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S1 Lemmas

Lemma 1. When d → ∞, under Conditions 5 and 7, we have

∥ Ω̂− Ω ∥max= Op(n
−1/2).

Proof. First, note that for two matrices, ∥ MN ∥max≤∥ M ∥max∥ N ∥max, and ∥
M ∥max=∥ Mτ ∥max. Some elementary calculations lead to the following decomposition:

∥ Ω̂− Ω ∥max

≤
m0∑
m=1

∥ SmSτ
m − [

1

d
ΣY (m)][

1

d
Στ

Y (m)] ∥max

}
≤

m0∑
m=1

∥ Sm − ESm ∥2max

+

m0∑
m=1

∥ ESm − [
1

d
ΣY (m)] ∥2max

+2

m0∑
m=1

∥ Sm − ESm ∥max∥ ESm − [
1

d
ΣY (m)] ∥max

+2

m0∑
m=1

∥ [
1

d
ΣY (m)] ∥max∥ Sm − ESm ∥max

+2

m0∑
m=1

∥ [
1

d
ΣY (m)] ∥max∥ ESm − [

1

d
ΣY (m)] ∥max

=: K1 +K2 +K3 +K4 +K5.
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By the definition, we have

dSm =
1

(n−m)

n−m∑
t=1

(Yt+m − Ȳ )(Yt − Ȳ )τ

=
1

(n−m)

n−m∑
t=1

Yt+mY τ
t − 1

(n−m)

n−m∑
t=1

YtȲ
τ

− 1

(n−m)

n−m∑
t=1

Ȳ Y τ
t + Ȳ Ȳ τ . (S1.1)

By Condition 5, an application of Markov inequality yields that all the elements

of
1

(n−m)

n−m∑
t=1

Yt − Ȳ and
1

(n−m)

n−m∑
t=1

Yt+m − Ȳ uniformly have the order Op(1/n).

Thus, without confusion, we write that dSm =
1

(n−m)

n−m∑
t=1

Yt+mY τ
t −Ȳ Ȳ τ+Op(1/n) :=

dS̃m+Op(1/n). In fact, to prove that
√
n ∥ {Sm−ESm} ∥max= Op(1), which is equivalent

to prove that
√
n ∥ {S̃m − ES̃m} ∥max= Op(1). Hence, we only prove that

√
n ∥

{S̃m − ES̃m} ∥max= Op(1).

Denote the (i, j)-th element of (dS̃m) and ΣY (m) by sm(i, j) and σY (m)(i,j) respec-

tively. Note that (d·S̃m) is a sample variance and ΣY (m) is the corresponding population
one.

By Condition 5 and Theorem 3 of Doukhan (1994), we have for i = j

max
i,i

E(sm(i, i)− Esm(i, i))2

≤ 2
{
max
i,i

V ar(
1

n−m

n−m∑
t=1

yt+m,iyt,i) + max
i,i

V ar(ȳ2i )
}

= 2
{
max
i,i

1

(n−m)2

∑
1≤k,l≤n−m

Cov
(
yk,iyk+m,i, yl,iyl+m,i

)
+max

i,i

1

n4

∑
1≤h,j,k,l≤n

Cov
(
yh,iyj,i, yk,iyl,i

)}
≤ 2

{ 1

(n−m)2

∑
k,l

2φ1/2(|k − l|) max
i,i,k,l

[E | yk,iyk+m,i |2]1/2[E | yl,iyl+m,i |2]1/2

+max
i,i

12

n4

∑
1≤h≤j≤k≤l≤n

Cov
(
yh,iyj,i, yk,iyl,i

)
+max

i,i

12

n4

∑
1≤h≤k≤j≤l≤n

Cov
(
yh,iyj,i, yk,iyl,i

)}
≤ 2

{ 1

(n−m)2

∑
k,l

2φ1/2(|k − l|) max
i,i,k,l

[E(yk,i)
4E(yk+m,i)

4]1/4[E(yl,i)
4E(yl+m,i)

4]1/4

+
12

n4

∑
1≤h≤j≤k≤l≤n

2φ1/2(k − j) max
i,i,h,j,k,l

[E | yh,iyj,i |2]1/2[E | yk,iyl,i |2]1/2

+
12

n4

∑
1≤h≤k≤j≤l≤n

2φ1/2(min{k − i, j − k, l − j}) max
i,i,h,k,j,l

[E | yh,iyj,i |2]1/2[E | yk,iyl,i |2]1/2
}
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≤ 2
{ 1

(n−m)2

∑
k,l

2φ1/2(|k − l|) max
i,i,k,l

[E(yk,i)
4E(yk+m,i)

4]1/4[E(yl,i)
4E(yl+m,i)

4]1/4

+
12

n4

∑
1≤h≤j≤k≤l≤n

2φ1/2(k − j) max
i,i,h,j,k,l

[E(yh,i)
4E(yj,i)

4]1/4[E(yk,i)
4E(yl,i)

4]1/4

+
12

n4

∑
1≤h≤k≤j≤l≤n

2φ1/2(min{k − i, j − k, l − j}) max
i,i,h,k,j,l

[E(yh,i)
4E(yj,i)

4]1/4[E(yk,i)
4E(yl,i)

4]1/4
}

=: 4C
1

(n−m)2

∑
k,l

|k − l|−1−c/2 + 4C ′ 1

n4

∑
1≤h≤j≤k≤l≤n

(k − j)−1−c/2

+4C ′′ 1

n4

∑
1≤h≤k≤j≤l≤n

(min{k − i, j − k, l − j})−1−c/2

= O(1/n) +O(1/n) +O(1/n) = O(1/n). (S1.2)

For i ̸= j, the absolute value of the corresponding element of (d ·S̃m) is controlled by
those with i = j. Then, by Cauchy inequality, to prove

√
n ∥ {Sm−ESm} ∥max= Op(1),

we only need to prove that E ∥ {Sm − ESm} ∥2max= O(1/n). Together with the above
proof, we only need to prove that E ∥ {S̃m − ES̃m} ∥2max= O(1/n). By the definition,
we have

E ∥ {S̃m − ES̃m} ∥2max

= E
1

d2
∥ {dS̃m − E(dS̃m)} ∥2max≤

1

d2
tr{E

(
[dS̃m − E(dS̃m)]τ [dS̃m − E(dS̃m)]

)
}

=
1

d2

d∑
i,j=1

E[s̃m(i, j)− Es̃m(i, j)]2 =
1

d2

d∑
i,j=1

V ar(s̃m(i, j)) = O(n−1). (S1.3)

By Condition 5 and Theorem 3 of Doukhan (1994), for all i, j = 1, ..., d uniformly, we
have that

|σY (m)(i,j)| = |Cov(Yt+m,i, Yt,j)| ≤ 2φ1/2(m)[E(Yt+m,i)
2]1/2[E(Yt,j)

2]1/2 = O(1).

Hence,

∥ 1

d
ΣY (m) ∥max= O(1). (S1.4)

By Condition 6, and together with above results, we can have K1 = O(n−1),K2 =
O(n−1),K3 = Op(n

−1), K4 = Op(n
−1/2) and K5 = O(n−1/2). Altogether, we have

∥ Ω̂− Ω ∥max= Op(n
−1/2).

The following lemma is Theorem 8.1.10 in Golub and Van Loan (1996). For con-
venience in our proof, we cite it as a lemma. See the lemma 3 of Lam et al. (2011)
also.
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Lemma 2. Suppose that A and A+ E are d× d are symmetric matrices and that

Q =
[
Q1
r

Q2
d−r

]
is an orthogonal matrix such that ran(Q1) is an invariant subspace for A. Partition the
matrices QτAQ and QτEQ as follows:

QτAQ =

[
D1 0
0 D2

]
, QτEQ =

[
E11 Eτ

21

E21 E22

]

If sep(D1, D2) > 0 and ∥ E ∥max≤
sep(D1, D2)

5
, then there exists a matrix P ∈

R(d−r)×r with

∥ P ∥max≤
4

sep(D1, D2)
∥ E21 ∥max

such that the columns of Q̂1 = (Q1 + Q2P )(I + P τP )−1/2 define an orthonormal basis
for a subspace that is invariant for A + E. Where ran(Q1) = {y ∈ Rr : y = Q1x for
some x ∈ Rd}, and sep(D1, D2) = min

λ∈D1,µ∈D2

| λ− µ |.

S2 Proof of Theorems

In the proofs thereafter, σj(M) is denoted to be the j-th singular value of the matrix
M , and λj(M) to be the j-th largest eigenvalue of M . Hence σ1(M) =∥ M ∥max.

Proof of Theorem 1. As the results are parallel to those in Lam et al. (2011) and
Lam and Yao (2012), the proof will follow the spirit in their papers. Thus, we will give
the proof briefly. As fixed d can be regarded as a special case with diverging d, we then
directly go to prove the case of diverging d. The results (i), (ii), (iii) are about diverging
d. Consider (i): proving the conclusion ∥ α̂i − αi ∥max≤∥ Â−A ∥max= Op(n

−1/2).

We assume that A is a half orthogonal matrix in model (2.1). Then AτΩA = 1
d2D

where D is diagonal with the presentation:

D =

m0∑
m=1

[
ΣX(m)Aτ +ΣXξ(m)

][
ΣX(m)Aτ +AΣXξ(m)

]τ
If B is an orthogonal complement of A, ΩB = 0, and[

Aτ

Bτ

]
Ω
[
A B

]
=

[
1
d2D 0
0 0

]
with sep( 1

d2D, 0) = λmin(
1
d2D). By Conditions 2 and 3, we can easily obtain

∥ ΣXξ(m) ∥max= Op(d).
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Hence, we have

λmin(D) = λmin

( m0∑
m=1

[
ΣX(m)Aτ +ΣXξ(m)

][
ΣX(m)Aτ +ΣXξ(m)

]τ)
≥

m0∑
m=1

λmin

([
ΣX(m)Aτ +ΣXξ(m)

][
ΣX(m)Aτ +ΣXξ(m)

]τ)
≥ max

1≤m≤m0

λmin

([
ΣX(m)Aτ +ΣXξ(m)

][
ΣX(m)Aτ +ΣXξ(m)

]τ)
= max

1≤m≤m0

{
σr

(
ΣX(m)Aτ +ΣXξ(m)

)}2
(S2.1)

≥ max
1≤m≤m0

{
σr

(
ΣX(m)Aτ

)
− σ1

(
ΣXξ(m)

)}2

≍ max
1≤m≤m0

{
σr

(
ΣX(m)Aτ

)}2

≍ d2. (S2.2)

The second equality (3.5) is due to the relation between singular values and eigenvalues.
Let EΩ = Ω̂− Ω. Invoking Lemma 1, we have

∥ EΩ ∥max=∥ Ω̂− Ω ∥max= Op(n
−1/2). (S2.3)

Similar to Lam et al. (2011), applying Lemma 2, we have

∥ Â−A ∥max= Op(n
−1/2).

Hence,

∥ α̂i − αi ∥max≤∥ Â−A ∥max≤ Op(n
−1/2). (S2.4)

(i) is proved. Deal with (ii) now: To prove that | λ̂i − λi |= Op(n
−1/2) for i = 1, ..., r.

First, we can have the decomposition:

λ̂i − λi = α̂τ
i Ω̂α̂i − ατ

i Ωαi = L1 + L2 + L3 + L4 + L5

where

L1 = (α̂i − αi)
τ (Ω̂− Ω)(α̂i − αi), i = 1, ..., r,

L2 = 2ατ
i (Ω̂− Ω)(α̂i − αi), i = 1, ..., r,

L3 = (α̂i − αi)
τΩ(α̂i − αi), i = 1, ..., r,

L4 = 2ατ
i Ω(α̂i − αi), i = 1, ..., r,

L5 = ατ
i (Ω̂− Ω)αi, i = 1, ..., r.

From (S2.1) and (S2.3), similar to Lam and Yao (2012), it can be seen that | L1 |≤
Op(n

−3/2), | L2 |≤ Op(n
−1), and | L5 |≤ Op(n

−1/2). Invoking (S1.4) and (S2.3), we

obtain that | L3 |≤ Op(n
−1) and | L4 |≤ Op(n

−1/2). Altogether, we have | λ̂i − λi |=
Op(n

−1/2) for i = 1, ..., r and the proof is done.
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For (iii), we prove that | λ̂i |= Op(n
−1) for i = r + 1, ..., d. Also, we decompose λ̂i

to be:

λ̂i = β̂τ
i−rΩ̂β̂i−r = M1 +M2 +M3 +M4

where

M1 = (β̂i−r − βi−r)
τ (Ω̂− Ω)(β̂i−r − βi−r), i = r + 1, ..., d,

M2 = 2(β̂i−r − βi−r)
τ (Ω̂− Ω)βi−r, i = r + 1, ..., d,

M3 = (β̂i−r − βi−r)
τΩβ̂i−r − βi−r), i = r + 1, ..., d,

M4 = βτ
i−r(Ω̂− Ω)βi−r, i = r + 1, ..., d.

The same as the proof of (S2.4), or similar to Lam and Yao (2012), we also obtain

∥ β̂i−r − βi−r ∥max≤∥ B̂ −B ∥max≤ Op(n
−1/2).

Then, (S2.3) and (S2.4) yield that similarly as the above for (ii), | M1 |≤ Op(n
−3/2),

| M2 |≤ Op(n
−1) and

| M4 | = | βτ
i−r(Ω̂− Ω)βi−r |=| βτ

i−r

{ m0∑
m=1

[
SmSτ

m − [
1

d
ΣY (m)][

1

d
Στ

Y (m)]
]}
βi−r |

= | βτ
i−r

{ m0∑
m=1

[
Sm − [

1

d
ΣY (m)]

][
Sm − [

1

d
ΣY (m)]

]τ}
βi−r |

≤
m0∑
m=1

∥
[
Sm − [

1

d
ΣY (m)]

]
∥2max

= Op(n
−1).

By (S1.4) and (S2.4), we derive that | M3 |≤ Op(n
−1). Thus, | λ̂i |= λ̂i = Op(n

−1) for
i = r + 1, ..., d. This completes the proof of (iii) and then the theorem.

Proof of Theorem 2. Consistency of the ridge-type ratio estimate of (??).

On one hand, in probability, for any i < r, as λ̂i → λi > c for a positive constant c > 0
and λ̂r+1 = Op(n

−1). Then for large n

λ̂i+1 + log(n)/(10n)

λ̂i + log(n)/(10n)
≈ λi+1

λi
>

log(n)

10nλr
≈ λ̂r+1 + log(n)/(10n)

λ̂r + log(n)/(10n)
, (S2.5)

in probability. On the other hand, for any j with r < j ≤ d, as λ̂j = Op(n
−1),

log(n)/(10n) is a dominating term in λ̂j+1 + log(n)/(10n). Thus, for large n

λ̂j+1 + log(n)/(10n)

λ̂j + log(n)/(10n)
→ 1 >

log(n)

10n
≈ λ̂r+1 + log(n)/(10n)

λ̂r + log(n)/(10n)

in probability uniformly over all j > r. Together with (S2.5), r̂ → r with probability
one.



CONSISTENTLY DETERMING THE NUMBER OF FACTORS S7

Consistency of the BIC-type estimate of (??). For any m, log(λ̂m+1)− λ̂m ≤
0, because of (ii). For any m > r as λ̂m → 0 at the rate of 1/n, then

d∑
m=1

{log(λ̂m + 1)− λ̂m} =

r∑
m=1

{log(λ̂m + 1)− λ̂m}+
d∑

m=r+1

{log(λ̂m + 1)− λ̂m} → b+O(d/n2)

in probability for some b < 0. For any k with r > k

G(r)−G(k) =
n
∑r

m=k+1{log(λ̂m + 1)− λ̂m}
2
∑d

m=1{log(λ̂m + 1)− λ̂m}
− log(n)

r(r + 1)− k(k + 1)

d
.

For large n,
∑r

m=k+1{log(λ̂m + 1) − λ̂m}/
∑d

m=1{log(λ̂m + 1) − λ̂m} > b1 > 0 for a
positive constant b1. Then, due to log(n)/n → 0,∑r

m=k+1{log(λ̂m + 1)− λ̂m}∑d
m=1{log(λ̂m + 1)− λ̂m}

> 2log(n)
r(r + 1)− k(k + 1)

dn
(S2.6)

in probability uniformly over all k < r. In other words, G(r)−G(k) > 0 in probability

uniformly over all k < r. For k with r < k, and any m > r, n{log(λ̂m + 1) − λ̂m} =

−n{λ̂2
m + op(λ̂

2
m)} = Op(1/n), and

G(r)−G(k) = −
n
∑k

m=r+1{log(λ̂m + 1)− λ̂m}
2
∑d

m=1{log(λ̂m + 1)− λ̂m}
+ log(n)

k(k + 1)− r(r + 1)

d
.

Thus, as nlog(n)/d → ∞, G(r)−G(k) > 0 in probability uniformly over all k > r

Together with (S2.6), r̂ → r in probability, which completes the proof.


