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Abstract: Multivariate regression model is a natural generalization of the classical

univariate regression model for fitting multiple responses. In this paper, we pro-

pose a high-dimensional multivariate conditional regression model for constructing

sparse estimates of the multivariate regression coefficient matrix that accounts for

the dependency structure among the multiple responses. The proposed method de-

composes the multivariate regression problem into a series of penalized conditional

log-likelihood of each response conditional on the covariates and other responses. It

allows simultaneous estimation of the sparse regression coefficient matrix and the

sparse inverse covariance matrix. The asymptotic selection consistency and nor-

mality are established for the diverging dimension of the covariates and number of

responses. The effectiveness of the proposed method is demonstrated in a variety

of simulated examples as well as an application to the Glioblastoma multiforme

cancer data.

Key words and phrases: Covariance selection, Gaussian graphical model, large p

small n, multivariate regression, regularization.

1. Introduction

Multivariate regression model is a key statistical tool for analyzing dataset

with multiple responses. A standard approach is to decompose the multivari-

ate regression model and fit each response via a marginal univariate regression

model. However, this approach is suboptimal in general as it ignores the de-

pendency structure among the responses. For example, the expression profiles of

many genes are strongly correlated due to the shared genetic variants or other un-

measured common regulators (Kendziorski et al. (2006)). With the dependency

structure appropriately incorporated, one would expect a more efficient multivari-

ate regression model in terms of both estimation and prediction. Furthermore,

the dependency structure among the responses can be nicely interpreted in a

graphical model under the multivariate Gaussian assumption (Edwards (2000)),

where two Gaussian responses are independent conditional on other responses

if the corresponding entry in the precision matrix (inverse covariance matrix) is

zero.
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To model the multivariate regression problem, Breiman and Friedman (1997)

proposed the curd and whey method to improve the prediction performance by

utilizing the dependency among responses. The curd fits a univariate regres-

sion model for each response against the covariates, and the whey refits each

response against the fitted values from the curd; the method does not address

the challenges when the data dimension is diverging. Yuan et al. (2007) and

Chen and Huang (2012) proposed a high dimensional reduced-rank regression

model, which assumes that all marginal regression functions reside in a common

low-dimensional space; this approach focuses on dimension reduction and largely

relies on the reduced-rank assumption. Turlach, Venables, and Wright (2005)

imposed sparsity in the regression model through a L∞-norm penalty of the co-

efficient matrix; this method can produce bias for model estimation due to the

L∞-norm penalty. The recent work by Rothman, Levina, and Zhu (2010), Yin

and Li (2011), and Lee and Liu (2012) formulated the multivariate regression

problem in a penalized log-likelihood framework, so that it allows joint estima-

tion of the multivariate regression model and the conditional Gaussian graphical

model; this formulation is computationally expensive and does not guarantee a

global optimum.

We propose a penalized conditional log-likelihood formulation for the mul-

tivariate regression problem with diverging dimension. The conditional log-

likelihood function is constructed for each response conditional on the covariates

and other responses. The advantage here is in the inclusion of other responses in

each conditional log-likelihood function, allowing joint estimation of the multi-

variate regression model and the dependency structure among the responses. The

conditional log-likelihood function is equipped with the adaptive Lasso penalty

(Zou (2006)) to facilitate the sparse estimation of the multivariate regression co-

efficient matrix and the precision matrix. The proposed model leads to a series

of augmented adaptive Lasso regression models, that can be efficiently solved

by existing optimization packages. The asymptotic properties established are

estimation consistency and selection consistency with diverging dimension. The

dimension of covariates and the number of responses are allowed to diverge in

an exponential order of the sample size. Simulation and a data example support

the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2 provides a brief intro-

duction to the multivariate regression model, with an emphasis on the penalized

log-likelihood method. Section 3 describes the proposed penalized conditional

log-likelihood method in detail. Section 4 establishes the asymptotic selection

consistency and normality for the proposed method. Simulation and an appli-

cation to real data are in Section 5. Section 6 contains a discussion, and the

Appendix is devoted to proofs.
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2. Preliminaries

In a multivariate regression setting, supposed that the training dataset con-

sists of (xi,yi)
n
i=1, where xi = (xi1, . . . , xip)

T ∈ Rp and yi = (yi1, . . . , yiq)
T ∈ Rq.

LetX = (x1, . . . ,xn)
T andY = (y1, . . . ,yn)

T be the n×p design matrix and n×q

response matrix, where p and q are diverging with n. Let xj = (x1j , . . . , xnj)
T

and yk = (y1k, . . . , ynk)
T be the jth covariate and the kth response. For simplic-

ity, the covariates and responses are centered, so that

n∑
i=1

xij = 0,

n∑
i=1

yik = 0; j = 1, . . . , p; k = 1, . . . , q.

The multivariate linear regression model is

Y = XB+ e, (2.1)

where B = (β1, . . . , βq), with βk = (β1k, . . . , βpk)
T ∈ Rp the regression coefficient

for the kth response, and e = (e1, . . . , en)
T , with ei = (ei1, . . . , eiq)

T ∈ Rq the

ith error vector. We consider a fixed design X, so the randomness comes from

the error vectors, assumed to be independent and identically sampled from a q-

dimensional Gaussian distribution Nq(0,Σ) with positive definite Σ = (σst)
q
s,t=1.

The maximum likelihood formulation of (2.1), after dropping constant terms,

is

min
B,Ω

− log |Ω |+ tr
(
(Y−XB)Ω(Y−XB)T

)
, (2.2)

with Ω = Σ−1 = (ωst)
q
s,t=1 the precision matrix. The precision matrix is closely

connected with Gaussian graphical models (Edwards (2000)) since the condi-

tional dependency structure among the responses can be fully determined by

Ω. Specifically, ωst = 0 implies that the sth and tth responses are conditionally

independent given the covariates and other responses.

When the dimension of covariates is large, it is generally believed that the

responses only rely on a small number of covariates, while others are noise that

provides no information about the responses. In addition, when the number of

responses is large, the dependency structure among responses is thought sparse

as some responses have little to do with each other. The penalized log-likelihood

approach has been widely employed to encourage sparsity in the multivariate

regression model, see Rothman, Levina, and Zhu (2010), Yin and Li (2011), and

Lee and Liu (2012). The penalized likelihood approach is formulated as

min
B,Ω

− log |Ω |+ tr
(
(Y−XB)Ω(Y−XB)T

)
+ λ1np1(B) + λ2np2(Ω), (2.3)

where p1(B) and p2(Ω) are sparsity-encouraging penalties, for example the adap-

tive Lasso penalties p1(B) =
∑

j,k ujk|βjk| and p2(Ω) =
∑

s̸=t vst|ωst| with
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weights ujk and vst, and λ1n and λ2n are tuning parameters. To optimize (2.3),
an alternating update scheme is used, that updates B and Ω, pretending the
other party is fixed. When B is fixed, (2.3) can be solved via the graphical Lasso
algorithm (Friedman, Hastie, and Tibshirani (2008)); when Ω is fixed, (2.3) can
be solved via the coordinate descent algorithm (Lee and Liu (2012)). However,
as pointed out in Yin and Li (2011) and Lee and Liu (2012), the alternating up-
date scheme can not guarantee the global optimum, and is often computationally
expensive.

3. Proposed Methodology

A new penalized conditional log-likelihood function is developed for jointly
estimating the sparse multivariate regression coefficient matrix and the sparse
precision matrix. The proposed method is based on the fact that, given the
model y|x ∼ Nq(B

Tx,Σ) in (2.1),

yk|(X,Y
−k) ∼ Nn(Xβk + (Y

−k −XB−k)γk, σ̃kkIn), (3.1)

for k = 1, . . . , q. Here Y−k denotes the response matrix without yk, B−k denotes
the coefficient matrix without βk, σ̃kk = σkk −ΣT

−k,kΣ
−1
−k,−kΣ−k,k, Σ−k,k is the

kth column of Σ without σkk, and Σ−k,−k is the submatrix of Σ without the kth
row and kth column. Most importantly, βk stays the same as in (2.1), and

γk = Σ
−1
−k,−kΣ−k,k = −Ω−k,k

ωkk
, (3.2)

where Ω−k,k is the kth column of Ω without ωkk. Since ωkk is positive, it follows
from (3.2) that− sgn(γk) = sgn(Ω−k,k), where sgn(γk) = (sign(γ1k), . . . , sign(γk−1,k),
sign(γk+1,k), . . . , sign(γq,k))

T with sign(0) = 0 for convenience. Consequently,
sparsity in Ω can be determined by whether γsk = 0 or not, and sparsity in B
can be determined by whether βjk = 0 or not.

To allow joint estimation of the sparse multivariate regression coefficient
matrix and the sparse precision matrix, we then formulate the model in (3.1)
as a series of penalized least squared regressions of each response against the
covariates and other responses. Specifically, for the kth response,

min
βk,γk

∥yk −Xβk − (Y
−k −XB−k)γk∥22 + λ1np1(βk) + λ2np2(γk), (3.3)

where ∥ · ∥2 is the usual Euclidean norm, p1(βk) =
∑p

j=1 ujk|βjk| and p2(γk) =∑
s ̸=k vsk|γsk| are the adaptive Lasso penalties. When B−k in (3.3) is replaced

by an initial consistent estimate B̂
(0)
−k, the final formulation for the proposed

multivariate conditional regression model is

min
B,Γ

q∑
k=1

∥yk−Xβk−(Y
−k−XB̂

(0)
−k)γk∥22+λ1n

q∑
k=1

p1(βk)+λ2n

q∑
k=1

p2(γk). (3.4)
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The following computing algorithm can be employed to solve (3.4).

Algorithm 1:

Step 1. Initialize B̂
(0)

, ujk and vst.

Step 2. For k = 1, . . . , q, solve (3.3) for each β̂k and γ̂k.

As computational remarks, B̂
(0)

can be initialized by the separate Lasso

regression ignoring the dependency structure. The weights ujk and vsk are set as

|β̃jk|−1 and |γ̃sk|−1 as in Zou (2006), where β̃jk and γ̃sk are consistent estimates

of βjk and γsk, respectively. In principle, any consistent estimates can be used

as long as they yield a nice bound on the estimation errors. Here we set β̃jk
and γ̃sk as the solutions of (3.4) with p1(βk) and p2(γk) the Lasso penalties as in

Zhou, van de Geer, and Buhlmann (2009). In practice, when β̃jk or γ̃sk is 0, the

corresponding weight is set to a large number to facilitate the computation.

Since (3.3) is a convex optimization problem, its global minimum can be

obtained by any available adaptive Lasso regression procedure. The coordinate

descent algorithm (Friedman, Hastie, and Tibshirani (2007)) can be employed to

further improve the computational efficiency in solving (6). Importantly, Step 2

fits the adaptive Lasso regression model (6) for each k, and thus can easily be

parallelized and distributed to multiple computing nodes. Thus Algorithm 1 is

scalable and can efficiently handle datasets of large size.

When identifying the sparsity in the conditional graphical model defined by

Ω, the symmetry of Ω implies that sign(ωsk) = sign(ωks), and thus sign(γsk) =

sign(γks). Consequently, additional refinement is necessary to correct the possible

inconsistency in sign(γ̂sk). As in Meinshausen, N. and Bühlmann, P. (2006), one

can set γ̂∧sk = 0 if γ̂sk = 0∧ γ̂ks = 0; a less conservative way takes γ̂∨sk = 0 if γ̂sk =

0∨ γ̂ks = 0. In our numerical experiments, the less conservative way is used and

the resultant selection performance in Ω̂ appears to be satisfactory.

4. Asymptotic Properties

This section states the asymptotic properties of the proposed multivariate

conditional regression model for diverging p and q. Let B∗ = (β∗
jk) be the true

regression coefficient matrix, Ω∗ = (ω∗
sk) be the inverse of the true covariance

matrix Σ∗ = (σ∗
sk), and Γ∗ = (γ∗sk) be defined as in (3.2) with Ω∗. Selection

accuracy is measured by the sign agreement between (B̂, Ω̂) and (B∗,Ω∗), and

estimation accuracy is quantified by the asymptotic normality of n1/2(B̂−B∗).

Without loss of generality, we assume that σ∗
ss = 1 for all s’s, and take

M =

(
n−1XT X 0

0 Σ∗

)
.
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Let Aβ
k = {j : β∗

jk ̸= 0}, Aβ = {(j, k) : j ∈ Aβ
k}, A

ω
k = {s : s ̸= k, ω∗

sk ̸= 0} =

{s : γ∗sk ̸= 0} = Aγ
k , A

ω = {(s, k) : s ∈ Aω
k }, A = Aβ ∪ Aω, and Ak = {j : j ∈

Aβ
k}∪{p+ s : s ∈ Aω

k }. Let d
β
k = |Aβ

k |, d
ω
k = |Aω

k |, dk = |Ak|, and d = maxk{dk}.
Write Λmin(A) and Λmax(A) as the minimum and maximum eigenvalues of a
matrix A, and take λinit and λ1n = λ2n = λn as the tuning parameters used
in the initial Lasso regression and in (3.3), respectively. Some assumptions are
needed.

(A1) There exists a positive constant a1 such that maxj{n−1(xj)Txj} ≤ a1 and
Λmax(Σ

∗) ≤ a1. In addition, n−1/2maxi{xT
i xi} → 0 as both n and p

diverge.

(A2) For some integers 1 ≤ d ≤ (p+ q)/2, m ≥ d, m+ d ≤ p+ q, and a positive
constant k0,

1

K(d,m, k0,M)
:= min

J0⊂{1,...,p+q},|J0|≤d

(
min

α ̸=0,∥αJc
0
∥1≤k0∥αJ0

∥1

(
∥M1/2α∥2
∥αJ0m∥2

))
> 0.

(A3) If ζ∗min = min(j,k)∈A(|β∗
jk|, |ω∗

jk|) and Λmin(d) are defined as below, then

(nζ∗minΛmin(d))
−1O

(
max

(
dλinit(Λmin(d))

1/2K(d, d, 3,M)2, λnd
1/2(Λmin(d))

−1,

n−1d1/2λinit, n
1/2d1/2(log(p+ q))1/2, n−1dλ−2

initK(d, d, 3,M)
))

→ 0.

In Assumption (A1), maxj{n−1(xj)Txj} ≤ a1 is trivial and can be achieved
by normalization (Zhao and Yu (2006)); Λmax(Σ

∗) ≤ a1 is assumed to guard Ω∗

from degeneration (Zhou, van de Geer, and Buhlmann (2009)). The condition

n−1/2maxi{xT
i xi} → 0 is necessary so that Y−k−XB̂

(0)
−k = X(B∗

−k −B̂
(0)
−k)+e−k

can be well bounded. Assumption (A2) is similar to the restricted eigenvalue
assumption in Bickel, Ritov, and Tsybakov (2009) and Zhou, van de Geer, and
Buhlmann (2009). It implies that for any subset S ⊂ {1, . . . , p+ q} with |S| ≤ d,
we have Λmin(MSS) ≥ Λmin(d) > 0, where

Λmin(d) = min
J0⊂{1,...,p+q},|J0|≤d

(
min

α ̸=0,αJc
0
=0

(
∥αTMα∥2
αT
J0
αJ0

))
.

Assumption (A3) is similar to the condition in Zhao and Yu (2006) and Mein-
shausen (2007), and implies that the nonzero β∗

jk and γ∗sk = −ω∗
sk/ω

∗
kk do not

decay too fast to be dominated by the noise terms.

Theorem 1 (Selection consistency). Let (A1)−(A3) hold with m = d and k0 = 3,
the initial β̃jk and γ̃sk set as the solutions of (3.4) with p1(βk) and p2(γk) the
Lasso penalties, and λ1n = λ2n = λn. Then as n, p, and q diverge,

P (sgn(B̂) ̸= sgn(B
∗) or sgn(Ω̂) ̸= sgn(Ω

∗)) −→ 0,
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when n−1/2dλinit → 0, min
(
n−3λ2

ndλ
2
initK(d, d, 3,M)4, nΛmin(d)(ζ

∗
min)

2
)
(log(p+

q))−1 → ∞, and (nΛmin(d))
−1max(λinitd, n

−1/2λinitd(log(p + q))1/2, n−1λ2
initd)

→ 0.

Theorem 2 (Asymptotic normality). If the conditions of Theorem 1 hold, s2k =

σ̃∗
kkα

TM
−1
Ak,Ak

α where α is any |Ak| × 1 vector with unit length, and MAk,Ak
is

the principle submatrix of M defined by Ak, then

n1/2s−1
k αT

((
β̂k
γ̂k

)
−
(
β∗
k

γ∗k

))
d−→ N(0, 1) for any k,

when dλn(p + q)−1 → 0, n−1/2λnd
1/2(Λmin(d)ζ

∗
min)

−1 → 0, and n−1/2λinit

d(Λmin(d))
−1/2 → 0.

Thus, with consistent initial estimates of B and Ω, the proposed multivariate

conditional regression model is able to achieve both selection consistency and the

asymptotic normality for diverging p and q. The condition λ1n = λ2n = λn is

assumed for ease of presentation, similar results can be obtained for different λ1n

and λ2n with slightly modified rate conditions. Both theorems can be established

for fixed p and q following Huang, Ma, and Zhang (2008b), and we omit the

details.

5. Numerical Experiments

This section examines the effectiveness of the proposed multivariate condi-

tional regression model on a variety of simulated examples, and considers an

application to the Glioblastoma Cancer Dataset (TCGA (2008)). The proposed

model with the adaptive Lasso penalty, denoted as aMCR, is compared against

the alternative updating algorithm in (2.3) (ALT; Rothman, Levina, and Zhu

(2010); Yin and Li (2011); Lee and Liu (2012)), and the separate Lasso regres-

sion (SEP; ignoring the dependency structure among yk’s).

The comparison is conducted with respect to the estimation and selection

accuracy of B̂ and Ω̂. The estimation accuracy of B̂ is measured by the Frobenius

norm ∥∆B ∥F =
(∑

i,j(∆B)
2
ij

)1/2
, the matrix 1-norm ∥∆B ∥1 = maxj

∑
i |(∆B)ij |,

and the matrix ∞-norm ∥∆B ∥∞ = maxi
∑

j |(∆B)ij |, where ∆B = B̂−B∗. The

estimating accuracy of Ω̂ is not reported as the primary interest is the sparsity

inferred by Ω̂, and the proposed method does not produce Ω̂ directly. The se-

lection accuracy of B̂ and Ω̂ is measured by the symmetric difference

Dist(Â
β
,Aβ) =

∣∣Âβ\Aβ
∣∣+ ∣∣Aβ\Â

β∣∣
pq

;

Dist(Â
ω
,Aω) =

∣∣Âω\Aω
∣∣+ ∣∣Aω\Â

ω∣∣
q2

,
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where Â
β
and Â

ω
are the active sets defined by B̂ and Ω̂, and | · | denotes the set

cardinality. We also report the specificity (Spe), sensitivity (Sen) and Matthews

correlation coefficient (Mcc) scores, defined as

Spe =
TN

TN+FP
, Sen =

TP

TP+FN
,

Mcc =
TP×TN−FP×FN√

(TP+FN)(TN+FP)(TP+FP)(TN+FN)
,

where TP, TN, FP and FN are the numbers of true positives, true negatives,

false positives and false negatives in identifying the nonzero elements in B̂ or Ω̂,

and “positive” refers to the nonzero entries.

The tuning parameters λ1n and λ2n in (2.3) and (3.3) control the tradeoff

between the sparsity and the estimation accuracy of the multivariate regression

models. In the numerical experiments, we employed the Bayesian information

criterion (BIC; Schwarz (1978)) to select tuning parameters; this is known to per-

form well in tuning penalized log-likelihood models (Wang, Li, and Tsai (2007)).

The BIC criterion for the kth conditional regression model is

Bic(λ1n, λ2n) = ∥yk −Xβ̂k,λ − (Y
−k −XB̂

(0)
−k)γ̂k,λ∥22 + log(n)(|Â

β
k,λ|+ |Â

ω
k,λ|),

where β̂k,λ, γ̂k,λ, Â
β
k,λ, and Â

ω
k,λ are estimated based on (λ1n, λ2n). The selected

(λ1n,k, λ2n,k) are obtained by minimizing Bic(λ1n, λ2n) through a grid search on a

two-dimensional equally-spaced grid (10−3+(s−1)/3, 10−3+(t−1)/3); s, t = 1, . . . , 19.

The selected (λ1n,k, λ2n,k) might be different from one conditional regression

model to another, which appears to yield better performance than restricting

to common tuning parameters. BIC is known to yield suboptimal performance

in high-dimensional setting, and various modifications have been proposed, such

as extended BIC (Chen and Chen (2008)). A referee points out that the condi-

tional likelihood in Bic(λ1n, λ2n) treats Y−k − XB̂
(0)
−k as a fixed covariate, and

thus the model complexity might be more involved than the number of non-

zero coefficients. As an alternative, one could use cross validation (Lee and Liu

(2012)) at the expense of some computation.

5.1. Simulated examples

Two simulations are considered. The first follows the setup in Li and Gui

(2006), Fan, Feng, and Wu (2009), Peng et al. (2009), and Yin and Li (2011).

Each entry of the precision matrix Ω was generated from the product of a

Bernoulli random variable with success rate proportional to 1/q and a uniform

random variable on [−1,−0.5]∪[0.5, 1]. For each row, all off-diagonal entries were

divided by the sum of the absolute value of the off-diagonal entries multiplied by
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3/2. The precision matrix Ω was obtained by symmetrizing the generated matrix

and setting the diagonal entries to 1. Each entry of the coefficient matrix B was

generated from the product of a Bernoulli random variable with success rate pro-

portional to 1/p and a uniform random variable on [−1,−vm]∪ [vm, 1], where vm
was the minimum absolute value of the nonzero entries in Ω. With the generated

Ω and B, each entry of the covariate matrix X was generated independently from

Bern(1/2), and the response vector was generated as Y |X = x ∼ Nq(B
Tx,Ω−1).

Six models were considered, and for each given model, a training sample of n

observations (xi,yi); i = 1, . . . , n was generated.

Model 1: (p, q, n) = (100, 100, 250), where P (Bij ̸=0) = 3/p and P (Ωij ̸=0) = 2/q;

Model 2: (p, q, n) = (50, 50, 250), where P (Bij ̸=0) = 4/p and P (Ωij ̸=0) = 2/q;

Model 3: (p, q, n) = (10, 25, 250), where P (Bij ̸=0) = 3.5/p and P (Ωij ̸=0) = 2/q;

Model 4: (p, q, n) = (200, 1000, 250), where P (Bij ̸=0) = 20/p and P (Ωij ̸=0) = 1.5/q;

Model 5: (p, q, n) = (200, 800, 250), where P (Bij ̸=0) = 25/p and P (Ωij ̸=0) = 1.5/q;

Model 6: (p, q, n) = (200, 400, 150), where P (Bij ̸=0) = 20/p and P (Ωij ̸=0) = 2.5/q.

The second simulations were similar to the first in generating Ω and B. With

the generated Ω and B, each entry of the covariate matrix X was generated

independently standard normal, and the response vector was generated from

Y |X = x ∼ Nq(B
Tx,Ω−1). Two models were considered, and for each given

model, a training sample of n observations (xi,yi); i = 1, . . . , n was generated.

Model 7: (p, q, n) = (10, 25, 250), where P (Bij ̸=0) = 3.5/p and P (Ωij ̸=0) = 2/q;

Model 8: (p, q, n) = (200, 400, 150), where P (Bij ̸= 0) = 20/p and P (Ωij ̸= 0) = 2.5/q.

Each model was replicated 50 times, with the averaged performance measures

and the estimated standard errors reported in Tables 1 and 2. All simulations

were done using R 3.0.1 on a 8-core PC with 3.4 GHz CPU and 16G memory.

The proposed aMCR delivers superior numerical performance, in terms of

estimation and selection accuracy of B and Ω, against other competitors across

all six simulated examples. In Tables 1 and 2, we only report the numerical

performance of ALT on models 2, 3, and 7, due to the computational burden of

running ALT on other models with larger dimensions. Although the performance

of ALT might be improved if some random start algorithm were employed to

partially overcome the issue of local minima, the inefficient alternating algorithm

becomes a major obstacle in applying ALT to analyze large-dimensional datasets.

Here the running times for fitting and tuning ALT and aMCR on Model 3 with
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Table 1. Averaged performance measures regarding B̂ (with estimated stan-
dard errors in parentheses) of aMCR, ALT, and SEP, over 50 replications.

Estimation Accuracy Selection Accuracy

∥∆B∥F ∥∆B∥1 ∥∆B∥∞ Dist Spe Sen Mcc

Model 1: (p, q, n) = (100, 100, 250)

SEP 37.7(0.41) 2.84(0.055) 2.86(0.103) 0.01(0.000) 0.99(0.000) 0.55(0.005) 0.64(0.004)

ALT − − − − − − −
aMCR 18.6(0.30) 2.01(0.040) 2.19(0.055) 0.01(0.000) 1.0(0.000) 0.55(0.005) 0.68(0.004)

Model 2: (p, q, n) = (50, 50, 250)

SEP 19.0(0.261) 2.75(0.062) 2.63(0.048) 0.03(0.001) 0.96(0.001) 0.63(0.007) 0.58(0.005)

ALT 13.2(0.764) 2.49(0.063) 2.53(0.062) 0.07(0.003) 0.86(0.006) 0.77(0.016) 0.46(0.009)

aMCR 10.3(0.260) 2.04(0.062) 2.22(0.048) 0.02(0.001) 0.99(0.000) 0.60(0.006) 0.69(0.005)

Model 3: (p, q, n) = (10, 25, 250)

SEP 4.16(0.073) 2.64(0.053) 1.45(0.036) 0.09(0.003) 0.84(0.006) 0.76(0.008) 0.60(0.007)

ALT 3.94(0.099) 2.64(0.059) 1.48(0.041) 0.11(0.003) 0.79(0.020) 0.81(0.010) 0.59(0.014)

aMCR 3.28(0.074) 2.18(0.058) 1.31(0.039) 0.07(0.002) 0.96(0.003) 0.69(0.009) 0.71(0.007)

Model 4: (p, q, n) = (200, 1000, 250)

SEP 447.2(1.69) 10.37(0.121) 4.32(0.250) 0.01(0.000) 1.0(0.000) 0.56(0.002) 0.63(0.001)

ALT − − − − − − −
aMCR 235.3(0.96) 7.06(0.090) 3.32(0.078) 0.01(0.000) 1.0(0.000) 0.54(0.001) 0.66(0.001)

Model 5: (p, q, n) = (200, 800, 250)

SEP 355.1(1.53) 8.83(0.104) 4.05(0.075) 0.01(0.000) 1.0(0.000) 0.55(0.001) 0.63(0.001)

ALT − − − − − − −
aMCR 186.4(0.86) 6.19(0.090) 3.28(0.063) 0.01(0.000) 1.0(0.000) 0.54(0.001) 0.66(0.001)

Model 6: (p, q, n) = (200, 400, 150)

SEP 177.6(0.96) 5.34(0.070) 4.15(0.213) 0.01(0.000) 1.0(0.000) 0.56(0.002) 0.63(0.002)

ALT − − − − − − −
aMCR 93.6(0.71) 3.80(0.063) 3.01(0.057) 0.01(0.000) 1.0(0.000) 0.55(0.002) 0.66(0.001)

Model 7: (p, q, n) = (10, 25, 250)

SEP 1.07(0.021) 1.34(0.028) 0.74(0.016) 0.09(0.002) 0.80(0.005) 0.90(0.005) 0.67(0.006)

ALT 1.07(0.035) 1.36(0.027) 0.76(0.017) 0.10(0.006) 0.72(0.024) 0.92(0.008) 0.63(0.017)

aMCR 0.68(0.017) 1.05(0.029) 0.59(0.015) 0.04(0.002) 0.93(0.003) 0.87(0.005) 0.80(0.006)

Model 8: (p, q, n) = (200, 400, 150)

SEP 173.5(0.57) 8.96(0.081) 5.75(0.053) 0.06(0.001) 0.88(0.000) 0.87(0.001) 0.57(0.001)

ALT − − − − − − −
aMCR 111.0(0.34) 6.92(0.047) 4.62(0.058) 0.04(0.000) 0.94(0.000) 0.85(0.001) 0.68(0.001)

192 tuning parameters were127.7 seconds and 17.8 seconds, respectively. On

Model 4, the running time for aMCR with 192 tuning parameters was around

30 minutes, whereas we could not reach results on ALT. The computing time of

aMCR can be further improved if parallelized over more computing nodes.

In Tables 1 and 2, the advantage of aMCR and ALT over SEP demonstrates

that inclusion of the covariance matrix in (2.3) and (3.3) is helpful in identifying

the sparsity in B and Ω and thus in estimating B. As for the selection accuracy,

aMCR yields higher Spe and Mcc but lower Sen in most examples. This is due



SPARSE MULTIVARIATE REGRESSION AND CONDITIONAL GRAPHICAL MODELS 841

Table 2. Averaged performance measures regarding Ω̂ (with estimated stan-
dard errors in parentheses) of aMCR, ALT, and SEP, over 50 replications.

Selection Accuracy
Dist Spe Sen Mcc

Model 1: (p, q, n) = (100, 100, 250)
SEP 0.09(0.001) 0.82(0.001) 0.77(0.006) 0.31(0.003)
ALT − − − −
aMCR 0.02(0.000) 0.99(0.000) 0.47(0.007) 0.61(0.005)

Model 2: (p, q, n) = (50, 50, 250)
SEP 0.09(0.001) 0.82(0.002) 0.77(0.006) 0.41(0.004)
ALT 0.05(0.009) 0.93(0.021) 0.52(0.028) 0.53(0.016)
aMCR 0.05(0.001) 0.99(0.000) 0.50(0.007) 0.64(0.005)

Model 3: (p, q, n) = (10, 25, 250)
SEP 0.09(0.003) 0.83(0.004) 0.77(0.010) 0.53(0.007)
ALT 0.11(0.013) 0.83(0.038) 0.57(0.038) 0.47(0.023)
aMCR 0.08(0.022) 0.99(0.012) 0.54(0.009) 0.65(0.007)

Model 4: (p, q, n) = (200, 1000, 250)
SEP 0.07(0.000) 0.86(0.000) 0.73(0.001) 0.12(0.000)
ALT − − − −
aMCR 0.03(0.000) 1.0(0.000) 0.38(0.002) 0.52(0.001)

Model 5: (p, q, n) = (200, 800, 250)
SEP 0.08(0.000) 0.85(0.000) 0.73(0.002) 0.13(0.000)
ALT − − − −
aMCR 0.00(0.000) 1.0(0.000) 0.39(0.002) 0.53(0.002)

Model 6: (p, q, n) = (200, 400, 150)
SEP 0.08(0.000) 0.83(0.000) 0.75(0.002) 0.17(0.000)
ALT − − − −
aMCR 0.01(0.000) 1.0(0.000) 0.41(0.003) 0.55(0.002)

Model 7: (p, q, n) = (10, 25, 250)
SEP 0.09(0.002) 0.83(0.002) 0.77(0.009) 0.52(0.006)
ALT 0.09(0.010) 0.89(0.027) 0.52(0.037) 0.49(0.017)
aMCR 0.16(0.002) 0.90(0.002) 0.70(0.010) 0.57(0.007)

Model 8: (p, q, n) = (200, 400, 150)
SEP 0.07(0.000) 0.86(0.000) 0.58(0.002) 0.15(0.001)
ALT − − − −
aMCR 0.08(0.000) 0.92(0.000) 0.51(0.003) 0.19(0.001)

to the fact that sparse models are preferred by the less conservative rule γ̂∨,

BIC criterion, and aMCR itself when the correlations among the responses are

positive (Lee and Liu (2012)). Although sparser models are produced, aMCR

yields smaller symmetric difference than SEP. As for the estimation accuracy of

B, it is clear that aMCR outperforms SEP under all three metrics of B̂−B∗. This

suggests that the proposed model can improve not only the accuracy of identified

nonzero entries in the precision matrix, but also the accuracy of estimating the
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Table 3. Numerical experiments on Model 3 for the effect of various factors
on aMCR. The performance measures are averaged over 50 replications.

Estimation Accuracy Selection Accuracy

∥∆B∥F ∥∆B∥1 ∥∆B∥∞ Dist Spe Sen Mcc

BIC 3.28(0.074) 2.18(0.058) 1.31(0.039) 0.07(0.002) 0.96(0.003) 0.69(0.009) 0.71(0.007)

CV 3.67(0.088) 2.51(0.063) 1.51(0.036) 0.11(0.003) 0.79(0.010) 0.78(0.010) 0.56(0.010)

λ̂∨ 3.28(0.074) 2.18(0.058) 1.31(0.039) 0.07(0.002) 0.96(0.003) 0.69(0.009) 0.71(0.007)

λ̂∧ 3.16(0.072) 2.20(0.058) 1.30(0.037) 0.07(0.003) 0.94(0.003) 0.72(0.009) 0.69(0.007)

Table 4. Averaged performance measures regarding Ω̂ of aMCR, aMCR1,
ALT and SEP, over 50 replications of Model 3. Here aMCR1 is the solution
of (2.3) subject to the constraints of the selected non-zero entries by aMCR.

Estimation Accuracy
∥∆B∥F ∥∆B∥1 ∥∆B∥∞

SEP 1.98(0.033) 1.13(0.028) 1.13(0.028)
ALT 2.05(0.066) 1.19(0.065) 1.19(0.065)
aMCR 1.75(0.028) 1.05(0.025) 1.05(0.025)
aMCR1 1.94(0.043) 1.09(0.027) 1.09(0.027)

multivariate regression coefficient matrix.

Through additional numerical experiments on Model 3, comparisons between

BIC or cross validation (CV), and conservative γ̂∧ or less conservative γ̂∨ are

summarized in Table 3. When aMCR is equipped with either CV or conservative

γ̂∧, the sensitivity can be improved but other performance measures including

the specificity might deteriorate. In practice, it is recommended that the model

selection criterion and the way of setting γ̂ need to be specified based on the

preference between the sensitivity and specificity.

It is of interest to examine the effect of B̂ on estimation of Ω, which can be

obtained by solving (2.3) after plugging in B̂. Table 4 summarizes the estimation

performance measures regarding Ω̂ on Model 3. It is evident that the obtained Ω̂
by aMCR yields the smallest estimation error, followed by aMCR1 which solves

(2.3) subject to the constraints of the selected non-zero entries by aMCR.

5.2. An application

We applied the proposed multivariate conditional regression model to a

Glioblastoma multiforme (GBM) cancer dataset studied by the Cancer Genome

Atlas (TCGA) Research Network (TCGA (2008); Verhaak et al. (2010)). GBM is

the most common and most aggressive malignant primary brain tumor in adults.

The original dataset collected by TCGA consists of 202 samples, 11,861 gene

expression values and 534 microRNA expression values. One primary goal of the

study was to regress the microRNA expressions on the gene expressions and to
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Table 5. Averaged predictive square errors, numbers of selected genes and
their estimated standard errors over 50 replications.

Pse Num.gene
SEP 1.21(0.011) 74.9(2.22)
ALT − −
aMCR 1.19(0.012) 65.2(1.75)

model how the microRNAs regulate the gene expressions. It is also of interest to

construct the underlying network among the microRNAs. The proposed model

can achieve these goals simultaneously, in that the sparse coefficient matrix re-

veals the regulatory relationship among the microRNA and gene expressions,

and the sparse precision matrix can be interpreted as the dependency structure

among the microRNAs.

Some preliminary data cleaning was conducted to remove missing values and

to prescreen the less expressed genes and microRNAs as in TCGA (2008) and

Lee and Liu (2012). Thus 6 samples with missing values were removed, and 196

complete samples remained in the dataset. Further, the genes and microRNAs

were sorted based on their corresponding median absolute deviation (MAD), and

the top 500 genes and top 20 microRNAs with large MADs were selected.

The dataset was randomly split into a training set with 120 samples and a

test set with 76 samples. On the training set, each method was fitted to estimate

the multivariate regression coefficient matrix and the precision matrix. Since the

truth is unknown, estimation performance was measured by the predictive square

error (Pse) estimated on the test set,

Pse = |test set|−1
∑

test set

∥Yi − Ŷi∥2F .

The numbers of the selected genes by each method are also reported.

The averaged Pse and numbers of selected genes, as well as their estimated

standard errors based on 50 replications, are reported in Table 5.

The proposed aMCR yields sparser multivariate regression model and achieves

smaller Pse than the separate regression model. This agrees with the conclusion

in Lee and Liu (2012), and the sparser regression model is due to the fact that the

joint estimation method is able to obtain more shrinkage when strong positive

correlations are present among the selected microRNAs. The numerical perfor-

mance of ALT is not reported due to the computational burden, but we note

that in Lee and Liu (2012), the Pse of the ALT was 1.23 (0.032) and the number

of selected genes was 78.0 (32.15) based on a slightly smaller dataset.

Figure 1 displays the estimated conditional dependency structure among the

microRNAs based on the estimated precision matrix of the microRNAs. Com-

pared with the results in Lee and Liu (2012), the graphical structure in Figure
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Figure 1. The dependency network of the selected microRNAs based on the
estimated sparse precision matrix.

1 captures the strong positive correlations among the selected microRNA pairs,

including the tuple of hsa.mir.136, hsa.mir.376a and hsa.mir.377. It produces a

sparser dependency structure than that in Lee and Liu (2012), and rules out more

microRNA pairs with weak correlations, such as hsa.mir.bart19 and hsa.mir.124a

(with pairwise correlation −0.12).

6. Summary

This article proposes a method for jointly estimating the multivariate regres-

sion model and the dependency structure among the multiple responses. The

method is formulated as a penalized conditional log-likelihood function, leading

to efficient computation and superior numerical performance. Asymptotic esti-

mation and selection consistencies are established for diverging dimensions and

numbers of responses. The penalized conditional log-likelihood formulation can

be extended to a general framework without the Gaussian distributional assump-

tion of Finegold and Drton (2011) and Lee et al. (2012). In our application, as

pointed out in Lee et al. (2012), there are multiple subtypes of microRNAs in the

GBM dataset, and hence a Gaussian mixture distribution is more reasonable for

modeling the distribution of the microRNAs. Future work along this direction is

currently under investigation.
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Appendix

Proof of Theorem 1. We establish upper bounds for P (sgn(β̂k) ̸= β∗
k) and

P (γ̂k ̸= γ∗k), where β̂k and γ̂k are the solutions to

min
βk,γk

∥yk −Xβk − ŷ−k
γk∥2 + λn

( p∑
j=1

ujk|βjk|+
∑
s ̸=k

vsk|γsk|
)
, (A.1)

where ŷ−k
= y−k −XB̂

(0)
−k is a surrogate of e−k = y−k −XB∗

−k. Based on the
model assumption (3.1), we have

yk = Xβ∗
k + ŷ−k

γ∗k + ξk + ϵk, (A.2)

where ξk = (e−k − ŷ−k
)γ∗k = X(B̂

(0)
−k − B∗

−k)γ
∗
k and ϵk ∼ N(0n, σ̃

∗
kk In). If

ζ = (βT
k , γ

T
k )

T is the augmented coefficient vector, and Z = (X, ŷ
−k

) is the
augmented covariate matrix, r = (uTk , v

T
k )

T , (A.1) can be simplified to

min
β̃

∥yk − Zζ∥2 + λn

p+q−1∑
j=1

rj |ζj |. (A.3)

We now verify the conditions (A.4) and (A.5) in Lemma A.1. For simplicity,
let

T =
{
max
j,s

n−1(X
j)Tes ≤ a21(8n

−1 log(p+ q))1/2
}
,

and it follows from the proof of Lemma 9.1 in Zhou, van de Geer, and Buhlmann
(2009) that P (T ) ≥ 1− (p+ q)−2. Let Z̃ = (X, e−k), M−k be the submatrix of

M without the (p+ k)th row and column, ∆ = n−1Z̃
T
Z̃−M−k, and

Yk =
{
max
j,s

|∆js| ≤ 8n−1/2(log(p+ q))1/2
}
.

It then follows from Lemma 9.3 in Zhou, van de Geer, and Buhlmann (2009) that
P (Yk) ≥ 1− (p+ q)−2. Since Λmin(d) is asymptotically larger than n−1/2(log(p+
q))1/2, there exists a constant c1 > 0 such that on the set T ∩ Yk,

Λmin

(
n−1

Z̃
T
Ak

Z̃Ak

)
≥ 2c1Λmin(d),

for any subset A ⊂ {1, . . . , p + q}\{p + k} with |A| ≤ d. Furthermore, if A† =
{1 ≤ j ≤ p : j ∈ A} and A‡ = {1 ≤ s ≤ q : p+ s ∈ A}, then∣∣Λmin(n

−1
Z
T
AZA)− Λmin(n

−1
Z̃
T
AZ̃A)

∣∣
≤ ∥n−1

Z
T
AZA − n−1

Z̃
T
AZ̃A∥2 ≤ ∥n−1

Z
T
AZA − n−1

Z̃
T
AZ̃A∥∞

≤ ∥n−1ŷT
A‡XA†∥∞ + ∥n−1

X
T
A†

ŷA‡∥∞ + ∥n−1ŷT
A‡

ŷA‡ − n−1eTA‡
eA‡∥∞,
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where ∥M∥2 is the operator norm of a matrix M , and ∥M∥∞ = maxi
∑

j |Mij |.
But since ŷ−k

= y−k −XB̂
(0)
−k with B̂

(0)
−k the Lasso estimate, we have on the set

T ,

max(∥n−1ŷT
A‡XA†∥∞, ∥n−1

X
T
A†

ŷA‡∥∞) ≤ O(n−1λinitd).

Conditional on the set T , it follows from (A1) that

∥n−1ŷT
A‡

ŷA‡ −n−1eTA‡
eA‡∥∞ ≤ O(n−1dλinitn

−1/2(log(p+q))1/2)+O(n−2dλ2
init).

Therefore, on the set T ∩ Yk,

Λmin

(
n−1

Z
T
Ak

ZAk

)
≥ Λmin

(
n−1

Z̃
T
Ak

Z̃Ak

)
−
∣∣Λmin(n

−1
Z
T
AZA)− Λmin(n

−1
Z̃
T
AZ̃A)

∣∣
≥ c1Λmin(d),

for sufficiently large n, since the cardinality of Ak is bounded by d and Λmin(d) is

asymptotically larger than max(n−1λinitd, n
−3/2λinitd(log(p+ q))1/2, n−2λ2

initd).

It follows from Bickel, Ritov, and Tsybakov (2009) that under Assumption

(A2) with m = d and k0 = 3,

δAk
:= max

j∈Ak

|ζ̃j − ζ∗j | ≤ 4K(d, d, 3,M)2n−1d1/2λinit;

δAc
k
:= max

j∈Ac
k

|ζ̃j − ζ∗j | ≤ 16K(d, d, 3,M)2n−1d1/2λinit,

on set T , where ζ̃j is the solution of the Lasso regression. Therefore,

rmin(Ac
k)

rmax(Ak)
=

minj∈Ak
|ζ̃j |

maxj∈Ac
k
|ζ̃j |

≥ ζ∗min − δAk

δAc
k

,

where ζ∗min = minj∈Ak
|ζ∗j |. Then it follows from Lemma 10.3 of Zhou, van de

Geer, and Buhlmann (2009) that on set Yk, there exists a positive constant c2
such that ∥ZT

Ac
k
ZAk

(ZT
Ak

ZAk
)−1∥∞ ≤ c2d

1/2(Λmin(d))
−1/2. Therefore, on the set

T ∩ Yk, when n is sufficiently large,

∥ZT
Ac

k
ZAk

(Z
T
Ak

ZAk
)−1∥∞ ≤

rmin(Ac
k)

rmax(Ak)
(1− η),

for some 0 < η < 1, provided that (ζ∗min)
−1n−1dλinit(Λmin(d))

−1/2K(d, d, 3,M)2

→ 0.

Finally, from Lemma A.1, for each k = 1, . . . , q,

P (sgn(ζ̂) ̸= sgn(ζ∗)) = O((p+ q)−2),

provided n−1dλinit → 0 and min
(
n−1λ2

nr
2
min(Ac

k), nΛmin(d)(ζ
∗
min)

2
)
(log(p+q))−1

→ ∞. Consequently, P (sgn(B̂) ̸= sgn(B) or sgn(Ω̂) ̸= sgn(Ω)) ≤ qO((p+ q)−2),

which implies the desired result.
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Lemma A.1. Consider (A.3), where the design matrix Z satisfies

Λmin

(
n−1

Z
T
Ak

ZAk

)
≥ c1Λmin(d) > 0, (A.4)

∥ZT
Ac

k
ZAk

(Z
T
Ak

ZAk
)−1∥∞ ≤

rmin(Ac
k)

rmax(Ak)
(1− η) (A.5)

for some constants c1 > 0 and 0 < η < 1, rmin(Ac
k) = minj∈Ac

k
rj, and rmax(Ak)

= maxj∈Ak
rj. If ζ∗min = minj |ζ∗j | is asymptotically larger than (Λmin(d))

−1

O
(
max

(
n−1λnd

1/2rmax(Ak), n−1d1/2λinit, n−1/2d1/2(log(p+ q))1/2, n−2dλ−2
init

K(d, d, 3,M)
))
, then P (sgn(ζ̂) ̸= sgn(ζ∗)) = O((p + q)−2), provided n−1/2dλinit

→ 0 and min
(
n−1λ2

nr
2
min(Ac

k), nΛmin(d)(ζ
∗
min)

2
)
(log(p+ q))−1 → ∞.

Proof of Lemma A.1. Let zj be the jth column of Z. It follows from the

Karush-Kuhn-Tucker condition that ζ̂ must satisfy

(zj)T (yk − Zζ) = λnrj sign(ζj), if ζ̂j ̸= 0; (A.6)∣∣(zj)T (yk − Zζ)
∣∣ ≤ λnrj , if ζj = 0. (A.7)

Consider the equation based on ZAk
,

Z
T
Ak

yk − Z
T
Ak

ZAk
ζ̄Ak

= λns̄Ak
,

where s̄Ak
=
(
rj sign(ζ

∗
j ); j ∈ Ak

)
. By (A.2), it has the solution

ζ̄Ak
= ζ∗Ak

+ (Z
T
Ak

ZAk
)−1(Z

T
Ak

(ξk + ϵk)− λns̄Ak
). (A.8)

If sgn(ζ̄Ak
) = sgn(ζ∗Ak

), ζ̂ with (ζ̂j)j∈Ak
= ζ̄Ak

, (ζ̂j)j /∈Ak
= 0 is a solution of

(A.6)-(A.7). Therefore, sgn(ζ̂) = sgn(ζ∗) if

sgn(ζ̄Ak
) = sgn(ζ∗Ak

), and
∣∣(zj)T (yk − ZAk

ζ̄Ak
)
∣∣ ≤ λnrj , if j /∈ Ak.

This statement is similar to Proposition 1 of Zhao and Yu (2006) and (S.5) of

Huang, Ma, and Zhang (2008b). It implies that

P (sgn(ζ̂) ̸= sgn(ζ∗)) ≤ P (sgn(ζAk
) ̸= sgn(ζ∗Ak

))

+P (|(zj)T (yk − ZAk
ζ̄Ak

)| > λnrj , ∃ j /∈ Ak).

We now bound the probabilities on the right hand side conditional on the

set T . For brevity, we use P (·) to denote the conditional probability given T in

the remainder of the proof. By (A.8),

P (sgn(ζ̄Ak
) ̸= sgn(ζ∗Ak

)) ≤ P
(
|ζ∗j − ζ̄j | ≥ |ζ∗j |, ∃ j ∈ Ak

)
,

≤ P
(∣∣1Tj (ZT

Ak
ZAk

)−1
Z
T
Ak

ϵk
∣∣ ≥ ζ∗min/2

)
+P
(∣∣1Tj (ZT

Ak
ZAk

)−1
Z
T
Ak

ξk
∣∣+ ∣∣1Tj (ZT

Ak
ZAk

)−1λns̄Ak

∣∣ ≥ ζ∗min/2
)
,
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where 1j is a vector of zeros except the jth component being 1 and, by (A.4),∣∣1Tj (ZT
Ak

ZAk
)−1λns̄Ak

∣∣ ≤ (c1Λmin(d)
)−1∥n−1λns̄Ak

∥

≤
(
c1Λmin(d)

)−1
n−1λnd

1/2rmax(Ak).

From the definition of T and the initial Lasso estimates, that∣∣1Tj (ZT
Ak

ZAk
)−1

Z
T
Ak

ξk
∣∣ ≤ ∥(ZT

Ak
ZAk

)−1
Z
T
Ak

ξk∥

≤
(
c1Λmin(d)

)−1∥n−1
Z
T
Ak

ξk∥ ≤
(
c1Λmin(d)

)−1(∥n−1
X

T

Aβ
k

ξk∥+ ∥n−1ŷT
Aω

k
ξk∥
)

≤ (c1Λmin(d))
−1
(
O(n−1d1/2λinit) +O(n−1/2d1/2(log(p+ q))1/2)

+O(n−2dλ2
initK(d, d, 3,M))

)
.

Since ζ∗min/2 is asymptotically larger than the upper bounds in the last two

inequalities and

n−1∥1Tj (n−1
Z
T
Ak

ZAk
)−1

Z
T
Ak

∥ ≤ n−1/2(Λmin(n
−1

Z
T
Ak

ZAk
))−1/2

≤ n−1/2
(
c1Λmin(d)

)−1/2
,

there exists some positive constant c3 such that for sufficiently large n,

P (sgn(ζ̄Ak
) ̸= sgn(ζ∗Ak

)) ≤ P
(∣∣1Tj (ZT

Ak
ZAk

)−1
Z
T
Ak

ϵk
∣∣ ≥ 1

2
ζ∗min, ∃ j ∈ Ak

)
≤ c3d exp

(
− nc1Λmin(d)

(ζ∗min)
2

4σ̃∗
kk

)
.

To bound P (|(zj)T (yk − ZAk
ζ̄)| > λnrj , ∃ j /∈ Ak), we have

P (|(zj)T (yk − ZAk
ζ̄)| > λnrj , ∃ j /∈ Ak)

= P
(
|(zj)T (HAk

(ξk + ϵk) + ZAk
(Z

T
Ak

ZAk
)−1λns̄Ak

)| > λnrj , ∃ j /∈ Ak

)
≤ P

(
|(zj)THAk

(ξk + ϵk)|+ |(zj)TZAk
(Z

T
Ak

ZAk
)−1λns̄Ak

| ≥ λnrj , ∃ j /∈ Ak

)
,

where HAk
= I−ZAk

(ZT
Ak

ZAk
)−1ZT

Ak
. Now (A.5) implies that

|(zj)TZAk
(ZT

Ak
ZAk

)−1λns̄Ak
| ≤ λnrj(1− η) for any j ∈ Ac

k, and therefore,

P (|(zj)T (yk − ZAk
ζ)| > λnrj , ∃ j /∈ Ak)

≤ P
(
|(zj)THAk

(ξk + ϵk)| ≥ ηλnrj , ∃ j /∈ Ak

)
.

By Lemma 11.3 of Zhou, van de Geer, and Buhlmann (2009) and the fact that

σ∗
jj = 1, there exists a positive constant c4 such that P (maxj n

−1(zj)T zj ≥
c4) ≤ (p+ q)−2. Conditional on the set {maxj n

−1(zj)T zj ≤ c4}, ∥(zj)THAk
∥ ≤
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(c4n)
1/2, ∥ξk∥ ≤ O(n−1/2dλinit) by (A1). Since n−1/2dλinit = o(1), there exists

some positive constant c5 such that

P (|(zj)T (yk − ZAk
ζ)| > λnrj , ∃ j /∈ Ak) ≤ c5(p+ q) exp

(
−
η2λ2

nr
2
min(Ac

k)

2c4nσ̃∗
kk

)
.

Combining these results, for sufficiently large n,

P (sgn(ζ̂) ̸= sgn(ζ∗))

≤ (p+q)−2+c3d exp

(
−nc1Λmin(d)(ζ

∗
min)

2

2σ̃∗
kk

)
+c5(p+q) exp

(
−
η2λ2

nr
2
min(Ac

k)

2c4nσ̃∗
kk

)
,

and the desired result follows.

Proof of Theorem 2. The solution of (3.3) is the same as that of (A.3), where

ζ̂ = (β̂T
k , γ̂

T
k )

T and satisfies that−2(zj)T (yk−Z ζ̂)+λnrj sign(ζ̂j) = 0, for any j ∈
Ak. Let ŝAk

= (rj sign(ζ̂j); j ∈ Ak), then −2ZT
Ak

(yk − Z ζ̂) + λnŝAk
= 0, or

equivalently,

1√
n
Z
T
Ak

ZAk
(ζ̂Ak

− ζ∗Ak
) =

1√
n
Z
T
Ak

ϵk +
1√
n
Z
T
Ak

ξk −
λn

2
√
n
ŝAk

− 1√
n
Z
T
Ak

ZAc
k
ζ̂Ac

k
.

By the proof of Theorem 1, on the set T ∩Yk, Λmin(n
−1ZT

Ak
ZAk

) ≥ c1Λmin(d)

> 0. If Σk = n−1ZT
Ak

ZAk
, on the set T ∩ Yk, for any |Ak| × 1 vector α,

√
ns−1

k αT (ζ̂Ak
− ζ∗Ak

) =
1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ϵk +
1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ξk

− λn

2
√
n
s−1
k αT

Σ
−1
k ŝAk

− 1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ZAc
k
ζ̂Ac

k
.

We show that on the set T ∩ Yk the last three components converge to 0 in

probability uniformly with respect to α. First, the proof of Theorem 1 implies

that P (ζ̂Ac
k
= 0) ≥ 1− (p+ q)−2 → 1, and thus

P

(
1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ZAc
k
ζ̂Ac

k
= 0

)
−→ 1.

Second, by (A3) and the fact that ∥α∥ = 1,∣∣ 1√
n
λns

−1
k αT

Σ
−1
k ŝAk

∣∣ ≤ 1√
n
λns

−1
k (Λmin(Σk))

−1∥α∥∥ŝAk
∥

≤ 1√
n
λns

−1
k (c1Λmin(d))

−1d1/2(ζ∗min)
−1 −→ 0,
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except on an event with probability tending to zero. Third, on the set T ∩ Yk,∣∣ 1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ξk
∣∣ ≤ s−1

k

∥∥∥∥ 1√
n
αT

Σ
−1
k Z

T
Ak

∥∥∥∥ ∥ξk∥ = s−1
k (αT

Σ
−1
k α)1/2∥ξk∥

≤ s−1
k (c1Λmin(d))

−1/2∥ξk∥ −→ 0,

where ∥ξk∥ ≤ O(n−1/2dλinit), as in the proof of Theorem 1.

Therefore, on the set T ∩ Yk,

√
ns−1

k αT (ζ̂Ak
− ζ∗Ak

) =
1√
n
s−1
k αT

Σ
−1
k Z

T
Ak

ϵk + op(1),

where (1/
√
n)s−1

k αTΣ
−1
k ZT

Ak
ϵk

d→ N(0, 1) by verifying the conditions of the

Lindeberg-Feller Central Limit Theorem as in Huang, Horowitz, and Ma (2008a).

Furthermore, on the set (T ∩Yk)
c, |

√
ns−1

k αT (ζ̂Ak
−ζ∗Ak

)| ≤ s−1
k Op((p+q+dλn))

by Theorem 1 of Huang, Horowitz, and Ma (2008a), and P ((T ∩Yk)
c) ≤ (p+q)−2,

by the proof of Theorem 1. As dλn = o(p+ q), the desired asymptotic normality

follows.
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