
Statistica Sinica 25 (2015), 1025-1044

doi:http://dx.doi.org/10.5705/ss.2013.252

CONSISTENTLY DETERMINING THE NUMBER OF

FACTORS IN MULTIVARIATE VOLATILITY MODELLING

Qiang Xia1, Wangli Xu1 and Lixing Zhu2

1Renmin University of China and 2Hong Kong Baptist University

Abstract: Consistently determining the number of factors plays an important role

in factor modelling for volatility of multivariate time series. In this paper, the mod-

elling is extended to handle the nonstationary time series scenario with conditional

heteroscedasticity. Then a ridge-type ratio estimate and a BIC-type estimate are

proposed and proved to be consistent. Their finite sample performance is exam-

ined through simulations and the analysis of two data sets. An observation from

the numerical studies is, that unlike the cases with stationary and homoscedas-

tic sequences in the literature, the dimensionality blessing no longer holds for the

ratio-based estimates, but still does for the BIC-type estimate.
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1. Introduction

Over the last two decades, the modelling of time-varying volatility of finan-

cial returns has been a vigorous area of research in the financial econometrics

literatures. Many statistical models, mostly designed for univariate data, have

been proposed. The analysis of multivariate time series data, often through the

modelling of multivariate processes with conditional covariance matrices, has

motivated the attempts to extend univariate volatility models to multivariate

cases. For example, Engle and Kroner (1995) proposed the general multivari-

ate GARCH(p, q) model with the BEKK representation. Although this model

is general, it cannot tackle the overparametrization problem, which is similar to

those for multivariate ARMA models. These models are seldomly used directly

in practice. To overcome the difficulties caused by overparametrization for mul-

tivariate GARCH(p, q) models, there are such proposals as those of Engle (2002),

Fan, Wang, and Yao (2008), and Pan et al. (2011), among others.

An effective way to circumvent the aforementioned problem is to adopt a

factor model that provides a low-dimensional parsimonious representation for

high-dimensional dynamics. Early attempts in this direction include Anderson

(1963), Priestley, Rao, and Tong (1974), and Peña and Box (1987). Recently,

more efforts focus on the inference when the dimension of time series d is as
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large as or greater than the sample size n; see, for example, Bai (2003), Forni et
al. (2000, 2004, 2005), Lam, Yao, and Bathia (2011) and Lam and Yao (2012).
Relevant efforts look to building a factor model for nonstationary multivariate
time series, for example, Peña and Poncela (2006) and Pan and Yao (2008).

Consistently determining the number of factors plays an important role in
establishing a factor model. A ratio estimate was suggested by Lam and Yao
(2012), motivated from a similar idea suggested by Wang (2012) under an iid
setup; in their numerical studies the ratio works very well. They also found
that dimensionality blesses the estimation accuracy of the ratio estimate, but
the selection consistency remains unknown even when the components of X are
white noises. Under normality and other conditions, the ratio estimate in Wang
(2012) can be consistent when p is much larger than the sample size n. One
condition plays a critical role in establishing the consistency. And, when not
satisfied, the method there may not be applicable for us. If a consistence of Lam
and Yao (2012) were true in this condition, consistency would be easily derived.
Based on numerical study, this seems not easy to derive. To define a consistent
estimate, we suggest a ridge-type ratio estimation method that is a modification
of the ratio estimate, but does not require, up to certain order moments, any
distributional assumptions. Further, another eigenvalues-based criterion of BIC-
type is suggested to consistently determine the number of factors in the setup
under study.

To assess the finite-sample performance of the two estimates, simulations
were carried out. The ratio-based estimates worked well in many cases. On the
other hand, the numerical studies suggests that, unlike the finding of dimension-
ality blessing by Lam and Yao (2012), the ratio-based estimates do not have this
property for nonstationary and heteroscedastic time series, while the BIC-type
estimate does.

The rest of the paper is arranged as follows. The methodology development
and asymptotic properties of the proposed estimates are described in Section 2.
Simulated and data examples are presented in Section 3. Some conclusions are
included in Section 4. The technical arguments are contained in the online sup-
plement.

Throughout the paper, τ stands for the transpose. For any matrix M , ∥
M ∥max and ∥ M ∥min denote the positive square roots of the maximum and
minimum eigenvalue of MM τ and M τM , respectively. When M is a vector,
∥ M ∥max=∥ M ∥min is equivalent to the usual L2-norm. When a = Op(b) and
b = Op(a), we write a ≍ b.

2. Model and Estimation

2.1. A brief review of the volatility factor model

For t = 1, . . . , n, let Yt be an d-dimensional vector of observed time series
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with E(Yt|Ft−1) = µt, where Ft = σ(Yt, Yt−1, . . .) and µt is related to t, and

with the conditional covariance matrices Σt = V ar(Yt|Ft−1) for t = 1, . . . , n. To

overcome difficulties due to overparametrization (Fan, Wang, and Yao (2008)),

a common factor model is used, as suggested by Pan et al. (2011),

Yt = AXt + ξt, (2.1)

where Xt = (x1t, . . . , xrt)
τ is the r-dimensional vector of nonobserved (nonsta-

tionary) common factor, r < d is unknown; A is an d× r factor loading matrix;

{ξt} is a sequence of i.i.d. innovations with mean 0 and Σξ, and {ξt} is indepen-

dent of Xt and Ft−1. The volatility dynamics structure of Yt here comes through

the lower dimensional volatility dynamics of Xt, and the static variate of ξt,

Σt = AΣXtA
τ +Σξ. (2.2)

The model (2.1) is not identifiable: for any r × r nonsingular H, Yt can be

expressed by a new factor as

Yt = AHH−1Xt + ξt. (2.3)

However the linear spaceM(A), the factor loading space, spanned by the columns

of A is uniquely defined by (2.1). The factor process Xt is also uniquely defined

accordingly so, for example, we may choose a half orthogonal matrix A, with

AτA = Ir, where Ir is the r × r identity matrix. Thus, one can rotate an

estimated factor loading matrix whenever appropriate, and this can facilitate the

estimation of A.

2.2. Methodology development

To include nonstationary cases in our asymptotic theory, we require some reg-

ularity conditions. Let ΣY (m, t) = Cov(Yt+m, Yt),ΣX(m, t) = Cov(Xt+m, Xt),

and ΣXξ(m, t) = Cov(Xt+m, ξt), for all m ≥ 1. Under stationarity, we write

ΣY (m), ΣX(m), and ΣXξ(m), respectively.

When our Condition 4 holds, ΣY (m) = AΣX(m)Aτ +AΣXξ(m). In light of

Lam and Yao (2012), we take

Ω =
1

d2

m0∑
m=1

ΣY (m)Στ
Y (m),

where m0 is a prescribed positive integer. This helps us construct consistent

estimations of the number of factors later. As Ω is nonnegative definite, the

eigenvalues are real and nonnegative. Further, when ΩB = 0, Στ
Y (m)B = 0 for

all m ≥ 1. The number of factors r is then the number of non-zero eigenvalues

λi of Ω, the loading matrix A is comprised of the corresponding r orthonormal

eigenvectors αi. Hence, to estimate the number of factors r and the loading
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matrix A, performing an eigenanalysis for the sample counterparts of Ω is needed:

Ω̂ =

m0∑
m=1

SmSτ
m, (2.4)

where Sm = (1/[(n−m) · d])
∑n−m

t=1 (Yt+m − Ȳ )(Yt − Ȳ )τ and Ȳ = (1/n)
∑n

t=1 Yt.

Remark 1. Since ΣY (0) = AΣX(0)Aτ + Σξ(0) and ΣY (0)B ̸= 0, m = 0 is
excluded from the sum in Ω, and B is an orthogonal complement matrix of A.

We need some regularity conditions similar to those in Lam, Yao, and Bathia
(2011), Lam and Yao (2012), and Pan and Yao (2008).

Condition 1. ΣX(m, t) and ΣXξ(m, t) are free of t, say ΣX(m) and ΣXξ(m).

Condition 2. ∥ ΣX(m) ∥max≍∥ ΣX(m) ∥min≍ d, for m = 0, 1, . . . ,m0, where
m0 is a positive integer.

Condition 3. ΣXξ(m) remains bounded in all elements.

Condition 4. The covariance matrix Cov(ξt, Xs) = 0 for all t ≥ s.

Condition 5. The Yt,i’s are nonstationary φ-mixing with φ(l) = O(l−2−υ) for
some positive constant υ, where

φ(l) = sup
k≥1

sup
U∈Fk

−∞,V ∈F∞
l+k,P (V )>0

| P (V |U)− P (V ) | (2.5)

and F j
i = σ(Yi, . . . , Yj). Further, maxt,iE|Yt,i|4 < ∞.

Condition 6.
√
n(E(dSm) − ΣY (m)) = O(1) elementwisely in the sense that

O(1) is uniformly for all the elements.

Remark 2. Condition 2 is similar to condition C5 of Lam and Yao (2012) with
δ = 0. Condition 3 and 4 are in common use. Condition 6 is similar to that in
Theorem 2 of Pan and Yao (2008) in which d is fixed and

√
n(E(d·Sm)−ΣY (m)) =

O(1) when our notations are adopted.

Theorem 1. Let Conditions 1 ∼ 6 hold, and assume that the r largest eigenval-
ues λ1 ≥ · · · ≥ λr > λr+1 = 0 = · · · = λd = 0 of Ω are distinct. Then

(i) ∥ α̂i − αi ∥≤∥ Â−A ∥= OP (n
−1/2),

(ii) | λ̂i − λi |= OP (n
−1/2) for i = 1, . . . , r,

(iii) | λ̂i |= OP (n
−1) for i = r + 1, . . . , d.

Here Â = (α̂1, . . . , α̂r), where the α̂i are the eigenvectors of Ω̂ corresponding to
the i largest eigenvalues. Now estimating B is equivalent to estimating A, where
B = (β1, . . . , βd−r) is a d × (d − r) matrix with BτA = 0, BτB = Id−r and
AAτ +BBτ = Id.
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Due to the random fluctuation in a sample of finite size, the estimates of the

zero-eigenvalues of Ω are unlikely to be 0. Hence, we cannot directly determine

r from the first nonzero-eigenvalues. Some methods for determining r can be

found in the literature. In a different setting, Lam and Yao (2012) suggested a

ratio estimate of r, using a similar idea as that in Wang (2012). An estimate r̂

is
r̂ = arg min

k∈{1,2,...,R}

λ̂k+1

λ̂k

, (2.6)

where λ̂d ≤ · · · ≤ λ̂1 are the eigenvalues of Ω̂, and r < R < d is a constant. In

numerical studies this criterion has been proved to work well, mainly because

of the fast convergence rate of λ̂k to zero for k > r. They chose R = d/2 to

avoid poor ratio estimates λ̂k+1/λ̂k for large k. However, the estimate may not

be stable. Lam and Yao (2012) conjectured that λ̂k+1/λ̂k would converge to 1

as k → ∞. However, this is a challenging task and, from Figure 3, 6, and 10 in

Section 3, it seems not easy to verify. Also, when d is large, R = d/2 may be too

large when d is large.

In this paper, we propose two estimates without the strong conditions as-

sumed in the literature to produce consistency.

Ridge-type ratio estimate (RRE). This estimate is a modification achieved by

adding a positive value c to the eigenvalues λi,

r̂ = arg min
k∈{1,2,...,d}

λ̂k+1 + c

λ̂k + c
. (2.7)

When k ≥ r and c is chosen to be larger than λ̂k+1, the minimum over k = 1, . . . , d

is equivalent to the minimum over k = 1, . . . , R. From Theorem 1 and our choice

of c, it is true in a probability sense. In our simulations, we computed the latter

minimum for convenience. This is an idea similar to adding a ridge. The choice

of c requires care, see Theorem 2 about this.

BIC-type estimate. This method is applicable because in the sufficient dimension

reduction, the corresponding eigenvectors that are associated with the nonzero

eigenvalues of a target matrix are used as the base vectors of the space we want

to determine, see Cook (1998), and relevant references are in Zhu, Miao, and

Peng (2006), Zhu and Zhu (2009), and Feng et al. (2013). The method depends

on the eigenvalues λ̂i as in

r̂ = arg max
k∈{1,2,...,d}

(
n
∑k

m=1(log(λ̂m + 1)− λ̂m)

2
∑d

m=1(log(λ̂m + 1)− λ̂m)
− 2 log n× k(k + 1)/2

d

)
, (2.8)

where λ̂d ≤ · · · ≤ λ̂1, and k(k + 1)/2 is the number of free parameters. Here,

the maximum can be taken over all eigenvalues. The penalty used, 2 log n, is the
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one used in the classical BIC; the criterion proposed by Zhu, Miao, and Peng

(2006) needs a delicately selected penalty. It seems that for factor modelling,

the BIC-type estimate is less sensitive to penalty selection than the one used for

generic dimension reduction by Zhu, Miao, and Peng (2006) studied.

Theorem 2. Under the conditions of Theorem 1, the estimates r̂ of (2.7) with

c = log n/(10n), and r̂ of (2.8) with d/(n log n) → 0 satisfy P (r̂ = r) → 1 as

n → ∞.

From the proof, for a relatively wide range of c, consistency holds. Based

on the limited simulation experiments we have conducted, c = log n/(10n) is a

recommended value for practitioners.

3. Numerical Studies

We carried out three simulation experiments to examine the performance

of the estimates of r and A. The estimates of A and r are not sensitive to

the choice of m0 (Lam, Yao, and Bathia (2011); Lam and Yao (2012)), so we set

m0 = 1 in all the simulations. These results were then used to model multivariate

volatilities for a data example.

3.1. Simulation experiments

Example 1. Consider a simple simulated model with one factor: r = 1, the d×r

matrix is a vector A = (1, . . . , 1)τ , and the ξt are N(0, Id) independent variables.

The factor was taken as

xt −
t

n
= 0.5

(
xt−1 −

t

n

)
+ εt, εt = σtet, σ2

t = 0.3 + 0.7ε2t−1, (3.1)

where {et} is a sequence of independent N(0, 1) random variables.

The factor is non-stationary with nonconstant means over t and conditional

heteroscedasticity. In the simulation, the sample size was n = 50, 100, 200, 500,

and 1,000, and the dimension was d = n/2. 200 samples werw drawn in every

setting. Figures 1, 2, 3, 4, and 5, respectively, depict the boxplots for the errors

of λ̂i − λi, i = 1, . . . , 6, ∥ Â − A ∥, the ratios λ̂i+1/λ̂i, the ridge-type ratios

(λ̂i+1 + log(n)/10n)/(λ̂i + log(n)/10n), and the BIC-type with Cn = log(n). In

Figure 1, the estimation errors of λ̂i−λi, i = 1, . . . , 6 seem to converge to 0 as both

n and d get larger, suggesting consistency. Figure 2 shows that the estimation

errors for the factor loading coefficients go to 0 as both n and d increase. Although

the ratio estimate, the ridge-type ratio estimate and the BIC-type estimate for

the number of factors work well, the results in Table 1 are that the ridge-type

ratio estimate is the best with the highest percentage of correctly determined
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Figure 1. Boxplots for errors in estimating the first six eigenvalues of Ω with
r = 1 and d = n/2 for model (3.1).

Table 1. Example 1: Relative frequency estimates for P (r̂ = 1) with 200
replicated samples in the simulation.

n d RE RRE BIC
50 25 0.775 0.995 0.64
100 50 0.925 1 0.76
200 100 0.975 1 0.90
500 250 0.99 1 1

1,000 500 0.99 1 1

number of factors in the small n cases (n=50, 100 and 200), and the BIC-type
estimates are the worst. However, with n=500 or 1,000, the BIC-type estimate
are as good as the ridge-type ratio estimate, and both are slightly better than
the ratio estimate. This might be due to the fact that the ratios for large i are
instable as they are 0/0 at population level. Figure 3 suggests this. This seems
to show that the conjecture by Lam and Yao (2012) may not be true. But for the
estimate of r, even when the sample size is as small as n = 50, Figures 3, 4, and
5 suggest that r̂ may converge to 1, this behavior is the same as that observed by
Lam and Yao (2012) when they considered one factor for stationary time series.

Example 2. Here r = 3, and all the elements of Ad×r were generated in-
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Estimation errors for the factor loading coefficients

Figure 2. Boxplots for (∥ Â−A ∥) for model (3.1).

Figure 3. Boxplots for the ratios λ̂i+1/λ̂i, i = 1, . . . , d, for model (3.1).

dependently from the uniform distribution on the interval [−3, 3]. The factor

Xt = (x1t, x2t, x3t)
τ was

x1t− 3t
n =0.8(x1t−1− 3t

n )+ε1t, ε1t=σ1te1t, σ
2
1t=1.0+0.3ε21t−1,

x2t− t
n =−0.5(x2t−1− t

n)+ε2t, ε2t=σ2te2t, σ
2
2t=0.9+0.15ε22t−1+0.7σ2

2t−1,

x3t+
2t
n =0.3(x3t−1+

2t
n )+ε3t, ε3t=σ3te3t, σ

2
3t=1.1+0.2ε23t−1+0.6σ2

3t−1,

(3.2)

where e1t, e2t, and e3t are independent N(0, 1), and {xit, i = 1, 2, 3} are AR(1)

processes with nonconstant mean.

We used n = 50, 100, 200, 500, 1,000, and d = 0.2n, 0.6n, 1.2n, 2n, 4n, re-

spectively. In each setting of the simulation, 200 replications were conducted.
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Figure 4. Boxplots for the ridge-type ratios (λ̂i+1 + log(n)/10n)/(λ̂i +
log(n)/10n), i = 1, . . . , d, for model (3.1).

Figure 5. Boxplots for the BIC-type G(i), i = 1, . . . , 10 for model (3.1).

The relative frequency estimates of the probability P (r̂ = 3) are reported in

Table 2, and the boxplots of the ratios λ̂i+1/λ̂i, the ridge-type ratios (λ̂i+1 +

log(n)/10n)/(λ̂i+log(n)/10n), and the BIC-type estimates with Cn = log(n) are,

respectively, depicted in Figures 6, 7, and 8. Here, we chose R = min{d/2, n/2}
for the ratio-based method to avoid using the last bad estimates of λ̂i+1/λ̂i .

From Table 2, we have the following findings. First, when the sample size is
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Table 2. Example 2: Relative frequency estimates for P (r̂ = 3) with 200
replicated samples in the simulation.

n d RE RRE BIC
0.2n 0.81 0.79 0.33
0.6n 0.80 0.785 0.61

50 1.2n 0.735 0.73 0.7
2n 0.81 0.79 0.83
4n 0.81 0.81 0.87
0.2n 0.95 0.93 0.75
0.6n 0.97 0.965 0.935

100 1.2n 0.94 0.945 0.97
2n 0.95 0.94 0.985
4n 0.93 0.93 0.99
0.2n 0.995 0.995 0.98
0.6n 0.99 0.985 0.985

200 1.2n 1 1 1
2n 1 1 1
4n 1 1 1
0.2n 1 1 1
0.6n 1 1 1

500 1.2n 1 1 1
2n 1 1 1
4n 1 1 1
0.2n 1 1 1
0.6n 1 1 1

1000 1.2n 1 1 1
2n 1 1 1
4n 1 1 1

small and the dimension is also small, the ratio estimate works best and both the

ratio-based estimates much outperform the BIC-type estimate. See the results

with n = 50, 100, and d ≤ 1.2n. The ratio-based estimates are suitably used in

case of small size of sample and dimension, whereas the BIC-type estimate can

be applied otherwise. Second, the blessing of dimensionality is obvious for the

BIC-type estimate for r, but it seems not clear for the ratio estimates. Figure 6

shows that the ratio-based methods seem not useful when we do not restrict R,

especially with d = 2n and 4n. This is due to the fact that the ratio around

at n − 1 is much smaller than the ratio at 3. Figures 7 and 8 indicate that the

number of factors are estimated correctly by the ridge-type ratio and BIC-type

estimates. Through this example, it seems that the phenomenon of “the bless-

ing of dimensionality” (Lam and Yao (2012)) may not be true for the ratio and

ridge-type ratio estimates, while may be true for the BIC-type estimate in our

nonstationary setting of time series.
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Figure 6. Boxplots for the ratios λ̂i+1/λ̂i for model (3.2).

Figure 7. Boxplots for the the ridge-type ratios (λ̂i+1 + log(n)/10n)/(λ̂i +
log(n)/10n) for model (3.2).
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Figure 8. Boxplots for the BIC-type G(i), i = 1, . . . , 10 for model (3.2).

To further investigate “the dimensionality blessing”, another simulation was

conducted by altering the above model. The second and third factors here dif-

fered from (3.2) through having a random walk and a deterministic trend. This

example was based on Example 2 of Pan and Yao (2008), adding the volatility

equations.

Example 3. For the model
x1t − 3t

n = 0.8(x1t−1 − 3t
n ) + ε1t, ε1t = σ1te1t, σ2

1t = 1.0 + 0.3ε21t−1;

x2t = x2t−1 +
√

10
n ε2t, ε2t = σ2te2t, σ2

2t = 0.9 + 0.15ε22t−1 + 0.7σ2
2t−1;

x3t = −2t
n + ε3t, ε3t = σ3te3t, σ2

3t = 1.1 + 0.2ε23t−1 + 0.6σ2
3t−1,

(3.3)

with the simulation settings the same as in Example 2, we report the values of

relative frequency estimates for the probability P (r̂ = 3) in Table 3, and depict

the boxplots of the ratio, the ridge-type ratio, and the BIC-type estimates in

Figures 9, 10, and 11, respectively. In Table 3, the ratio estimate shows better

than the ridge-type ratio estimate and again, when n and d are small, both

outperform the BIC-type estimate. The dimensionality may not play a positive

role for the ratio and ridge-type ratio estimates, whereas it still does for the BIC-

type estimate. The boxplots of the ratio and ridge-type ratio estimates indicate
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Table 3. Example 4: Relative frequency estimates for P (r̂ = 3) with 200
replicated samples in the simulation.

n d RE RRE BIC
0.2n 0.42 0.39 0.035
0.6n 0.35 0.35 0.2

50 1.2n 0.375 0.36 0.24
2n 0.375 0.355 0.38
4n 0.365 0.35 0.59
0.2n 0.39 0.35 0.12
0.6n 0.39 0.38 0.37

100 1.2n 0.44 0.42 0.435
2n 0.4 0.38 0.57
4n 0.365 0.355 0.71
0.2n 0.395 0.375 0.23
0.6n 0.395 0.35 0.395

200 1.2n 0.34 0.355 0.53
2n 0.36 0.34 0.645
4n 0.4 0.375 0.8
0.2n 0.34 0.28 0.36
0.6n 0.355 0.3 0.54

500 1.2n 0.355 0.33 0.725
2n 0.38 0.335 0.8
4n 0.35 0.32 0.815
0.2n 0.40 0.36 0.565
0.6n 0.38 0.3 0.75

1000 1.2n 0.38 0.36 0.78
2n 0.32 0.3 0.81
4n 0.345 0.33 0.83

that the factor number r cannot be well estimated, because the boxplot of λ̂3/λ̂2

looks better than λ̂4/λ̂3. This may have resulted from the behavior of factor,

since ΣX(1) is almost a singular matrix.

The ratio estimate works much as does the ridge-type ratio estimate, al-

though the latter is consistent and, in Example 1, is better. The BIC-type

estimate performs not as well as the ratio-based methods when the sample size n

and the dimension d are small, while it works better for large n and d. Unlike in

stationary time series cases, the ratio estimate does not have the dimensionality

blessing property, whereas, the BIC-type estimate enjoys this property.

3.2. Data examples

Data set 1. The data are daily close prices: the daily log-returns of 46 stocks

(times 100), which are component stocks of HSI in the period from 30 Nov.
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Figure 9. Boxplots for the ratios λ̂i+1/λ̂i for model (3.3).

Figure 10. Boxplots for the the ridge-type ratios (λ̂i+1 + log(n)/10n)/(λ̂i +
log(n)/10n) for model (3.3).
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Figure 11. Boxplots for the BIC-type G(i), i = 1, . . . , 10 for model (3.3).

2009 to 23 Nov. 2012. The data are obtained from Yahoo finance. In this

data set, n = 735 and d = 46. As d < n, we used the ratio-based estimates

to determine the number of factors. First, the eigenanalysis of the matrix Ω̂ as

(2.4) was implemented. The eigenvalues and their ratios are plotted in Figure 12.

From this figure, the λ̂i are close to 0 for all i ≥ 3, the ridge-type ratios (λ̂i+1 +

log(n)/10n)/(λ̂i + log(n)/10n) are close to 1 for all i ≥ 4, whereas the values of

the ratios λ̂i+1/λ̂i do not have a pattern so obvious. Both the ratio and the ridge-

type ratio estimate r̂ are 1. Meanwhile, the estimated orthogonal factor matrix

Âr̂ and its orthogonal complement B̂r̂ are easily obtained; their dimensions are,

respectively, r̂ and d − r̂. For the estimated factor, Figure 13 suggests that its

(ts)-plot is similar to the (ts)-plot of log-returns of HSI times 100 in the same

time period. This also indicates that one factor model is sufficient for this data

set.

In this data set, the heteroscedasticity seems to exist for each element of

Yt. Figure 14 presents the squared and the absolute correlograms about the first

component of Yt. For the estimated factor Zt = X̂t = ÂτYt, we also depict

its squared and absolute correlograms in Figure 14. It indicates the existence

of heteroscedasticity in Zt. When Zt was fitted by a GARCH(1,1) model, the

results were obtained

Σ̂Zt = 0.9131 + 0.0750Z2
t−1 + 0.8984Σ̂Zt−1 (3.4)
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Figure 12. Plots of the estimated eigenvalues, the ratios and the ridge-type
ratios.

Figure 13. The time series plots of the estimated factors and the return
series of the HSI index.

and an estimate Σ̂t = Âr̂Σ̂ZtÂ
τ
r̂ + Âr̂Â

τ
r̂ Σ̂yB̂r̂B̂

τ
r̂ + B̂r̂B̂

τ
r̂ Σ̂y can be given.

Here, (2.1) implies that X̂t = Âτ
r̂Yt and ξ̂t = Yt − Âr̂X̂t = Yt − Âr̂Â

τ
r̂Yt. The

residual correlograms of this model shows that the autocorrelation and partial

autocorrelation functions of the residuals are almost all within their two standard

error limits, suggesting that there is no significant residual serial correlation.
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Figure 14. The correlograms about the behaviors of heteroscedasticity for
Yt and the estimated factor Zt.

For this data set, modelling the volatility of multivariate time series is

displyed through a lower dimensional factor process, that suggest that both the

ratio and the ridge-type ratio are useful.

Data set 2. The macroeconomic data analysed in Eichler, Motta, and Von Sachs

(2011) was constructed by a balanced panel of 22 monthly US macroeconomic

time series from January 1960 to December 2003, which consists of 13 industrial

production (IP) variables and 9 interest Rate (IR) variables. After the original

data were transformed, Eichler, Motta, and Von Sachs (2011) found that the data

were non-stationary with a deterministic time variation. For this data, n=528

and d=22. We first computed the eigenvalues of the matrix Ω̂ at (2.4), then

plotted them, the ratios, the ridge-type ratios, and BIC in Figure 15.

Here we find that the eigenvalues are all very quite small, so the ridge-type

ratios may be influenced as the ridge value would dominate the values in the

ratios. Both the ratios and the ridge-type ratios suggest a one factor model.

It appears that the number of factors that is determined by either the ratios

or the ridge-type ratios tends to be small. However, Eichler, Motta, and Von

Sachs (2011) made a careful analysis and found a one factor model wanting. In

contrast, the BIC method suggests a three factor modelling, which coincides with
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Figure 15. Plots of the estimated eigenvalues, the ratios, the ridge-type
ratios and BIC.

the selection of Eichler, Motta, and Von Sachs (2011).

4. Conclusions

The aim of our work is to handle dimensionality determination in nonsta-
tionary and conditional heteroscedasticity settings. A ridge-type ratio and a

BIC-type estimate are proposed and proved to be consistent. A comparison with
the ratio estimate is conducted. The numerical studies suggest that, unlike sta-

tionary and conditional homoscedasticity settings, the dimensionality blessing

may not be for the ratio-based methods to enjoy, while may still be for the BIC-
type method. On the other hand, in practice, the ratio estimate, though not

consistent, works well, particularly when the sample size and the dimension are
small. From the limited simulations we conducted, a suggestion could be that,

when d ≤ 1.2n and n ≤ 200, use the ratio-based estimate; otherwise, use the
BIC-type estimate. Further, to have an estimate sharing the advantages of both

the ratio-based estimate and the BIC-type estimate, we might develop a hybrid

of them by a data-driven manner. A study of this in ongoing.
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