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Abstract: We introduce a regularization approach to multivariate spatial covari-

ance estimation based on a spatial random effect model. The proposed method

is flexible to incorporate not only spatial non-stationarity but also asymmetry in

spatial cross-covariances. By introducing a regularization term in the objective

function, our method automatically produces a low-rank covariance estimate that

effectively controls estimation variability even when the number of parameters is

large. In addition, we offer a computationally efficient method for solving the

regularization problem and obtaining the optimal spatial predictions that require

no high-dimensional matrix inversion. Some numerical examples are provided to

demonstrate the effectiveness of the proposed method.
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1. Introduction

Multivariate spatial data are more and more common. Multivariate geosta-

tistical models are increasingly required in many environmental, atmospheric,

and geophysical sciences. In many situations, data are sampled at several lo-

cations and, at each location, multiple variables are observed. Not only does

each variable exhibit some spatial dependence, but spatial interactions among

different variables are often seen. Clearly, it is of interest to develop a flexible

multivariate geostatistical model to account for spatial covariances among obser-

vations of individual variables, and spatial cross-covariances among observations

of different variables. Consider a p-variate spatial process {y(s) : s ∈ D} defined

on a spatial domain D ⊂ Rd, where y(s) = (y1(s), . . . , yp(s))
′ and d is a positive

integer. The central issue of multivariate geostatistical models lies in modeling

the spatial cross-covariance function:

Cij(s, s
∗) ≡ cov(yi(s), yj(s

∗)); i, j = 1, . . . , p, s, s∗ ∈ D.

Many stationary multivariate spatial cross-covariance estimation methods

have been developed. A popular construction strategy is the linear model

of coregionalization (Goulard and Voltz (1992); Schmidt and Gelfand (2003);
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Marchant and Lark (2007); Zhang (2007)), which forms a stationary multivari-
ate process as a sum of several basic univariate processes. Apanasovich and
Genton (2010) developed a latent-dimension approach. Recently, a parametric
multivariate Matérn covariance model (Gneiting, Kleiber and Schlather (2010);
Apanasovich, Genton and Sun (2012)) was developed with its cross-covariances
given by

CM
ij (s− s∗) ≡ cov(yi(s), yj(s

∗)) = σijM(s− s∗; νij , αij), (1.1)

where

M(h; ν, α) =
1

2ν−1Γ(ν)
(α∥h∥)νKν(α∥h∥); h ∈ Rd,

and Kν is a modified Bessel function of the second kind with order ν. The σij ’s,
νij ’s, and αij ’s have to satisfy some conditions to ensure a valid cross-covariance
model. An approach to develop an asymmetric multivariate spatial model from
a symmetric multivariate spatial model was provided by Li and Zhang (2011).

On the other hand, many non-stationary multivariate spatial models have
also been developed. For example, Gelfand et al. (2004) incorporated non-
stationarity via spatial varying coregionalizations. Kleiber and Nychka (2012)
allowed the parameters of the multivariate Matérn covariance class to vary with
locations. Approaches based on factor analysis can be found in Wang and Wall
(2003); Christensen and Amemiya (2003); Krzanowski and Bailey (2007); Fur-
rer and Genton (2011). Recently, a multivariate version of predictive processes
(Banerjee et al. (2008)) was carried out by Ren and Banerjee (2013). However,
neither of these methods is computationally very efficient. Kernel convolution is
another widely used approach (Ver Hoef and Barry (1998); Ver Hoef, Cressie and
Barry (2004); Majumdar and Gelfand (2007)). Although these methods require
no matrix inversion, their performance depends on locations of knots and the
form of the kernel, and choices of them are not clear (see e.g., Fanshawe and
Diggle (2012)).

Multivariate geostatistical methods that are both flexible and computation-
ally fast are still in need of improvement. In this article, we develop a non-
stationary multivariate spatial covariance estimation method in a spatial ran-
dom effect model framework (Banerjee, Carlin and Gelfand (2004)). We propose
to estimate the model parameters via a regularization approach when a sam-
ple covariance matrix corresponding to some spatial locations is available. Our
method in the univariate case can be regarded as a regularized version of fixed
rank kriging (Cressie and Johannesson (2008)). The regularization helps to re-
duce estimation variability effectively, which in turn allows for a more flexible
model with a larger number of parameters. The proposed method is able to
well approximate many non-separable, asymmetric, or non-stationary multivari-
ate spatial covariance functions. It is computationally fast, avoiding the direct
inversion of a high-dimensional matrix.
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The rest of the paper is organized as follows. Section 2 introduces our model

and the proposed regularization method for univariate processes, which is then

extended to multivariate processes in Section 3. Some simulation examples are

described in Section 4.

2. Univariate Models

Consider a sequence of independent spatial processes, {y(s, t) : s ∈ D},
t = 1, . . . , T , defined on a d-dimensional spatial domain D ⊂ Rd, T > 1. The

processes are assumed to have a common spatial covariance function, C(s, s∗) =

cov(y(s, t), y(s∗, t)). Suppose that we observe data zt ≡ (z(s1, t), . . . , z(sn, t))
′,

t = 1, . . . , T , at s1, . . . , sn ∈ D with additive noise εt according to

zt = yt + εt; t = 1, . . . , T, (2.1)

where yt ≡ (y(s1, t), . . . , y(sn, t))
′, εt ∼

(
0, σ2In

)
is uncorrelated with yt, and

the εt’s are mutually uncorrelated. We assume that σ2 is known. The goal

is to estimate C(·, ·) based on the data z1, . . . , zT , from which the best linear

unbiased prediction of {y(s, t) : s ∈ D} for t = 1, . . . , T , can be obtained. Here a

stationary assumption is not made nor is a parametric structure is assumed for

C(·, ·). Throughout the paper, the mean of y(·, ·) is assumed known and, without

loss of generality, to be 0.

2.1. The proposed model

We consider a spatial random effect model for the latent process y(·, ·):

y(s, t) = w′
tf(s) + ξ(s, t) =

K∑
k=1

wk(t)fk(s) + ξ(s, t), (2.2)

where f(s)=(f1(s), . . . , fK(s))′ consists of K≤n known basis functions, f1(·), . . .,
fK(·) such that F ≡ (f(s1), . . . , f(sn))

′ is an n × K matrix of rank K, wt =

(w1(t), . . . , wK(t))′, t = 1, . . . , T , are uncorrelated random effects with E(wt) = 0

and var(wt) = M, and ξ(·, ·) is a white-noise process with variance v2. The ξ(·, ·)
process captures the variation not explained by w′

tf(s) when K is small. It

follows that var(yt) = FMF′+ v2In and V ≡ var(zt) = FMF′+ v2In+σ2In, for

t = 1, . . . , T . The parameters that need to be estimated are M and v2, where M

is required to be non-negative definite, denoted by M ≽ 0.

2.2. Parameter estimation

With Z = (z1, . . . , zT ), the sample covariance matrix S = ZZ′/T is an un-

biased estimate of V, but a poor estimate of V when n is large or T is small.

Although the proposed model helps to reduce estimation variability, the unknown
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parameters in M still have high complexity unless K is very small. To reduce the

estimation variability further while suitably controlling the bias, we consider a

regularization approach that has been proven effective in a wide range of statis-

tical problems; see Bickel and Li (2006) and the references therein. We propose

to estimate M and v2 by regularizing the eigenvalues of FMF′ in terms of the

objective function,

ϕ(M, v2) =
1

2

∥∥FMF′ + v2In + σ2In − S
∥∥2
F
+ τ

∥∥FMF′∥∥
∗ , (2.3)

over all M ≽ 0 and v2 ≥ 0, where ∥X∥2F = trace(X′X) is the squared Frobenius

norm of X, and ∥X∥∗ = trace
(
(X′X)1/2

)
is the nuclear norm of X. As the

penalty ∥FMF′∥∗ is the sum of the eigenvalues of FMF′, it shrinks eigenvalues

and forces some small eigenvalues to zero. The minimizers of (2.3) are denoted

as
(
M̂τ , v̂

2
τ

)
.

LetHF = F(F′F)−1F′, and letQDQ′ be the eigen-decomposition ofHF (S−
σ2In)HF , where D = diag(d1, . . . , dn) is the diagonal matrix with diagonal

elements d1, . . . , dn, and |d1| ≥ · · · ≥ |dK∗ | > 0 = |dK∗+1| = · · · = |dn|.
Also, let QK∗ be the submatrix of Q consisting of its first K∗ columns. Then

QDQ′ = QK∗DK∗Q′
K∗ , where DK∗ = diag(d1, . . . , dK∗). Hence QK∗ = HF (S−

σ2In)HFQK∗D−1
K∗ , and

HFQK∗ = QK∗ . (2.4)

As shown below with its proof given in the Appendix, M̂τ and v̂2τ can be expressed

in closed form.

Proposition 1. Let HF = F(F′F)−1F′ and QDQ′ be the eigen-decomposition

of HF (S − σ2In)HF , where D = diag(d1, . . . , dn) and |d1| ≥ · · · ≥ |dK∗ | > 0 =

|dK∗+1| · · · = |dn|. Then for any τ ≥ 0, the minimizers of (2.3) are

v̂2τ = argmin
v2≥0

{
v2(nv2 − 2 trace(S− σ2In))−

K∗∑
k=1

(dk − τ − v2)2+

}
, (2.5)

M̂τ = (F′F)−1F′QK∗ diag
(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
Q′

K∗F(F′F)−1,

(2.6)

where x+ ≡ max(x, 0).

The v̂2τ in (2.5) can be efficiently computed by a golden section search in

[0, d1] when d1, . . . , dK∗ are available. As shown below, there is a more efficient

way to compute d1, . . . , dK∗ and M̂τ in (2.6) without the need to go through the

eigen-decomposition of HF (S− σ2In)HF . Its proof is in the Appendix.
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Corollary 1. Let L = F(F′F)−1/2. Under the conditions of Proposition 1,

the eigen-decomposition of L′(S − σ2In)L can be written as PDKP′ for some

orthogonal matrix P, where DK = diag(d1, . . . , dK). In addition, QK∗ = LPK∗

and

M̂τ = (F′F)−1/2PK∗ diag
(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
P′

K∗(F′F)−1/2,

(2.7)

where PK∗ is the submatrix of P consisting of its first K∗ columns.

Here L′(S−σ2In)L = (L′Z)(Z′L)/T −σ2L′L can be obtained in O(KnT )+

O(K2n) computations, from which we can compute P, QK∗ and M̂τ in O(K2n)

operations. The overall computational complexity for parameter estimation is

O(KnT ) +O(K2n).

2.3. Spatial prediction

Suppose M is estimated by M̂τ and v2 is estimated by v̂2τ for some τ ≥ 0.

Then for s ∈ D and t = 1, . . . , T , the estimated best linear unbiased predictor

(EBLUP) of y(s, t) and the corresponding estimated mean squared prediction

error (MSPE) are given by

ŷ(s, t) =
(
f(s)′M̂τF

′
+ v̂2τδ

′)V̂−
τ zt, (2.8)

v̂ar (ŷ(s, t)− y(s, t)) = f(s)′M̂τ f(s) + v̂2τ

−
(
f(s)′M̂τF

′
+ v̂2τδ

′)V̂−
τ

(
FM̂τ f(s) + v̂2τδ

)
, (2.9)

where δ ≡ (I(s = s1), . . . , I(s = sn))
′ and V̂τ = FM̂τF

′ + v̂2τIn + σ2In.

As shown below, direct computation of V−
τ can be avoided. From (2.4) and

(2.6), we have

FM̂τF
′ = QK∗ diag

(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
Q′

K∗ , (2.10)

which implies

V̂τ = QK∗ diag
(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
Q′

K∗ + v̂2τIn + σ2In.

Applying the Sherman-Morrison-Woodbury formula (Woodbury (1950)), the

Moore-Penrose inverse of V̂τ is
1

v̂2τ + σ2
In − 1

v̂2τ + σ2
QK∗diag

(
d̂1

d̂1 + v̂2τ + σ2
, . . . ,

d̂K∗

d̂K∗ + v̂2τ + σ2

)
Q′

K∗ ;

if v̂2τ + σ2 > 0,

QK∗

(
diag

(
d̂1, . . . , d̂K∗

))−
Q′

K∗ ; if v̂2τ + σ2 = 0,
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where d̂k ≡ (dk − τ − v̂2τ )+; k = 1, . . .K∗. Using this form for V̂−
τ , we can com-

pute ŷ(s, t) and v̂ar (ŷ(s, t)− y(s, t)) in only O(K2n) computations after QK∗ is

obtained. Therefore, ŷ(s, t) and v̂ar (ŷ(s, t)− y(s, t)), including parameter esti-

mation, can be computed in O(KnT ) +O(K2n) operations. The computational

complexity is largely reduced, particularly when K << n.

When σ2 is unknown, we propose to estimate it by minimizing ∥FMF′ +

σ2In − S∥2F over all M ≽ 0. Applying arguments similar to those in proofs of

Proposition 1 and Corollary 1, we obtain

σ̂2 = argmin
σ2≥0

1

2

{
σ2(nσ2 − 2 trace(S))−

K∑
k=1

(γk − σ2)2+

}
, (2.11)

where γk’s are the eigenvalues of (F′F)−1/2F′SF(F′F)−1/2 with γ1 ≥ · · · ≥ γK .

2.4. Choice of the regularization parameter

An L-fold cross-validation is applied to choose the regularization parameter

τ . We first randomly decompose {s1, . . . , sn} into L disjoint subsets D1, . . . ,DL

with |D1|, . . . , |DL| being as close to equal as possible. Let ŷ(ℓ)(s, t; τ) be the

EBLUP of y(s, t) based on only the data observed at {s1, . . . , sn} \Dℓ for s ∈ D,

t = 1, . . . , T and ℓ = 1, . . . , L. The proposed L-fold CV criterion is

CV(τ) =
L∑

ℓ=1

T∑
t=1

∑
s∈Dℓ

{
z(s, t)− ŷ(ℓ)(s, t; τ)

}2
.

The final regularization parameter is τ̂ , which minimizes CV(τ) over τ ≥ 0.

3. Multivariate Models

Consider a sequence of p-variate spatial processes, {y(s, t); s ∈ D} that are

independent for t = 1, . . . , T , and defined on a d-dimensional spatial domain

D ⊂ Rd, with y(s, t) ≡ (y1(s, t), . . . , yp(s, t))
′. The processes are assumed to

have mean zero and a common spatial cross-covariance function Cij(s, s
∗) =

cov (yi(s, t), yj(s
∗, t)); i, j = 1, . . . , p, s, s∗ ∈ D. Suppose we observe data

{z(si, t) : i = 1, . . . , n, t = 1, . . . , T} at n locations s1, . . . , sn ∈ D with addi-

tive noise {ε(si, t)} according to

z(si, t) = y(si, t) + ε(si, t); i = 1, . . . , n, t = 1, . . . , T, (3.1)

where ε(si, t) ∼ (0,Σ) is uncorrelated with y(si, t), the ε(si, t)’s are mutually

uncorrelated,Σ = diag(σ2
1, . . . , σ

2
p), and σ2

j ≥ 0; j = 1, . . . , p. As in the univariate

model, Σ is assumed known. The goal is to estimate Cij(·, ·)’s based on the data

Zt ≡ (z(s1, t), . . . , z(sn, t))
′; t = 1, . . . , T .
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3.1. The proposed model

As to (2.2), we propose a spatial random effect model for the latent process

y(·, ·) in terms of K ≤ n known basis functions, f1(·), . . . , fK(·):

y(s, t) = W′
tf(s) + ξ(s, t) =

K∑
k=1

fk(s)wk(t) + ξ(s, t), (3.2)

where wk(t) = (wk1(t), . . . , wkp(t))
′, Wt ≡ (w1(t), . . . ,wK(t))′, t = 1, . . . , T , are

K × p uncorrelated random matrices with E(Wt) = 0 and var(vec(Wt)) = M,

and ξ(s, t) ∼ (0, v2Ip); s ∈ D, t = 1, . . . , T .

For t = 1, . . . , T , let Yt ≡ (y(s1, t), . . . ,y(sn, t))
′ and ξt ≡ (ξ(s1, t), . . .,

ξ(sn, t))
′. Then Yt = FWt+ ξt, var(vec(Yt)) = (Ip⊗F)M(Ip⊗F′)+ v2Inp, and

V ≡ var(vec(Zt)) = (Ip ⊗ F)M(Ip ⊗ F′) + v2Inp +Σ⊗ In.

The parameters that need to be estimated are M and v2, where M ≽ 0. Here

Cij(s, s
∗) = f(s)′Mijf(s

∗) + v2I(s = s∗), and

Mij = cov
(
(w1i(t), . . . , wKi(t))

′, (w1j(t), . . . , wKj(t))
′), (3.3)

is the (i, j)th sub-block of M of dimension K ×K.

The proposed model is flexible enough to approximate many non-stationary

spatial covariance functions well, and it allows asymmetric cross-covariance func-

tion, Cij(s, s
∗) ̸= Cij(s

∗, s) when Mij ̸= Mji for some i ̸= j. For example, as

shown in Figure 1, it well approximates a multivariate stationary Matérn co-

variance function with

(
σ11 σ12
σ21 σ22

)
=

(
1 0.4

0.4 1

)
,

(
α11 α12

α21 α22

)
=

(
0.5 1.6

1.6 2

)
and

ν11 = ν22 = ν12 = 0.5, when K is only moderately large, where the fk(·)’s
are cubic B-splines with equally spaced knots at

(
0, 0, 0, 0, 1/(K − 3), . . . , (K −

4)/(K − 3), 1, 1, 1, 1
)
, and the (M, v2) of the approximated covariance function

are obtained by minimizing∑
1≤i,j≤2

∫ 1

0

∫ 1

0

∣∣Cij(s, s
∗;M, v2)− CM

ij (s− s∗)
∣∣2dsds∗. (3.4)

Another bivariate example of Cij(s, s
∗) = f(s)′Mijf(s

∗) is based on the same

cubic B-splines with K = 20, where the (k, k∗)th elements of M12, M21 and

M11 = M22 are exp(−0.1|k−k∗−ρ|), exp(−0.1|k−k∗+ρ|) and exp(−0.1|k−k∗|),
respectively. Here ρ ∈ R is a tuning parameter such that a large value of |ρ|
corresponding to a higher degree of asymmetry. The cross-covariance functions

based on different ρ values are shown in Figure 2, where the asymmetric features

are apparent.
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(a) (b)

(c) (d)

Figure 1. (a) A multivariate Matérn covariance function; (b) An approx-
imated covariance function obtained by minimizing (3.4) with K = 5; (c)
An approximated covariance function obtained by minimizing (3.4) with
K = 10; (d) An approximated covariance function obtained by minimizing
(3.4) with K = 20.

3.2. Parameter estimation

Take T > 1 and let S =
∑T

t=1 vec(Zt)vec(Zt)
′/T . We propose to estimate

M and v2 by minimizing the objective function,

ϕ(M, v2) =
1

2

∥∥(Ip ⊗ F)M(Ip ⊗ F′) + v2Inp +Σ⊗ In − S
∥∥2
F

+τ
∥∥(Ip ⊗ F)M(Ip ⊗ F′)

∥∥
∗ , (3.5)

over all M ≽ 0 and v2 ≥ 0. Let HF = F(F′F)−1F′, and let QDQ be the eigen-

decomposition of (Ip⊗HF ) (S−Σ⊗ In) (Ip⊗HF ), where D = diag(d1, . . . , dnp)
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(a) (b)

(c) (d)

Figure 2. An asymmetric covariance function with different degrees of asym-
metry. (a) ρ = −9; (b) ρ = −2; (c) ρ = 5; (d) ρ = 12.

with |d1| ≥ · · · ≥ |dK∗ | > 0 = |dK∗+1| = · · · = |dnp|, and K∗ ≤ pK. According

to Proposition 1, the minimizers of (M, v2) in (3.5) for a given τ are

v̂2τ = argmin
v2≥0

1

2

{
v2(nv2 − 2 trace(S−Σ⊗ In))−

K∗∑
k=1

(dk − τ − v2)2+

}
,

M̂τ =
(
Ip ⊗ (F′F)−1F′)QK∗ diag

(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
Q′

K∗

×
(
Ip ⊗ F(F′F)−1

)
, (3.6)

where QK∗ is the submatrix of Q consisting of its first K∗ columns. Applying

a similar trick as in the proof of Corollary 1, the eigen-decomposition of (Ip ⊗
L′) (S−Σ⊗ In) (Ip⊗L) can be written as PDpKP′, where L = F(F′F)−1/2 and

DpK = diag(d1, . . . , dpK). Then d1, . . . , dK∗ and Q∗ can be efficiently computed
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by (Ip ⊗ L)PK∗ , where PK∗ is the submatrix of P consisting of its first K∗

columns.

When Σ is unknown, we propose to estimate Σ by minimizing

1

2

∥∥(Ip ⊗ F)M(Ip ⊗ F′) +Σ⊗ In − S
∥∥2
F
, (3.7)

obtained from (3.5) with v2 = 0 and τ = 0 over all M ≽ 0 and σ2
j ≥ 0; j =

1, . . . , p. The resulting estimate is denoted by Σ̂, and can be solved iteratively.

Given some initial estimate Σ̂(0), we successively compute the following for i =

0, 1, . . ., until convergence:

M̂(i+1) =
(
Ip ⊗ (F′F)−1F′)Q(i)

K∗(i) diag
((
d
(i)
1

)
+
, . . . ,

(
d
(i)
K∗(i)

)
+

)(
Q

(i)
K∗(i)

)′
×
(
Ip ⊗ F(F′F)−1

)
, (3.8)

Σ̂(i+1) =
1

n
diag

((
trace

(
∆

(i+1)
11

))
+
, . . . ,

(
trace

(
∆(i+1)

pp

))
+

)
, (3.9)

where

∆(i+1) = S− (Ip ⊗ F)M̂(i+1)(Ip ⊗ F′)

= S−Q
(i)
K∗(i) diag

((
d
(i)
1

)
+
, . . . ,

(
d
(i)
K∗(i)

)
+

)(
Q

(i)
K∗(i)

)′
,

Q(i)diag
(
d
(i)
1 , . . . , d

(i)
np

)
Q(i) is the eigen-decomposition of (Ip⊗HF )(S− Σ̂(i)⊗ In)

(Ip ⊗ HF ) with
∣∣d(i)1

∣∣ ≥ · · · ≥ |d(i)K∗(i)| > 0 = |d(i)K∗(i)+1| = · · · =
∣∣d(i)np

∣∣, Q(i)
K∗(i) is

the submatrix of Q(i) consisting of its first K∗(i) columns, and ∆
(i)
jj is the jth

diagonal block of ∆(i) with dimension n.

For T = 1, we write zj(si, t) as zj(si). We adopt the data binning approach

of Cressie and Johannesson (2008) and first partition the index set {1, . . . , n} into

n∗ subsets, {I1, . . . , In∗} such that the sampling locations corresponding to each

subset are close in space. Let s∗k = |Ik|−1
∑

i∈Ik si be the representative location

corresponding to the kth subset, for k = 1, . . . , n∗, and let Z̄ be an n∗ × p

matrix with the (k, j)th element z̄kj = |Ik|−1
∑

i∈Ik zj(si). Following Cressie

and Johannesson (2008), S∗ = vec(Z̄)vec(Z̄)′ +diag(vec(B)) is used as an initial

estimate of var
(
vec(Z∗)

)
, where Z∗ =

(
zj(s

∗
k)
)
n∗×p

, and B is an n∗ × p matrix

with its (k, j)th element bkj = |Ik|−1
∑

i∈Ik(zj(si) − z̄kj)
2. Then M, v2, and Σ

can be estimated in the same way as in (3.5)−(3.9), except that S is replaced by

S∗, n is replaced by n∗, and {s1, . . . , sn} are replaced by {s∗1, . . . , s∗n∗}.

3.3. Spatial prediction and cross validation

Suppose that M is estimated by M̂τ and v2 is estimated by v̂2τ for some

τ ≥ 0. Then, for s ∈ D, the EBLUP of y(s, t) and the corresponding estimated

MSPE are
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ŷ(s, t) =
{
(Ip ⊗ f(s)′)M̂τ (Ip ⊗ F

′
) + v̂2τIp ⊗ δ′

}
V̂−

τ vec(Zt),

v̂ar (ŷ(s, t)− y(s, t)) = (Ip ⊗ f(s)′)M̂τ (Ip ⊗ f(s)) + v̂2τInp

−
{
(Ip ⊗ f(s)′)M̂τ (Ip ⊗ F

′
) + v̂2τIp ⊗ δ′

}
V̂−

τ

×
{
(Ip ⊗ F)M̂τ (Ip ⊗ f(s)) + v̂2τIp ⊗ δ

}
,

where δ ≡ (I(s = s1), . . . , I(s = sn))
′ and

V̂τ = (Ip ⊗ F)M̂τ (Ip ⊗ F′) + (v̂2τIp +Σ)⊗ In.

Applying the same argument as that for (2.10), we obtain

V̂τ = QK∗diag
(
(d1 − τ − v̂2τ )+, . . . , (dK∗ − τ − v̂2τ )+

)
Q′

K∗ + (v̂2τIp +Σ)⊗ In.

Consequently, if v̂2τIp +Σ is non-singular, applying the Sherman-Morrison-

Woodbury formula, we have

V̂−1
τ = Λ−ΛU(IK∗ +U′ΛU)−1U′Λ,

where Λ ≡
(
v̂2τIp+Σ

)−1⊗ In and U = QK∗ diag
(
(d1− τ − v̂2τ )

1/2
+ , . . . , (dK∗ − τ −

v̂2τ )
1/2
+

)
. Hence ŷ(s, t) and v̂ar (ŷ(s, t)− y(s, t)), including parameter estimation,

can be computed in O(K2np3) +O(KnTp2) operations.

An L-fold CV is applied to choose the regularization parameter τ , with

CV(τ) =
L∑

ℓ=1

T∑
t=1

∑
s∈Dℓ

∥∥z(s, t)− ŷ(ℓ)(s, t; τ)
∥∥2, (3.10)

where {D1, . . . ,DL} is a partition of {s1, . . . , sn} with roughly the same size,

and ŷ(ℓ)(s, t; τ) is the EBLUP of y(s, t) based on only the data observed at

{s1, . . . , sn}\Dℓ, for s ∈ D, t = 1, . . . , T and ℓ = 1, . . . , L. The final regularization

parameter is τ̂ , which minimizes CV(τ) over τ ≥ 0.

4. Simulation

4.1. A univariate example

We generated the process y(s, t) on s ∈ D = [0, 1]2 for t = 1, . . . , T , according

to (2.2) with K = 2 and v2 = 0:

y(s, t) = cos(π∥s− (0, 1)∥)w1(t) + cos
(
2π
∥∥∥s− (3

4
,
1

4

)∥∥∥)w2(t), (4.1)

where w1(t) ∼ N(0, 25) and w2(t) ∼ N(0, 9). The cosine functions in (4.1) are

shown in Figure 3. The data {zt : t = 1, . . . , T} were simulated according to (3.2)

with n = 50 and σ2 = 3, where s1, . . . , s50 were sampled from D using simple

random sampling.



162 SHENGLI TZENG AND HSIN-CHENG HUANG

Table 1. Medians of (dk − τ − v̂2τ )+ for the proposed methods with τ = 0
and τ̂ selected by CV.

T Methods
k

1 2 3 4 5 6 7 8 9 10
20 τ = 0 708.9 118.0 7.1 5.2 4.1 2.9 2.0 1.3 0.8 0.1

CV 599.5 63.3 0 0 0 0 0 0 0 0
50 τ = 0 772.2 137.1 4.3 3.4 2.6 2.1 1.6 1.2 0.8 0.5

CV 711.7 80.8 0 0 0 0 0 0 0 0

Similar to Cressie and Johannesson (2008), we used K = 21 local bisquare

functions for estimating C(·, ·):

fk(s) =

{
1− ∥s− ck∥2

r2k

}2

I(∥s− ck∥ < rk); k = 1, . . . , 21, (4.2)

at two spatial resolutions as our basis functions, where {c1, . . . , c16} = {0, 1/3,
2/3, 1}2 are regular grid points in D at the finer resolution with a common radius

r1 = · · · = r16 = 1/2, and c17 = (1/6, 1/6), c18 = (1/6, 5/6), c19 = (1/2, 1/2),

c20 = (5/6, 1/6) and c21 = (5/6, 5/6) are regular grid points at the coarser

resolution with a common radius r17 = · · · = r21 = 1/21/2. We assumed σ2

unknown and estimated by σ̂2 in (2.11).

We considered T = 20, 50. For each T , we applied the proposed method with

the regularization parameter τ̂ selected by 4-fold CV. The proposed method

was compared with a simple kriging method that estimates C(·, ·) and σ2 by

maximum likelihood (ML) based on the stationary exponential covariance model.

The results are summarized in Figure 4 in terms of

MSPE =
1

T |D|

T∑
t=1

∫
s∈D

|ŷ(s, t)− y(s, t)|2, (4.3)

based on 50 simulation replications. The MSPEs based on the proposed method

with τ = 0 and those based on the true covariance function are also shown, for

comparison.

It is a bit surprising that the proposed method with no regularization is only

comparable with the exponential model when T = 20. Nevertheless, the proposed

method with τ̂ selected by CV outperforms the other methods by a large margin.

Table 1 shows the medians of (dk−τ− v̂2τ )+ among the 50 simulations with τ = 0

and τ̂ selected by CV. Clearly, regularization helps reduce variance and recover

the true rank of the covariance matrix.



REGULARIZED MULTIVARIATE SPATIAL COVARIANCE ESTIMATION 163

(a) (b)

Figure 3. The two cosine functions of (4.1).

(a) (b)

Figure 4. Boxplots of MSPEs for various methods based on (a) T = 20; (b)
T = 50.

4.2. A bivariate one-dimensional example

Consider the bivariate process y(s, t) defined on s ∈ D = [0, 1], with t =
1, . . . , T ,

y(s, t) =
5∑

k=1

(
1− 4 ∥s− ck∥2

)2
I

(
∥s− ck∥ <

1

2

)
wk(t), (4.4)

where (c1, . . . , c5) = (0, 1/4, 1/2, 3/4, 1), and

wk(t) ∼ N

(
0,

(
η2k1 0.5ηk1ηk2

0.5ηk1ηk2 η2k2

))
; k = 1, . . . , 5, t = 1, . . . , T,

are uncorrelated with (η211, . . . , η
2
51) = (8, 10, 12, 14, 16), and (η212, . . . , η

2
52) =

(17, 14, 11, 8, 5). The data were generated at si = (i − 1)/9, i = 1, . . . , 10, ac-
cording to (3.1) with (σ2

1, σ
2
2) = (2.5, 3.5). The spatial cross-covariance function

of y(·, t) is shown in Figure 5(a). We assumed Σ = diag(σ2
1, σ

2
2) unknown and

estimated by minimizing (3.7) through (3.8) and (3.9).
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We applied the proposed method with K ∈ {4, 7} , where for K = 4, fk(·)’s
are cubic B-splines with knots (0, 0, 0, 0, 1, 1, 1, 1), and for K = 7, fk(·)’s are

cubic B-splines with knots (0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1). The regularization

parameter τ was selected using 4-fold CV. To avoid the boundary effect caused

by a small number of data points, we always included s1 = 0 and s10 = 1 in the

training sets for CV. Figure (5)(b) shows the approximated covariance function

obtained by minimizing

∑
1≤i,j≤2

∫ 1

0

∫ 1

0

∣∣f(s)′Mijf(s
∗) + v2I(s = s∗)− Cij(s, s

∗)
∣∣2dsds∗, (4.5)

over {Mij} and v2, where fk(·)’s are the cubic B-splines withK = 7, {Mij : i, j =

1, 2} are K ×K matrices in (3.3), and Cij(s, s
∗) = cov (yi(s, t), yj(s

∗, t)) , i, j =

1, 2.

Our method was compared with a simple kriging method that estimates

Cij(·, ·) and σ2 using ML based on the bivariate Matérn model of (1.1) with all

the smoothness parameters fixed at 0.5. The results for various methods are

summarized in Figure 6 in terms of

MSPE =
1

T |D|

T∑
t=1

∫
s∈D

∥∥ŷ(s, t)− y(s, t)
∥∥2, (4.6)

based on 50 simulation replications, where ŷ(s, t) is a generic estimate of y(s, t).

The MSPEs based on our method with τ = 0 and those based on the true

covariance function Cij(s, s
∗) are also shown for comparison.

From Figure 6, the proposed method with either τ = 0 or τ̂ selected by CV

outperforms the bivariate Matérn model in terms of MSPE. Overall, the proposed

method with τ̂ performs slightly better than that with τ = 0. As expected, the

proposed method with K = 4 tends to perform better than that with K = 7

when T is small, and vice versa. For K = 7 and T = 20, the means of estimated

Cij(s, s
∗)’s based on τ = 0 and τ̂ are shown in Figures 5(c) and (d), respectively.

Some slight shrinkage can be seen for the estimated cross-covariance functions

when τ̂ is used, compared to τ = 0.

4.3. A bivariate two-dimensional example with T = 1

We took T = 1, and generated the process, y(s) = y(s, 1), on s ∈ D = [0, 1]2

according to (3.2) and (3.3) with K = 3 and v2 = 0. That is,

y(s) = cos(π∥s− (0, 1)∥)w1 + cos(2π∥s− (
3

4
,
1

4
)∥)w2 + ∥s∥∥(1− s)∥w3
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(a) (b)

(c) (d)

Figure 5. (a) Spatial cross-covariance functions of (4.4); (b) Approximated
cross-covariance functions based on (4.5) with K = 7 cubic B-splines; (c)
Means of estimated cross-covariance functions with τ = 0 based on 50 sim-
ulation replicates; (d) Means of estimated cross-covariance with τ̂ selected
by 4-fold CV based on 50 simulation replicates.

where, for simplicity, wk(1) is written as wk, and

M11 =

15 0 0

0 0 0

0 0 0

 , M12 = M′
21 =

 0 0 10

0 0 0

0 0 0

 , M22 =

 0 0 0

0 5 6

0 6 18

 .

SinceM12 ̸= M21, the cross-covariance function is asymmetric. The data Z1 were

generated at n = 482 grid points, {0, 1/47, 2/47, . . . , 1}2, according to (3.1) with

(σ2
1, σ

2
2) = (2, 3). We assumed Σ = (σ2

1, σ
2
2) known, and considered four classes

of basis functions. The first class consisted of bisquare functions of (4.2) used in

Section 4.1, with K = 16 and {c1, . . . , c16} = {0, 1/3, 2/3, 1}2. The second class



166 SHENGLI TZENG AND HSIN-CHENG HUANG

(a) (b)

Figure 6. MSPE performance of various methods for the bivariate one-
dimensional example: (a) T = 20; (b) T = 50.

consisted of the same K = 21 bisquare functions considered in Section 4.1 at

two spatial resolutions. The other two classes were composed of thin-plate spline

(TPS) functions with f1(s) = 1, f2(s) = x1, f3(s) = x2, and

fk(s) =
1

16π
∥s− ck∥2 log(∥s− ck∥2); k = 4, . . . ,K,

where s = (x1, x2). We considered K = 19 with {c4, . . . , c19} = {0, 1/3, 2/3, 1}2
and K = 28 with {c4, . . . , c28} = {0, 1/4, 1/2, 3/4, 1}2 as our third and fourth

classes of basis functions.

For each of the basis-function classes, we merged the 48×48 spatial locations

into 24 × 24 and 16 × 16 subsets having 2 × 2 and 3 × 3 locations, respectively,

in each subset. The regularization parameters were selected by 4-fold CV. We

further applied CV to select among the eight combinations as our final method.

The proposed method was compared with a simple kriging method that es-

timates Cij(·, ·) and σ2 based on the bivariate Matérn model of (1.1) with all the

smoothness parameters fixed at 0.5. Instead of estimating the covariance param-

eter vector θ using ML, computationally too intensive, we chose θ to minimize

the Kullback-Leibler loss between the distribution of the true variance covariance

matrix V0 and that of the Matérn model V(θ):

θ̂ = argmin
θ

tr(V−1(θ)V0)− log(|V0|) + log(|V(θ)|).

This gives some advantage to the bivariate Matérn method, because the resulting

estimate can be regarded as the ML estimate based on an infinite sample size;

see Chapter 12 of Cover and Thomas (1991). Figures 7 and 8 show the predicted

surfaces based on a randomly selected data set using our method (using TPS

with K = 19 and bin size 2× 2) and the Matérn model for the first and second

processes, respectively.
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(a) (b)

(c) (d)

Figure 7. (a) Noisy data observed at 48× 48 locations for the first variable;
(b) the underlying spatial process y1(·); (c) Predicted surface based on a
bivariate Matérn model; (d) Predicted surface based on the proposed method
using TPS with 19 basis functions and bin size 2× 2.

The results for various methods are summarized in Table 2 in terms of MSPE
of (4.6) with T = 1 based on 100 simulation replications. The MSPEs based on
the true covariance function Cij(s, s

∗) are shown for comparison. In general,
our method based on TPS basis functions outperformed that based on bisquare
basis functions, and TPS with K = 19 performed better than that with K =
28. Nevertheless, the bin sizes do not appear to play a major role in terms of
MSPE. The final method, selected among eight methods by CV, performed better
than the individual methods, indicating that CV is sensible. The running time
averaged over 100 simulation replicates is also reported for each method based
on R code implemented on a Windows PC. As expected, our method has clear
advantage over the stationary Matérn model.
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(a) (b)

(c) (d)

Figure 8. (a) Noisy data observed at 48×48 locations for the second variable;
(b) the underlying spatial process y2(·); (c) Predicted surface based on a
bivariate Matérn model; (d) Predicted surface based on the proposed method
using TPS with 19 basis functions and bin size 2× 2.

4.4. Sensitivity analysis for the number of folds in CV

Throughout the paper, 4-fold CV was applied. It is of interest to see how the

MSPE is affected by the number of folds. Table 3 shows the MSPE performance

for different numbers of folds in combination with seven T values using the pro-

posed method with K = 19 TPS basis functions given in the previous subsection.

The results show that our method is relatively insensitive to the number of folds

in CV. Comparing the results based on CV with those based on τ = 0 indicates

the effectiveness of using regularization, particularly for moderate T values where

variances can be considerably reduced without introducing much bias.
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Table 2. MSPE and average running time performance of various methods
based on 100 simulation replicates, where the values in parentheses are the
corresponding standard errors.

Methods MSPE Time
True 0.0020 (0.0003) 0.9 sec
Stationary 0.0479 (0.0013) 14.2 hr
Our 0.0250 (0.0008) 9.0 min
Bisquare K = 16, bin size=22 0.0470 (0.0054) 56.2 sec
Bisquare K = 16, bin size=32 0.0471 (0.0054) 59.7 sec
Bisquare K = 21, bin size=22 0.0327 (0.0021) 64.9 sec
Bisquare K = 21, bin size=32 0.0329 (0.0022) 70.2 sec
TPS K = 19, bin size=22 0.0256 (0.0017) 60.3 sec
TPS K = 19, bin size=32 0.0258 (0.0017) 63.1 sec
TPS K = 28, bin size=22 0.0295 (0.0011) 88.2 sec
TPS K = 28, bin size=32 0.0299 (0.0011) 89.9 sec

Table 3. MSPE performance of the various methods for different T values,
where the values in parentheses are the corresponding standard errors.

Methods T = 2 T = 3 T = 6 T = 9 T = 27 T = 81 T = 243
True 0.0019 0.0019 0.0018 0.0017 0.0017 0.0017 0.0016

(0.0003) (0.0003) (0.0002) (0.0001) (0.0001) (0.00005) (0.00002)
Stationary 0.0486 0.0484 0.0484 0.0482 0.0480 0.0480 0.0478

(0.0009) (0.0006) (0.0005) (0.0005) (0.0003) (0.0001) (0.0001)
τ = 0 0.0256 0.0240 0.0239 0.0206 0.0159 0.0124 0.0107

(0.0012) (0.0009) (0.0009) (0.0007) (0.0004) (0.0002) (0.0001)
2-fold CV 0.0244 0.0232 0.0207 0.0151 0.0117 0.0102 0.0097

(0.0010) (0.0009) (0.0008) (0.0006) (0.0004) (0.0002) (0.0001)
4-fold CV 0.0255 0.0227 0.0196 0.0147 0.0117 0.0103 0.0098

(0.0012) (0.0009) (0.0008) (0.0007) (0.0004) (0.0002) (0.0001)
8-fold CV 0.0248 0.0231 0.0191 0.0148 0.0120 0.0106 0.0099

(0.0011) (0.0010) (0.0009) (0.0007) (0.0004) (0.0002) (0.0001)
12-fold CV 0.0251 0.0225 0.0194 0.0145 0.0116 0.0105 0.0098

(0.0012) (0.008) (0.0008) (0.0006) (0.0005) (0.0002) (0.0001)
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