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Abstract: This paper discusses the estimation and plug-in kriging prediction of a

non-stationary spatial process assuming a smoothly varying variance function with

an additive independent measurement error. A difference-based kernel smoothing

estimator of the variance function and a modified likelihood estimator of the mea-

surement error variance are used for parameter estimation. Asymptotic properties

of these estimators and the plug-in kriging predictor are established. A simula-

tion study is presented to test our estimation-prediction procedure. Our kriging

predictor is shown to perform better than the spatial adaptive local polynomial

regression estimator proposed by Fan and Gijbels (1995) when the measurement

error is small.
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1. Introduction

Stationary spatial models play an important role in such areas as mining, en-

vironmental monitoring, meteorology, soil science, economics, and epidemiology.

It has long been recognized that the assumption of stationarity is often violated,

and the problem is more pronounced when one has high resolution spatial data

over large spatial domain. With the influx of such large spatial data in recent

years, there has been a substantial amount of research directed at modeling and

estimating non-stationarity in spatial data. Examples of non-stationary models

include process deformation models (Guttorp, Sampson, and Newman (1992);

Bornn, Shaddick, and Zidek (2012)), kernel convolution models (Higdon (1998);

Paciorek and Schervish (2006)), spectral approach (Fuentes (2002a,b); Porcu,

Gregori, and Mateu (2009)), a wavelet approach (Nychka, Wikle, and Royle

(2002); Matsuo et al. (2011)), and many more. Examples of estimation methods

include moment-based methods (Nychka and Saltzman (1998); Nychka, Wikle,

and Royle (2002); likelihood-based methods (Anderes and Stein (2011)), and

Bayesian methods (Higdon, Swall, and Kern (1999); Damian, Sampson, and Gut-

torp (2001); Schmidt and O’Hagan (2003); Sanso, Schmidt, and Nobre (2005);

Schmidt, Schelten, and Roth (2011)). After adopting a non-stationary spatial
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model, kriging can be used to make predictions at locations where measurements

of the process are not available.

Alternatively, one can model non-stationary spatial data using nonpara-

metric methods, and make spatial predictions using smoothing with spatially

adaptive bandwidth. For kernel regression, Fan and Gijbels (1996) developed a

method to estimate smoothly varying bandwidth, and discussed local polynomial

models with adaptive window widths. For smoothing splines, Cummins, Filloon,

and Nychka (2001) developed local generalized cross validation (GCV) to fit spa-

tially adaptive smoothing splines, and Luo and Wahba (1997) proposed a hybrid

adaptive spline approach. More recently, Pintore, Speckman, and Holmes (2006)

treated spatially adaptive smoothing splines as a function minimization problem.

When the process is stationary in space, it is well known that there is a

close connection between kriging and nonparametric regression methods. Wahba

(1985) and Stein (1990, 1993) showed kriging under certain simple stationary

models is equivalent to smoothing splines, and the restricted maximum likeli-

hood (REML) estimator of the smoothing parameter is more efficient than the

GCV estimator if the underlying model is correctly specified. However, a similar

connection between kriging under non-stationary models and spatially adaptive

nonparametric regression methods has not been established so far.

In this paper, we study this connection under the simple model

Zi = Z(xi) = σ(xi)W (xi) + ϵi, (1.1)

i = 1, . . . , n, where xi = i/n ∈ [0, 1], σ(x) is a smoothly varying function, and

W (x) is a Brownian motion. Here σ(x)W (x) accounts for the heteroscedasticity

and spatial correlation in the data. The ϵi’s are independent normal errors with

zero mean and variance σ2
ϵ , representing measurement error. This model is a

generalization of one in Stein (1990) that assumed that σ(x) = σ is a constant.

We consider kriging with estimated parameters under this non-stationary model.

One objective is to develop an estimation and prediction method for this non-

stationary model, and to derive corresponding asymptotic results, with the goal

of comparing them to those from spatially adaptive non-parametric methods.

To estimate the variance function σ2(x), we consider a difference-based ker-

nel smoothing estimator, which is essentially a Method-of-Moment approach.

Similar techniques had been investigated by many authors for variance function

estimation in heteroscedastic nonparametric regression models. See for example,

Von Neumann et al. (1941), Gasser, and Sroka, and Jennen-Steinmetz (1986),

Hall, Kay, and Titterington (1990, 1991), Brown and Levine (2007), Klipple and

Eubank (2007), Cai and Wang (2008), Cai, Levine, and Wang (2009), Duran,

Hardle, and Osipenko (2012). In the context of non-parametric regression, the
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motivation for taking the differences is to eliminate the effect of the mean func-

tion and turn the problem of estimating the variance function in the model into

a conventional regression problem of estimating the mean function. We draw

heavily on Brown and Levine (2007) to develop the estimation method and de-

rive asymptotic results. The novelty here is that we assume a model in which the

observations are spatially dependent. A kernel smoothing technique is applied

to squared differences to obtain the variance function estimator. To estimate

σ2
ϵ , a modified likelihood estimator is proposed, similar to the profile likelihood

estimator except that when profiling the variance function σ2(x) we use the

difference-based kernel smoothing estimator instead of the maximum likelihood

estimator. The estimator of σ2
ϵ is then obtained by maximizing the modified

likelihood function.

We derive the asymptotic mean squared error bound of the variance func-

tion estimator and establish its asymptotic normality. The asymptotic bias of

the plug-in kriging predictor is also obtained. Our theoretical results indicate

that both the kernel smoothing estimator of the variance function σ2(x) and

the modified likelihood function of σ2
ϵ are consistent with small measurement

error. The convergence rate deteriorates as the variance of measurement error

increases, and when measurement error variance is too large, variance estimation

is no longer consistent. This is seen in our simulation results, where we compare

the kriging prediction with estimated parameters with a spatially adaptive local

polynomial regression estimator (Fan and Gijbels (1995)). The kirging predictor

out-performs the local polynomial estimator when measurement error is small,

and under-performs it when the measurement error is large.

The rest of the paper is organized as follows. Section 2 describes the difference-

based kernel estimator of the variance function, the modified likelihood estimator

of the measurement error variance, and the plug-in kriging predictor with the un-

known parameters replaced by their estimates. A bandwidth selection procedure

is also included. Section 3 presents the asymptotic mean squared error bound

of the variance function estimator and the asymptotic bias of the plug-in kriging

predictor. In Section 4 we provide a limited-scope simulation study to show the

finite sample performance of our estimation procedure. Discussion is in Section

5, and proofs can be found in the supplementary document online.

2. Methodology

2.1. Difference-based kernel estimator

Our estimation method for the variance function is similar to that of Brown

and Levine (2007) for estimating the variance function in a nonparametric re-

gression model. They use the difference squares of observations, transforming

variance function estimation into mean function estimation, which is easier to
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handle. The estimation procedure has two steps: take the square of the first-

order differences of the observations, apply local polynomial regression estimation

with squared differences to obtain a smoothed estimator of σ2(x).

Let Dh(Z(x)) = Z(x + h) − Z(x) and Dh,i = Z(xi + h) − Z(xi). For a

Brownian motion W , Cov(W (xi),W (xi + h)) = xi for h ≥ 0. Under some

regularity conditions

E(D2
h,i) = σ2(xi)h+ {σ(1)2(xi)xi + σ2(1)(xi)}h2 + 2σ2

ϵ + o(h2),

where the notation f (k)(·) denotes the k-th derivative of f(·). We can write

E(D2
h,i) = σ2(xi)h+ 2σ2

ϵ + o(h).

σ2(xi) is what we wish to estimate, σ2
ϵ is the measurement error variance, and o(h)

is a higher order bias term caused by heteroscedasticity. If variances at different

locations are constant, the higher order bias term is zero. The correlation of

the differences is negligible. Here except for successive differences which share a

observation at the same location. Thus σ(xi+1) at xi,

Z(xi+1)− Z(xi) = σ(xi)(W (xi+1)−W (xi))

+{σ(1)(xi)h+ o(h)}W (xi+1) + ϵi+1 − ϵi.

And, due to independent increments, for j − i > 1,

Cov(Dh,i, Dh,j) = σ(1)(xi)σ
(1)(xj)xi+1h

2 + o(h2). (2.1)

A number of nonparametric regression procedures for estimating the mean

function can be applied to estimate the variance function. Here we consider

a local polynomial regression estimator. That automatically adjusts boundary

effects, preserving the asymptotic order of the bias (Fan and Gijbels (1996)). The

local polynomial regression estimator D̂2
h,λ(x) of D

2(x) = σ2(x)h+2σ2
ϵ based on

D2
h,i is

D̂2
h,λ(x) = â0, where

(â0, â1, . . . , âp)

= arg min
a0,a1,...,ap

n−1∑
i=1

[
D2

h,i − a0 − a1(x− xi)− · · · − ap(x− xi)
p
]2
K(

x− xi
λ

),

with K(·) the kernel function and λ the bandwidth.

Definition 1. K(·) is a kernel function of order p+ 1 if K(x) ≥ 0 with support

[−1, 1] satisfies
∫ 1
−1K(x)dx = 1, and

∫ 1
−1K

2(x)dx < ∞;
∫ 1
−1K(x)xjdx = 0, for

j = 1, 2, . . . , p;
∫ 1
−1K(x)xp+1dx > 0.
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The local polynomial regression estimator D̂2
h,λ(x) can be expressed as a

weighted average of D2
h,i’s,

D̂2
h,λ(x) =

n−1∑
i=1

Kn(
x− xi

λ
)D2

h,i,

where Kn((x− xi)/λ) are the kernel weights, satisfying the discrete moment

conditions
∑n−1

i=1 Kn((x− xi)/λ) = 1;
∑n−1

i=1 (x−xi)
jKn((x− xi)/λ) = 0, for any

j = 1, . . . , p; Kn((x− xi)/λ) = 0 for all |x− xi| > λ.

The local polynomial regression estimator of σ2(x) is given by

σ̂2
λ(x;σ

2
ϵ ) =

(D̂2
h,λ(x)− 2σ2

ϵ )

h

=

n−1∑
i=1

Kn(
x− xi

λ
)∆i, (2.2)

where ∆i = (D2
h,i − 2σ2

ϵ )/h.

2.2. Modified likelihood estimator of σ2
ϵ

Note that σ̂2
λ(x;σ

2
ϵ ) depends on σ2

ϵ , which in general is unknown and needs

to be estimated from the data. We consider a modified likelihood approach to

estimate σ2
ϵ , similar to profile likelihood estimation except that when profiling

σ2(x) we use the kernel smoothing estimator instead of the maximum likelihood

estimator. Take

P (σ2
ϵ ) = l(σ̂2

λ(x;σ
2
ϵ ), σ

2
ϵ ;d), (2.3)

where d = (Z(x2)−Z(x1), Z(x3)−Z(x2), . . . , Z(xn)−Z(xn−1)) is the difference

vector, and l(σ2(x), σ2
ϵ ;d) is the log likelihood function of σ2(x) and σ2

ϵ based

on d. Since the correlation of non-overlapping differences is negligible, the joint

distribution of d can be approximated by a multivariate normal distribution with

mean 0 and variance

Σ =


σ2(x1)h+ 2σ2

ϵ −σ2
ϵ · · · 0

−σ2
ϵ σ2(x2)h+ 2σ2

ϵ · · · 0
...

...
. . .

...

0 0 σ2(xn−2)h+ 2σ2
ϵ −σ2

ϵ

0 · · · −σ2
ϵ σ2(xn−1)h+ 2σ2

ϵ

 .

As a result, we have

P (σ2
ϵ ) = −1

2
log |Σ̂(σ2

ϵ )| −
1

2
dT {Σ̂(σ2

ϵ )}−1d, (2.4)
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where

Σ̂(σ2
ϵ ) =


D̂2

h,λ(x1) −σ2
ϵ · · · 0

−σ2
ϵ D̂2

h,λ(x2) · · · 0
...

...
. . .

...

0 0 D̂2
h,λ(xn−2) −σ2

ϵ

0 · · · −σ2
ϵ D̂2

h,λ(xn−1)

 ,

with the diagonal elements σ2(xi)h + 2σ2
ϵ in Σ replaced by the kernel smooth-

ing estimator D̂2
h,λ(xi). The modified likelihood estimator of σ2

ϵ is obtained by

maximizing (2.4).

Replacing σ2
ϵ in (2.2) by σ̂2

ϵ , the kernel smoothing estimator σ̂2
λ(x) is

σ̂2
λ(x) = σ̂2

λ(x; σ̂
2
ϵ )

=
n−1∑
i=1

Kn(
x− xi

λ
)∆̂i, (2.5)

where ∆̂i ≡ (1/|h|)(D2
h,i − 2σ̂2

ϵ ). The impact of using σ̂ϵ rather than σ2
ϵ on the

asymptotic behavior of σ̂2
λ(x) will be discussed in Section 3.

2.3. Bandwidth selection

A kernel smoothing estimator requires a choice of bandwidth. Two popular

methods here are the plug-in-type procedure such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) methods, and the data-

driven procedure based on minimizing an estimator of the mean squared error

(MSE) such as the cross validation (CV) method. We use the K-fold cross-

validation approach suggested by Levine (2006). Since the sequence {D2
h,i} has

a relatively small correlations, we expect the K-fold cross-validation to perform

well.

Randomly divide {D2
h,i, i = 1, . . . , n} into K subsets; leave out one fold, say

Ks, estimate the parameters using the remaining data K−s; predict the omitted

points in the leave-out fold. A good summary criterion is the mean of the squared

prediction errors. Here we use the discrete mean and refer to it as cross-validated

discrete mean squared error (CDMSE),

CDMSE(λ) = n−1
n∑

i=1

(D2
h,i − D̂2

h,−s,i)
2,

where D̂2
h,−s,i = D̂2

h,−s(xi) for i ∈ Ks, D̂
2
h,−s(x) is the difference-based kernel

smoothing estimator of D2(x) fitted to the remaining data K−s, D̂2
h,−s(x) =

n−1
−s

∑
k∈K−s

Kn−s((x− xk)/λ)D
2
h,k, with n−s being the sample size of K−s. The

cross-validation bandwidth is
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λCV = argminCDMSE(λ).

2.4. Kriging prediction

Consider the kriging prediction of the underlying process f(x0) = σ(x0)W (x0)

for x0 ∈ [0, 1] based on the observations z = (Z(x1), · · · , Z(xn)). For simplicity

we suppress the dependence of σ̂(x) on λ. When the parameters are known, the

best linear unbiased predictor of f(x0) is the conditional expectation of f(x0)

conditional on z,

p(x0) = Cov(f(x0), z)
TΣ−1

z z

= σ(x0)Cov(W (x0), z)
TΣ−1

z z,

where Σz is the covariance matrix of z. The plug-in kriging predictor replaces the

unknown parameters σ(x) and σ2
ϵ in p(x0) with the kernel smoothing estimator

of σ(x) and the modified likelihood estimator of σ2
ϵ .

3. Theoretical Results

In this section, we establish the asymptotic properties of the variance func-

tion estimators and the plug-in kriging predictor. Proofs can be found in the

on-line supplementary document.

We need some smoothness condition on σ2(x). We make the standard as-

sumption (see for example, Brown and Levine (2007)) that σ2(x) belongs to

Lipschitz classes C+
β (M) for β > 0 and M > 0.

Definition 2. The Lipschitz class Cβ(M) =
{
g : for all 0 ≤ x, y ≤ 1, k =

0, . . . , xβy−1, |g(k)(x)| ≤ M and |g(xβy)(x)−g(xβy)(y)| ≤ M |x−y|β′}
, where xβy

is the largest integer less than β and β′ = β − xβy.

Definition 3. C+
β (M) =

{
g : g ∈ Cβ(M) and ∃δ > 0, s.t. for all 0 ≤ x ≤

1, g(x) > δ
}
.

Theorem 1. In model (1.1), assume σ2(x) belongs to the functional classes C+
β

for β > 0 and the variance of measurement error σ2
ϵ is O(n−α) with α > 1/2.

The estimator σ̂2
λ(x;σ

2
ϵ ) at (2.2) is consistent for σ2(x) for any x ∈ [0, 1], with

bias O(max(n−1, λβ)) and variance O((nλ)−1max(1, n2−2α)).

When α ≥ 1, the optimal bandwidth is λ = O(n−1/(1+2β)), and the mean

squared error is O(n−2β/(1+2β)) . When 1/2 < α < 1, the optimal bandwidth is

λ = O(n−(2α−1)/(1+2β)), and the mean squared error is O(n−(2α−1)2β/(1+2β)).

Remark 1. Wang et al. (2008) derived the minimax rate of convergence for

variance function estimation in a heterogeneous nonparametric regression model.

They characterized explicitly how the smoothness of the unknown mean function
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influences the rate of convergence of the variance estimator and showed that the
minimax rate of convergence under both pointwise MSE and global MISE is
max{n−4α, n−2β/(2β+1)} if the mean function has α derivatives and the variance
function has β derivatives. One goal is to establish asymptotic bounds of the
bias and variance of the variance function estimator for non-stationary spatial
processes and study how the magnitude of measurement error influences the
variance function estimation. Here α differs from that of α in Wang et al. (2008).
The optimal bandwidth and mean squared error can be obtained accordingly. For
α ≥ 1 the rate of convergence of the variance function estimator is n−2β/(2β+1),
which coincides with the minimax rate of the convergence of variance function
estimator in heterogeneous nonparametric regression. For 1/2 < α < 1, the rate
of the convergence of the variance function estimator depends on the variability
of the measurement error, and deteriorates as α → 1/2. This is consistent with
the intuition that, when the variability of the measurement error increases, the
differences of observations are dominated by measurement error and therefore
carry little information about the variance function under estimation. For α <
1/2, the asymptotic theory for the difference-based kernel smoothing method
breaks down and it is no longer possible to have consistent estimates of the
variance function.

Theorem 2. In model (1.1), assume σ2(x) belongs to the functional classes C+
β

for β > 0 and the variance of measurement error σ2
ϵ is O(n−α) with α > 1/2.

For σ̂2
λ(x;σ

2
ϵ ) at (2.2), α ≥ 1, and λ = O(n−1/(1+2β)) (the optimal bandwidth),

nβ/(1+2β)(σ̂2
λ(x;σ

2
ϵ )− σ2(x)−O(λβ)) →d Z1,

as λ → 0, n → ∞, and nλ → ∞. For 1/2 < α < 1, and λ = O(n−(2α−1)/(1+2β))
(the optimal bandwidth),

n(2α−1)β/(1+2β)(σ̂2
λ(x;σ

2
ϵ )− σ2(x)−O(λβ)) →d Z2,

as λ → 0, n → ∞ and nλ → ∞, where Z1 and Z2 are normal distributions with
mean zero and variance σ2

1 and σ2
2, respectively, 0 < σ2

1, σ
2
2 < ∞.

Remark 2. Brown and Levine (2007) proposed difference-based estimators for
nonparametric regression model and established their asymptotic normality. The
asymptotic normality of the variance function estimator in our model can be es-
tablished by using similar arguments. The proof of Theorem 2 relies on Theorem
2.2 in Peligrad and Utev (1997).

Theorems 1 and 2 assumes σ2
ϵ is known, while in most applications, σ2

ϵ is
unknown. We first estimate σ2

ϵ using the modified likelihood estimator, then
plug in σ̂2

ϵ to obtain the variance function estimator. In Theorem 3 and 4, we
establish asymptotic properties of the modified likelihood estimator of σ2

ϵ , and
the plug-in variance function estimator σ̂2

λ(x, σ̂
2
ϵ ).
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Theorem 3. In model (1.1), assume σ2(x) belongs to the functional classes C+
β

for β > 0 and the variance of measurement error σ2
ϵ is O(n−α) with α > 1/2. If

σ̂2
ϵ is the modified likelihood estimator of σ2

ϵ , limn→∞ σ̂2
ϵ = σ2

ϵ in probability. For

α > 1, σ̂2
ϵ = σ2

ϵ +Op(n
−3/2). For 1/2 < α < 1, σ̂2

ϵ = σ2
ϵ +Op(n

−(1+2α)/2).

Remark 3. Theorem 3 shows that σ̂2
ϵ converges to σ2

ϵ at rate n−3/2 when the

measurement error is of order n−α with α > 1/2. If α ≥ 3/2, the convergent rate

of σ̂2
ϵ is slower than the rate of the measurement error going to zero. In such

cases the measurement error is too small to have any impact on the estimation

of σ2(x). Conversely, if 1/2 < α < 1, then the convergence rate of σ̂2
ϵ depends

on α, with larger α corresponds to slower convergence rate.

Theorem 4. In model (1.1), for the kernel smoothing estimator at (2.5), α ≥ 1,

and λ = O(n−1/(1+2β)) (the optimal bandwidth),

nβ/(1+2β)(σ̂2
λ(x, σ̂

2
ϵ )− σ2(x)−O(λβ)) →d Z1,

as λ → 0, n → ∞, and nλ → ∞. For 1/2 < α < 1, and λ = O(n−(2α−1)/(1+2β))

(the optimal bandwidth),

n(2α−1)β/(1+2β)(σ̂2
λ(x, σ̂

2
ϵ )− σ2(x)−O(λβ)) →d Z2,

as λ → 0, n → ∞, and nλ → ∞, where Z1 and Z2 are normal with mean zero

and variance σ2
1 and σ2

2, respectively, 0 < σ2
1, σ

2
2 < ∞.

To prove Theorem 4, we have ∆̂i = ∆i + Op(max(n−1/2, n−(2α−1)/2)) from

Theorem 3, and thus

σ̂2
λ(x; σ̂

2
ϵ ) =

n−1∑
i=1

Kn(
x− xi

λ
)∆̂i

=

n−1∑
i=1

Kn(
x− xi

λ
){∆i +Op(max(n−1/2, n−(2α−1)/2))}

= σ̂2
λ(x;σ

2
ϵ ) +Op(max(n−1/2, n−(2α−1)/2))

= σ2(x) +Op(λ
β) +Op(max(n−1/2, n−(2α−1)/2)). (3.1)

When α ≥ 1, the optimal bandwidth is λ = O(n−1/(1+2β)), under which the

third therm is negligible. When 1/2 < α < 1, the optimal bandwidth is λ =

O(n−(2α−1)/(1+2β)), under which O(λβ) = O(n−(2α−1)β/(1+2β)). Since (2α −
1)/2 > (2α− 1)β/(1 + 2β) always holds, the third term is again negligible com-

pared to the second term in (3.1). By Theorem 2 and Slutsky’s theorem, the

results in Theorem 4 follow.
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Remark 4. According to Theorem 4, substituting σ2
ϵ with σ̂2

ϵ in estimating

σ2(x) has negligible effect, and the asymptotic property of σ̂2
λ(x, σ̂

2
ϵ ) is the same

as σ̂2
λ(x;σ

2
ϵ ).

Theorem 5. The plug-in kriging predictor p̂(x0) is asymptotically unbiased for

σ(x0)W (x0). When α > 1,

E {p̂(x0)} = σ(x0)W (x0) +O(n−β/(1+2β)),

and when 1/2 < α < 1,

E {p̂(x0)} = σ(x0)W (x0) +O(n−(2α−1)/(1+2β)).

Remark 5. Theorem 5 shows that the bias of the plug-in kriging predictor is

small when α ≥ 1, and it is dependent on α when α < 1. The bias term becomes

non-negligible when α is close to 1/2, due to the deterioration of the variance

function estimator as shown in Theorem 1. The performance of the kriging

prediction using the estimated variance function deteriorates as the variability

of measurement error increases, and it becomes harder to recover the underlying

variance function in the estimation stage.

4. Simulation Studies

We report the results of two simulation studies, one on variance estimation

and the other on prediction.

4.1. Simulation one - variance estimation

In Simulation One, we tested the performance of our proposed method for

recovering the underlying variance function. B = 100 Monte Carlo samples of

sizes n were generated from zi = z(xi) = σ(xi)W (xi) + ϵi on a regular grid

xi = i/n on [0, 1], where W (x) is the Brownian motion on [0, 1], and ϵi i.i.d. ∼
N(0, σ2

ϵ ). Consider the variance of the measurement error to be σ2
ϵ = 0.1/n. We

considered the following parameter values n = 200, 500 and 1,000, and used the

variance functions σ2(x) = 16(x− 1/2)2 +1/2 and σ2(x) = 0.2 sin(x/0.15) + 1.0.

We chose the optimal bandwidth by K-fold cross validation with K = 10. The

performance of the difference-based kernel smoothing estimator was measured

using discrete mean squared error

DMSE = n−1
n∑

i=1

{σ̂2
λCV

(xi)− σ(xi)}2,

where λCV is the K-fold cross-validation bandwidth.

Table 1 and Table 2 show the median DMSE for the difference-based kernel

smoothing estimator, the median bandwidth, and the mean of σ̂2
ϵ over 100 Monte
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Table 1. Performance of variance function estimator and σ̂2
ϵ with a quadratic

variance function.

Variance function:16(x− 1/2)2 + 1/2

n Median DMSE Median Bandwidth Mean σ̂2
ϵ

200 0.201 1.00 0.00050
500 0.095 1.00 0.00017

1,000 0.053 1.00 9.9e-05

Table 2. Performance of variance function estimator and σ̂2
ϵ with a sine

variance function.

Variance function:2 sin(x/0.15) + 2.8

n Median DMSE Median Bandwidth Mean σ̂2
ϵ

200 0.694 0.26 0.00070
500 0.429 0.22 0.00023

1,000 0.274 0.21 0.00012

Carlo samples for σ2(x) = 16(x− 1/2)2 + 1/2 and σ2(x) = 0.2 sin(x/0.15) + 1.0,

respectively. The performance of the variance estimator improves as n increases,

which is consistent with Theorem 4. Similarly from the column “Mean σ̂2
ϵ ”, one

can see that the bias of σ̂2
ϵ gets smaller as n increases, as predicted by Theorem

3.

4.2. Simulation two - kriging versus spatially adaptive local polyno-

mial fitting

In Simulation Two, we compared the performance of our proposed method

of plug-in kriging to non-parametric methods. B = 100 Monte Carlo samples of

sizes n = 200 were generated from zi = z(xi) = σ(xi)W (xi)+ ϵi on a regular grid

xi = i/n on [0, 1], with σ2(x) = 1.6(x− 0.5)2 + 0.8, W (x) the Brownian motion

on [0, 1], and ϵi i.i.d. ∼ N(0, σ2
ϵ ). We took σ2

ϵ to be 0.1/n, 1/n, and 10/n.

The plug-in kriging predictor was compared with the spatially adaptive local

polynomial regression estimator (ALPRE), and the local polynomial regression

estimator (LPRE) with a global bandwidth. In ALPRE, the adaptive bandwidth

was obtained by a procedure similar to the one proposed by Fan and Gijbels

(1995). The interval[0, 1] was split into [1.5n/(10 log(n))] sub intervals, and a

leave-one-out cross validation method is used in each interval to obtain a local

bandwidth. These bandwidths are then smoothed to obtain the bandwidth for

each point.The performance of the prediction was measured using the discrete

mean squared error (DMSE).

Table 3 shows the median of DMSE over 100 Monte Carlo samples for the

plug-in kriging predictor(Kriging), adaptive local polynomial regression estima-
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Table 3. Performance of plug-in kriging, adaptive local polynomial regression
estimator(ALPRE) and local polynomial estimator(LPRE).

σ2
ϵ Methods Median DMSE

0.1/n Kriging 0.00048
ALPRE 0.00220
LPRE 0.00380

1/n Kriging 0.00320
ALPRE 0.00390
LPRE 0.00450

10/n Kriging 0.03200
ALPRE 0.01400
LPRE 0.01200

tor(ALPRE) and local polynomial estimator(LPRE) with a global bandwidth.

When σ2
ϵ = 0.1/n, Kriging outperformed ALPRE. When σ2

ϵ = 1/n, the per-

formance of Kriging and that of ALPRE are comparable. When σ2
ϵ = 10/n,

Kriging underperformed ALPRE. When the measurement error is small, the re-

alized process is very close to the underlying true process, and all three methods

did well in predicting the underlying process. Nevertheless, kriging outperforms

the other two methods, with its median DMSE less than 1/4 of ALPRE. As the

measurement error increases, the realized process is subject to more noises, and

at some point, the measurement error is too large for our method to estimate

reliably the underlying variance function. Kriging did poorly in recovering the

underlying true process compared with ALPRE and LPRE. (See Figures in the

supplementary material for the support of the above argument). It is also inter-

esting to note that in this case ALPRE is no better than LPRE. From Table 3,

when σ2
ϵ is large, the median DMSE of LPRE with a global bandwidth is 14%

better than ALPRE. This suggests that a global bandwidth is enough.

5. Discussion

In this paper we developed a difference-based estimation method to estimate

the variance function of a non-stationary spatial process based on one realization,

whereas, the non-stationary model is usually fit to spatial temporal data where

there are time replications of spatial process or spatial replications of time series,

see Fonseca and Steel (2011), Bornn, Shaddick, and Zidek (2012), among others.

spatial process is an advantage of our method.

The estimation procedure we developed can be applied to more flexible non-

stationary spatial processes. For example, Brownian motion can be replaced by a

Gaussian process with Matern covariance structure that allows for a fairly flexible

class of non-stationary covariance structure. The variance function estimation
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under such models can be done similarly, though it would be more difficult to

derive asymptotic results.

We have limited our attention to non-stationary spatial processes on R1. In

principle, our methodology can be applied to the estimation of variance function

of non-stationary spatial process in higher dimensions. For example, Hall, Kay,

and Titterington (1991) discussed estimation of noise variance in two-dimensional

signal processing using a difference-based approach. A similar approach can

be used to estimate the variance function of a two-dimensional non-stationary

spatial process. We also restricted our difference-based estimator to the first-

order difference to limit the technical derivations. Properties of the estimator

based on higher order differences will be addressed in a future work.
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