z|x)
+
∂f(y|x)

∂x
· f(z|y, x)

f(z|x)

}
dy

=

∫ +∞

−∞

{
∂f(z|y, x)

∂x
/f(z|y, x) +

∂f(y|x)

∂x
/f(y|x)

}
· f(y|x)f(z|y, x)

f(z|x)
dy

=

∫ +∞

−∞

{
∂ ln f(z|y, x)

∂x
+
∂ ln f(y|x)

∂x

}
f(y|x, z)dy.

= E

{
∂ ln f(z|Y, x)

∂x
|Z = z,X = x

}
+ E

{
∂ ln f(Y |x)

∂x
|Z = z,X = x

}
.

From the assumption and condition (3) in Theorem 5, ∂ ln f(z|Y, x)/∂x is non-

decreasing in y and z; from condition (1) in Theorem 5, ∂ ln f(Y |x)/∂x is non-
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decreasing in y; and from condition (2) in Theorem 5, P (Y > y|X = x, Z = z)

is non-decreasing in z for all y. By Lemma 1, we have that

E

{
∂ ln f(z|Y, x)

∂x
|Z = z,X = x

}
+ E

{
∂ ln f(Y |x)

∂x
|Z = z,X = x

}
is non-decreasing in z.

When X is discrete, we need only to prove that, for z > z′,

f(z|x = 1)

f(z|x = 0)
≥ f(z′|x = 1)

f(z′|x = 0)
.

We have that

f(z|x = 1)

f(z|x = 0)
=

∫ +∞

−∞

f(z|y, x = 1)f(y|x = 1)

f(z|x = 0)
dy

=

∫ +∞

−∞

f(z|y, x = 1)

f(z|y, x = 0)

f(y|x = 1)

f(y|x = 0)

f(z|y, x = 0)f(y|x = 0)

f(z|x = 0)
dy

=

∫ +∞

−∞

f(z|y, x = 1)

f(z|y, x = 0)

f(y|x = 1)

f(y|x = 0)
f(y|z, x = 0)dy

= E

{
f(z|Y, x = 1)

f(z|Y, x = 0)

f(Y |x = 1)

f(Y |x = 0)
|X = 0, Z = z

}
.

From the assumption and condition (1) in Theorem 5, {f(z|y, x = 1)f(y|x =

1)}/{f(z|y, x = 0)f(y|x = 0)} is non-decreasing in y and z. From condition (2)

in Theorem 5, P (Y > y|X = 0, Z = z) is non-decreasing in z for all y. Therefore,

we have f(z|x = 1)/f(z|x = 0) ≥ f(z′|x = 1)/f(z′|x = 0).

Proof of Theorem 6. For F (z|x) = E {F (z|Y, x)|X = x}, we have from the as-

sumption and condition (2) in Theorem 6 that F (z|y, x) is non-increasing in y

and x. From condition (1) in Theorem 6, P (Y > y|X = x) is non-decreasing in

x for all y. Thus we have that ∂F (z|x)/∂x ≤ 0.

Proof of Theorem 7. Since E(Z|x) = E {E(Z|Y, x)|X = x}, we prove that

∂E(z|x)/∂x ≤ 0 using a similar argument as in the proof of Theorem 5.

Proof of Theorem 8. From Theorem 7, we have ∂E(Z|x)/∂x ≥ 0,∀x, and then

from Theorem 4, we have ∂2 ln f(x, z)/∂x∂z ≥ 0, ∀x, z.
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Proof of Corollary 3. We prove this only for Theorem 5. Obviously, the assump-

tion ∂2 ln f(x, z|y)/∂x∂z ≥ 0 can be evaluated by f(x, z|y). Condition (1) in

Theorem 5 can be evaluated by f(x|y), which can be obtained after marginal-

izing f(x, z|y) over z. For conditions (2) and (3), we can rewrite them as

∂2 ln f(z, x|y)/∂y∂z ≥ 0 and ∂2 ln f(x, z|y)/∂x∂y ≥ 0 respectively. Therefore,

the assumption and conditions can all be evaluated by f(x, z|y).

Proof of Corollary 4. From the linear model, we have E(Z|x) = β0 + β1x +

β2E(Y |x) and ∂E(Z|x)/∂x = β1 + β2∂E(Y |x)/∂x = β1 + β2β4. Thus, we have

∂E(Z|x)/∂x ≥ 0 if β1, β2 and β4 are non-negative.

Suppose a = −β2/β1, and we need only to prove the result for the case that

β2 < 0 but ∂E(Z|Y = y)/∂y ≥ 0. We use proof by contradiction, and suppose

that ∂E(Z|x)/∂x < 0 for some x. Then we have ∂E(Y |x)/∂x = β4 > −β1/β2 =

1/a. Since ∂E(Z|y)/∂y = β1∂E(X|y)/∂x+β2 ≥ 0, we have ∂E(X|Y = y)/∂y ≥
−β2/β1 = a. From the linear model of Y , we have ∂E(Y − β4X|X = x)/∂x = 0.

We deduce that

cov(X,Y ) = β4var(X) > var(X)/a. (2)

Define b = infy{∂E(X|Y = y)/∂y}. We have b ≥ a and ∂E(X − bY |Y =

y)/∂y ≥ b− b = 0. From Property 1, we get cov(X− bY, Y ) ≥ 0. Thus we obtain

cov(X,Y ) = cov(X − bY, Y ) + bvar(Y ) ≥ bvar(Y ) ≥ avar(Y ). (3)

From equations (2) and (3), we have cov(X,Y ) > {var(X)var(Y )}1/2, which is

impossible since the correlation coefficient cannot be larger than 1.

Proof of Corollary 5. We first prove results (2) and (3). Since F (z|x) =

E {F (z|Y, x)|X = x} = EY {F (z|Y, x)}, and E(Z|x) = E {E(Z|Y, x)|X = x} =

EY {E(Z|Y, x)}, we only need ∂F (z|y, x)/∂x ≤ 0,∀x, y, z for Theorem 6 and

∂E(Z|y, x)/∂x ≥ 0,∀x, y for Theorem 7. For result (1), according to Theorem 4,

when X or Z is binary, the density association is equivalent to the expectation

association, thus we need only ∂2f(x, z|y)/∂x∂z ≥ 0,∀x, y, z.

Appendix B: Three Examples

In Example 1, we illustrate that the expectation association of Y onX cannot
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replace condition (1) of Theorem 3.

Example 1. We generate data under conditional independence: X ∼ Bernoulli(1/2),

ε ∼ Bernoulli(p), Y = X + 2ε(1 −X), Z = I(Y = 2), where p < 1/2 and I(·) is

the indicator function. We have that E(Y |X = 1)− E(Y |X = 0) = 1− 2p ≥ 0,

E(Z|Y = 2)− E(Z|Y = 1) = 1− 0 ≥ 0 and E(Z|Y = 1)− E(Z|Y = 0) = 0, but

we calculate that E(Z|x = 1)− E(Z|x = 0) = 0− p ≤ 0.

In Example 1, we see that Z does not follow a linear model given Y , and

thus we cannot infer the transitivity of association signs based on Corollary 1.

In Example 2, we illustrate that under X Z|Y , a non-negative expectation

association of Y on X and even the most stringent non-negative density associ-

ation between Y and Z do not imply a non-negative expectation association of

Z on X.

Example 2. Assume X Z|Y with the distributions P (y|x) and P (z|y) given in

Table 3. Then we have E(Y |X = 1)− E(Y |X = 0) = 0.2 and

ln
P (Y = y, Z = 0)P (Y = y + 1, Z = 1)

P (Y = y, Z = 1)P (Y = y + 1, Z = 0)
≥ 0,

for y = 0 and 1, but E(Z|X = 1)− E(Z|X = 0) = −0.32.

Table 3: Distributions P (y|x) and P (z|y) for Example 2

(a)

Y = 0 Y = 1 Y = 2

X = 0 0.6 0 0.4

X = 1 0 1 0

(b)

Y = 0 Y = 1 Y = 2

Z = 0 0.9 0.9 0.1

Z = 1 0.1 0.1 0.9

In Example 3, we illustrate that under X Z|Y , a non-negative correlation

of X and Y (Y and Z) and another non-negative association measure between

Y and Z (X and Y ) do not imply a non-negative correlation between X and Z.

Example 3. Assume X Z|Y with the distributions P (y|x) and P (z|y) given in

Table 4. Then we have cov(Y,Z) = 0.0017 > 0 and

ln
P (Y = y,X = 0)P (Y = y + 1, X = 1)

P (Y = y,X = 1)P (Y = y + 1, X = 0)
≥ 0

for y = 0 and 1, but E(Z|X = 1)− E(Z|X = 0) = −0.005.
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Table 4: Distributions P (y|x) and P (z|y) for Example 3

(a)

Y = 0 Y = 1 Y = 2

X = 0 0.1 0.1 0.8

X = 1 0.05 0.05 0.9

(b)

Y = 0 Y = 1 Y = 2

Z = 0 0.3 0 0.2

Z = 1 0.7 1 0.8
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