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Abstract: Space time data sets are often collected at monitored discrete time lags,

which are usually viewed as a component of time series. Valid and practical covari-

ance structures are needed to model these types of data sets in various disciplines,

such as environmental science, climatology, and agriculture. In this paper we pro-

pose several classes of spatio-temporal functions whose discrete temporal margins

are some celebrated autoregressive and moving average (ARMA) models, and ob-

tain necessary and sufficient conditions for them to be valid covariance functions.

The possibility of taking advantage of well-established time series and spatial statis-

tics tools makes it relatively easy to identify and fit the proposed model in practice.

A spatio-temporal model with moving average type of temporal margin is fitted to

Kansas daily precipitation to illustrate the application of the proposed model com-

paring with some popular spatio-temporal models in literature.

Key words and phrases: Autoregressive and moving average process, Fourier trans-

form, Matérn covariance function, spatio-temporal covariance function.

1. Introduction

With many phenomena in nature observed across space and through time,

the efficient statistical modeling techniques are needed to capture the spatio-

temporal variability exhibited in these data sets for various application purposes.

Examples in meteorology, climatology and ecology can be found in Haslett and

Raftery (1989), Handcock and Wallis (1994), Sahu and Mardia (2005), Wikle

and Royle (2005), among others. Often times appealing to computational conve-

nience, one adopts separable models by simply multiplying spatial and temporal

covariance functions together, which does not take into account the possible

space-time interaction. However, many environmental and geophysical processes

are dependent on the space-time interaction, which motivates a sequence of work

in non-separable model development. See e.g., Cressie and Huang (1999), Gneit-

ing (2002), Ma (2003), de Luna and Genton (2005), Stein (2005a,b), Gneiting,

Genton, and Guttorp (2007). Most of traditional effort focuses on building space-

time covariance models under the framework of continuous time and mention a

need to contend with the fact that time data are usually measured at discrete
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time points and normally viewed as realization of time series. Especially in

environmental and agricultural research, the data are often recorded at regu-

lar time intervals and at irregular stations. The common practice is to start

with simple discrete time series analysis, then combine with spatial information

for model exploration. In order to carry the initial time series result over for an

efficient space-time modeling, we need to develop sensible spatio-temporal covari-

ance structure over discrete time. Some approaches have been attempted along

this line, such as multivariate time series technique, autoregressive equation and

spectral representation (see Bras and Rodŕıguez-Iturbe (1985), Storvik, Frigessi,

and Hirst (2002) and Stein (2005b)). However the results are limited and most

of the models do not provide explicit close-form of the covariance functions.

Since space-time data are often collected at discrete time lags, it is natural

to assume the underlying space-time process Z(s, t) is defined on Rd ×Z and its

covariance function is given by

C(s1, s2, t1, t2) = Cov(Z(s1, t1), Z(s2, t2)), (s1, t1), (s2, t2) ∈ Rd × Z. (1.1)

The process is said to be stationary in space and time, if EZ(s, t) is a constant

and covariance function depends on s1, s2 and t1, t2 only through s1 − s2 and

t1 − t2 with simplified notation C(s1 − s2, t1 − t2). Similarly C(s1, s2, t1 − t2)

represents temporally stationary covariance. Following Ma (2005a), the spatial

margin of the spatio-temporal covariance is defined as C(s1, s2, t, t), i.e., the

spatial covariance at a fixed time. The temporal margin looks at the temporal

covariance of the process at a fixed location and is given by C(s, s, t1, t2). To

model most spatio-temporal data the usual starting point is to break the problem

into these two parts, the time series part and the spatial part. There is a wealth

of knowledge in the data exploration of these two types of processes, why not

construct a model that takes advantage of this front end analysis efficiently. The

well-established techniques of time series and spatial statistics are valuable tools

for model selection and determination. Then these tools can aid in tackling the

challenges of selecting and fitting complex spatio-temporal models.

The goal of this paper is to construct covariance functions to model the de-

pendence structure of continuous space and discrete time data using an intuitive

approach which utilizes existing time series and spatial statistics tools to facil-

itate model selection and construct models that are relatively easy to apply in

practice. The sufficient or sufficient and necessary conditions are provided for

the validity of the models. A spatio-temporal process where the temporal margin

has a moving-average-type model is first studied in Section 2. The model is then

extended to include some autoregressive-type models in Section 3. Invited by

the fact that the autoregressive and moving average (ARMA) processes can be

easily interpreted and techniques for estimating parameters are well-established,
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we try to utilize these techniques to determine the model and find starting values

to fit the overall space-time covariance function presented. Finally in Section 4,

the proposed model is applied to daily precipitation of Kansas and the fitting

is compared to the classical model introduced by Gneiting (2002) and Gneiting,

Genton, and Guttorp (2007).

2. Moving-average-type Temporal Margin

As we know, the moving average models in time series are building blocks of

more complex model structures. We begin our exploration of discrete temporal

margins with this type of structure. In the case of the first-order moving average

as temporal margin, we need to investigate the permissibility of real-valued func-

tions g0(s1, s2) and g1(s1, s2), s1, s2 ∈ Rd, such that the following spatio-temporal

function function

C(s1, s2, t) =


g0(s1, s2), t = 0,

g1(s1, s2), t = ±1, s1, s2 ∈ Rd,

0, otherwise,

(2.1)

in the domain of Rd × Rd × Z is a covariance function. It is clear that its tem-

poral margin at a fixed location s, is a first-order moving average model, i.e.

MA(1), provided that |g1(s, s)| ≤ 1/2g0(s, s), s ∈ Rd. It is often not easy to jus-

tify nonnegative definiteness of a proposed space-time function to be covariance

function. Especially when (2.1) is not necessarily stationary in space, the well-

known Bochner’s Theorem can not be directly applied. However the following

reformulation of (2.1) marks a promising avenue:

C(s1, s2, t) =
g0(s1, s2) + 2ag1(s1, s2)

2
·


1, t = 0,
1
2a , t = ±1,

0, t = ±2, . . . ,

+
g0(s1, s2)− 2ag1(s1, s2)

2
·


1, t = 0,

− 1
2a , t = ±1,

0, t = ±2, . . . ,

(2.2)

which is a product-sum of purely spatial function and correlation functions of

MA(1) models given a is a constant not less than 1. Based on this decomposition

and structure of separable model in each summand, it is not hard to see the

condition that g0(s1, s2) ± 2ag1(s1, s2) are spatial covariance functions, entails

the validity of (2.1) as a space-time covariance function on Rd × Rd × Z. When

a = 1, it turns out that this condition is also the necessary condition as shown

in the following theorem, the proof is postponed to the Appendix.
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Theorem 1. The function (2.1) is a spatio-temporal covariance function on

Rd × Rd × Z if and only if both

C+(s1, s2) = g0(s1, s2) + 2g1(s1, s2), s1, s2 ∈ Rd,

and

C−(s1, s2) = g0(s1, s2)− 2g1(s1, s2), s1, s2 ∈ Rd,

are spatial covariance functions on Rd.

Benefiting from this theorem, we only need to check the validity of two purely

spatial functions in order to verify that of the spatio-temporal function (2.1).

Example 1. The function

C(s1, s2, t) =


exp(−∥s1 − s2∥2), t = 0,
1
2 exp(−∥s1 + s2∥2), t = ±1, s1, s2 ∈ Rd,

0, elsewhere,

is a covariance function on Rd×Z, since both exp(−∥s1−s2∥2)+exp(−∥s1+s2∥2)
and exp(−∥s1 − s2∥2) − exp(−∥s1 + s2∥2), s1, s2 ∈ Rd, are spatial covariance

functions on Rd, where ∥s∥ =
(∑d

k=1 s
2
k

)1/2
is the usual Euclidean norm of

s ∈ Rd.

The stationary version of Theorem 1 can be obtained by replacing g0(s1, s2)

and g1(s1, s2) with h0(s) and h1(s) respectively, where h0(s) is a stationary spatial

covariance function. Now that the basic structure of a spatio-temporal covari-

ance function with a moving-average-type temporal margin has been established,

we now consider the spatial component to be more specific. Using Theorem 1,

we impose the commonly used Matérn type spatial margin and give minimum

conditions to create a valid covariance function. The Matérn spatial covariance

model (α∥s∥)νKν(α∥s∥), s ∈ Rd, was proposed in Matérn (1960) in the general

form, where α is a positive constant, and Kν(x) stands for the modified Bessel

functions of the second kind of order ν (Abramowitz and Stegun (1970)). Note

that when ν = 1/2 the Matérn reduces to the classic exponential spatial covari-

ance function. Parameter ν is a smoothness parameter that controls the degree

of the differentiability of the underlying process. We refer to Stein (1999) for the

elaboration on the importance and flexibility of the Matérn model. The following

theorem determines a spatio-temporal covariance function with spatial margin

being a linear combination of Matérn spatial covariance models and temporal

margin being a first-order moving average.
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Theorem 2. Let ν, αk, and βk (k = 1, 2) be constants with ν > 0, 0 < α1 < α2

and −1/2 ≤ β1 < β2 < 1/2. A necessary and sufficient condition for the function

C(s, t) =


c(α1∥s∥)νKν(α1∥s∥)+(1−c)(α2∥s∥)νKν(α2∥s∥), t = 0,

c(α1∥s∥)νKν(α1∥s∥)β1+(1−c)(α2∥s∥)νKν(α2∥s∥)β2, t=±1, s∈Rd,

0, otherwise,
(2.3)

to be a stationary covariance function on Rd × Z is that the constant c satisfies{
1− αd

2(1− 2β1)

αd
1(1− 2β2)

}−1

≤ c ≤
{
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

}−1

. (2.4)

The proof of this theorem is based on Theorem 1 and Bochner’s theorem,

the detail is given in the appendix. There are several remarks on Theorem 2.

Remark.

1. The range of β1 and β2 is suggested to ensure the validity of the MA(1)

temporal margin C(0, t) = 1{t=0} + (cβ1 + (1 − c)β2)1{t=±1}, t ∈ Z, when c

equals 0 or 1, where 1 represents an indicator function.

2. If −1/2 ≤ β1 < β2 < 1/2 and c lies in [0, 1], the proposed model (2.3) is valid

for any αi > 0, i = 1, 2, by the proof of the theorem in appendix.

3. When β2 approaches 1/2 from its left-hand side, the lower bound of c tends

to zero so that (2.3) reduces to a separable spatio-temporal model.

4. Since the interval [0, 1] is only a subset of c’s permissible domain (2.4) and

β1 or β2 may be negative, the function (2.3) is flexible to represent spatio-

temporal positive and negative correlations.

Specially, taking ν = 1/2 in (2.3) with the constant omitted, yields the case

with linear combination of exponential type of spatial margin:

Corollary 1. Let αk, and βk (k=1, 2) be assumed as in Theorem 2, the function

C(s, t) =


c exp(−α1∥s∥) + (1− c) exp(−α2∥s∥), t = 0,

c exp(−α1∥s∥)β1 + (1− c) exp(−α2∥s∥)β2, t = ±1, s ∈ Rd,

0, otherwise,

(2.5)

is a stationary correlation function on Rd×Z if and only if the constant c satisfies{
1− αd

2(1− 2β1)

αd
1(1− 2β2)

}−1

≤ c ≤
{
1− α1(1 + 2β1)

α2(1 + 2β2)

}−1

. (2.6)

It is worth noting that the bounds in (2.6) depend on the quotient α1/α2

only, instead of α1 and α2 individually. Therefore for constant c satisfying con-

dition (2.6) and any u ≥ 0, C(us, t) is space-time covariance function, so is
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0 C(us, t)dµ(u), given µ is a non-negative measure. Suppose φ is a completely

monotone function on [0,∞), which admits a Laplace transform of a finite non-

negative measure by Bernstein’s theorem (Widder (1941, p.160)), we can gen-

erate a large semiparametric class of spatio-temporal covariance functions from

Corollary 1.

Theorem 3. Let φ(x) be a completely monotone function on [0,∞). If c satisfies

inequality (2.6), then

C(s; t) =


cφ(α1∥s∥) + (1− c)φ(α2∥s∥), t = 0,

cφ(α1∥s∥)β1 + (1− c)φ(α2∥s∥)β2, t = ±1, s ∈ Rd,

0, otherwise,

(2.7)

is a stationary covariance function on Rd × Z.

Gneiting (2002) gives a table of commonly used completely monotone func-

tions for covariance modeling. For example, if you choose φ(x) = exp{−cxγ},
c > 0, 0 < γ ≤ 1, the resulting space-time function possesses a spatial margin

which is a linear combination of powered exponentials.

3. ARMA-type Temporal Margin

In this section we consider modeling of spatial-temporal data with some other

types of stationary time series margins. The product-sum format in previous

section is carried on in the hope of utilizing Bochner’s Theorem based on product

measure. The following theorem provides a sufficient and necessary condition

for the proposed space-time function to be valid covariance function with some

autoregressive and moving average margins.

Theorem 4. Let ν, α1, α2, β1, and β2 be constants with ν > 0, 0 < α1 < α2 and

−1 < β1 < β2 < 1. A necessary and sufficient condition for the function

C(s; t) = c(α1∥s∥)νKν(α1∥s∥)β|t|
1 +(1−c)(α2∥s∥)νKν(α2∥s∥)β|t|

2 , s ∈ Rd, t ∈ Z,
(3.1)

to be a stationary covariance function on Rd × Z is that the constant c satisfies{
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

}−1

≤ c ≤
{
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

}−1

. (3.2)

The proof of the theorem is given in the appendix.

In this model the spatial margin is a linear combination of two Matérn covari-

ance functions. The temporal margin of (3.1) is C(0; t) = cβ
|t|
1 +(1−c)β

|t|
2 , t ∈ Z,

with c confined in (3.2) and is a linear combination of correlation functions of

two first-order autoregressive time series, which includes families of correlation
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functions of stationary AR(1), AR(2), and ARMA (2, 1) time series. Roughly

speaking, αi, i = 1, 2 and ν can be looked at as the scaling parameter and smooth-

ness parameter for the spatial component. The βi’s are the parameters for time

series component and c plays as a balancing parameter based on strength of

space and time interaction. Moreover, (3.1) is more than a mixture of two sep-

arable space-time covariance functions, because the permissible domain of c in

(3.1) contains the interval [0, 1] as a subset. For other values of c, (3.1) can

be flexible to model negatively correlated structure. While if c lies in [0, 1], we

only need αi ≥ 0 to ensure the validity of the proposed model. As Corollary

1 in previous section, a special case of Theorem 4 when ν = 1/2, produces a

spatio-temporal covariance function with an exponential type of spatial margin

and a ARMA-type temporal margin.

One may ask whether we can always expand the proposed model to con-

tinuous process which covers the discrete one as constrained version on discrete

domain. More precisely, the embedding question is: can we embed the covariance

function (3.1) into a covariance function whose space-time domain is Rd×R? To

this end, let’s compare (3.1) with the following covariance function whose tem-

poral domain is R and the base in exponential expressions is positive

C(s; t) = c(α1∥s∥)νKν(α1∥s∥)β|t|
1 +(1−c)(α2∥s∥)νKν(α2∥s∥)β|t|

2 , s ∈ Rd, t ∈ R,
(3.3)

where 0 < β1 < β2 < 1 are defined as in Theorem 4. We can obtain the

permissible range of c based on Theorem 3 of Ma (2005b) as following{
1− αd

2

αd
1

lnβ2
lnβ1

}−1

≤ c ≤
{
1− α2ν

1

α2ν
2

lnβ1
lnβ2

}−1

. (3.4)

It is straightforward to verify the permissible interval of c in (3.2) is contained

by that in (3.4). This means that a stationary random field on Rd × Z with

covariance (3.1) can be embedded into a stationary random field on Rd×R with

covariance (3.3) when β1 and β2 are both positive. However, this is not allowable

if β1 or β2 is negative, in which case (3.3) would not be real-valued. It is unclear

whether (3.1) can be embedded into a real-valued, stationary covariance function

on Rd × R when β1 or β2 is negative.

When applying the proposed parametric models in this and previous sec-

tions, we can use time series techniques to fit time series for individual location

developing ARMA order and starting values for β1, β2, and c, so that the final pa-

rameter estimation can be achieved by maximum likelihood estimation or Cressie

(1993) weighted least square estimation (see Eq. (22) of Gneiting (2002)). For the

spatial aspect we can use procedures in spatial statistics to find starting values

for α1 and α2. The advantage here is that we can employ some handy time series
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general techniques, such as ACF, PACF or likelihood-based criteria like AIC or

BIC, to determine the temporal model patterns and orders, since the temporal

margin is treated as ordinary time series. Notice that this step provides an initial

idea of what the marginal time series looks like for model selection, the choice of

appropriate models will eventually be justified by the final space-time fitting cri-

teria, which are often not quite sensitive to very mild difference of marginal time

series choices. The simplicity is also of concern in final model selection. Hence

the proposed models along with this stepwise estimation procedure is relatively

convenient under growing demand on the statistical techniques for the model

determination given all the different theoretical models developed in continuous

space and time in literature.

Our proposed model presented can serve as an attempt in seeking of more

straightforward approach to studying spatial-temporal data where at each lo-

cation the temporal process can be modeled with some ARMA-type covariance

structure. Estimation for the data application in next section was done using

Cressie (1993) weighted least squares and techniques introduced by Gneiting

(2002). Expanding these techniques to the general ARMA(p, q) would require

careful expansion of the theorems presented herein and the computation should

still be manageable if Cressie weighted least squares method is employed. We

will consider more complex temporal margins in our future work.

4. Kansas Daily Precipitation Data

This section explores Kansas daily precipitation to illustrate the application

of the proposed model. There are numerous issues that must be dealt with when

it comes to the raw daily weather data, one being missing observations at certain

locations and time points. This missing information can occur for many reasons;

loss in a station funding, data not entered, and much more. Using space-time

modeling to fill in these gaps is one way of solving this problem.

The data source is the National Oceanic and Atmospheric Administration

(NOAA) and the weather stations across Kansas are shown by gray points in

Figure 1. To normalize the data and provide stability, each county was aggregated

by taking a daily average across the county’s weather stations. The resulting

dataset is 105 time series, one for each county, of daily precipitation data in

millimeters over 8,030 daily time points from January 1, 1990 to December 31,

2011. The dataset was then split into the first fifteen years to fit the model

and the last seven years to test the model predictive capabilities. To preform

comparisons we follow the similar approach as in Gneiting (2002) and Gneiting,

Genton, and Guttorp (2007). For time series margin the seasonal trend was

fit and removed using annual harmonic regression, also the spatial trend was

extracted by removing the station specific means.
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Figure 1. Kansas Counties Map: gray points are stations, orange highlighted
counties sampled to display ACFs and AICs.

We begin the modeling of the cleaned data set with an exploratory analysis

of temporal and spatial margins individually. Time series analysis has been

familiar and often times is routine step to practitioners. Examining the ACF

and AIC of the precipitation time series in all Kansas counties, we note that the

majority of the counties chooses a MA(1) for a temporal margin based on these

commonly used model selection criteria. To illustrate this result, referencing the

orange highlighted counties of Figure 1 evenly located across Kansas, the ACF of

those counties are given in Figure 2 and all of them indicates similar time series

pattern of MA(1). So does the comparison of AICs for different competitive

temporal marginal models. Hence it is determined that the temporal margin can

be modeled with a MA(1) process. The left panel of Figure 3 shows the fitted

empirical time correlations for two days of lag. Exploring the spatial component

results in an exponential type structure. The right panel of Figure 3 shows the

empirical spatial correlation with the fitted mixed exponential model. Suggested

by these exploratory analysis, it seems reasonable to choose the space-time model

with MA(1) temporal margin in Corollary 1. Incorporating nugget effect gives

the proposed model,

CMA(1)(s; t) =


(1− η) {c exp(−α1∥s∥) + (1− c) exp(−α2∥s∥)}+ η1s=0,t = 0,

(1− η) {c exp(−α1∥s∥)β1 + (1− c) exp(−α2∥s∥)β2}
+ η {cβ1 + (1− c)β2} 1s=0, t = ±1, s ∈ Rd,

0, otherwise.
(4.1)
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Figure 2. ACFs of nine chosen counties over Kansas

Figure 3. Kansas precipitation marginal plots: (left) time and (right) space.

Fitting space and time independent of each other allows for reasonable starting

parameter values when fitting the overall space-time model using Cressie (1993)

weighted least squares procedure. The estimated parameter values are η = 0.322,

α2 = 0.003, α1 = 0.009, c = 0.230, β1 = −0.495, and β2 = 0.495.

To study the performance of the proposed model (4.1) comparisons are made

with celebrated models in Gneiting (2002). Gneiting’s separable model

CG.SEP (s; t) =
{
(1− η) exp(−c∥s∥) + η1{s=0}

}
·
{
(1 + a|t|2α)−1

}
, s ∈ Rd, t ∈ R,

(4.2)
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Figure 4. Empirical precipitation space-time correlations and fitted models
based on 0, 1, 2 days of lag. Gneiting’s separable model denoted by G.SEP
(red), non separable model denoted by G.NSP (blue), and proposed model
denoted by MA(1) (green).

and Gneiting’s non separable model

CG.NSEP (s; t)=
1− η

1+a|t|2α

{
exp

(
− c∥s∥
(1+a|t|2α)β/2

)
+

η

1−η
1{s=0}

}
, s∈Rd, t∈R,

(4.3)
are fitted using similar procedures. Figure 4 shows the empirical space- time
correlations for 0, 1, and 2 days of lag as well as the fitted space-time mod-
els. Gneiting’s separable model is represented by the blue line, Gneiting’s non-
separable model is denoted by the red line, and the proposed model is the green
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Table 1. Kansas Precipitation RMSE Statistics

Measure G.SEP G.NSEP CMA(1)(s; t)
AVG. RMSE 6.899 6.879 6.861
STD. DEV. 1.863 1.833 1.817
95% DATA.I. (6.54, 7.24) (6.52, 7.23) (6.51, 7.21)
Low Count 29 (28%) 11 (10%) 65 (62%)

Table 2. Kansas Precipitation CRPS Statistics

Measure G.SEP G.NSEP CMA(1)(s; t)
AVG. CRPS 9.720 9.644 9.580
STD. DEV. 3.913 3.887 3.840
95% DATA.I. (8.96, 10.48) (8.89, 10.40) (8.84, 10.32)
Low Count 0 (0%) 16 (15%) 89 (85%)

line. Notice that after two days of lag the space-time correlation is dying out.

This fact is used to do one day ahead prediction based on two days of lag. As in

Gneiting, Genton, and Guttorp (2007), the root mean-square error (RMSE) and

continuous rank probability score (CRPS) are examined to compare the predic-

tion performance of the models. Since the RMSE is calculated for each of 105

counties and it is meaningful to consider the consistency of the superior perfor-

mance. Table 1 gives the average RMSE, standard deviation over all counties.

The 95% data interval gives empirical interval that covers the majority of RMSE

across counties. The “low count” tells how many counties have the lowest RMSE

per model. Although all the models have a similar RMSE around 6.8 meaning on

the average there is only 6.8 millimeters of error in predicting the next day’s pre-

cipitation, the proposed model denoted by CMA(1) does have the lowest average

RMSE, variability and 62% of counties, are best fitted by the proposed model in

prediction. Using the same techniques in Gneiting, Genton, and Guttorp (2007),

we use the CRPS to compare predictive distributions. Table 2 shows the mean

CRPS of all counties and again the proposed model has the lowest value. Also

the model with MA(1) temporal structure has the most counties with the lowest

CRPS with 89 out of 105 counties given by the Low Count.

Based on this analysis, the proposed model (4.1) preforms slightly better

than Gneiting’s models when the temporal margin of the space-time process

can be modeled with a MA(1) structure. It seems that taking into account the

discrete nature of the times series does help to improve the predictability of the

model. What’s more, the straightforward structure of the model gives intuitive

meaning for each component, which eases the cumbersome task of determining

the appropriateness of the model.



SPATIO-TEMPORAL MODELING WITH DISCRETE TIME 93

Acknowledgement

The authors would like to thank Professor Tilmann Gneiting for sharing
the data information in Gneiting (2002) and two anonymous referees for their
valuable comments and suggestions which helped to improve this paper.

Appendix

Proof of Theorem 1. In view of the product-sum decomposition (2.2) of
C(s1, s2, t) with a = 1, the sufficient part can be proved using the additive and
multiplicative properties of covariance functions (see e.g., Schabenberger and
Gotway (2005), p.34-44).

Conversely, suppose the function (2.1) is a spatio-temporal covariance func-
tion on Rd × Rd × Z, then C(s1, s2, t) is nonnegative definite. For arbitrary n
locations and m integer time points at each location, we formulate nm pairs
si and tj , and the corresponding coefficients are chosen as the products aibj ,
i = 1, . . . , n, j = 1, . . . ,m. We have

n∑
i=1

n∑
i′=1

aiai′C+(si,si′)

m∑
j=1

m∑
j′=1

bjbj′ρ+(tj−tj′)

+

n∑
i=1

n∑
i′=1

aiai′C−(si,si′)

m∑
j=1

m∑
j′=1

bjbj′ρ−(tj−tj′) ≥ 0, (A.1)

where ρ+(t) = 1{t=0} + (1/2)1{t=±1} and ρ−(t) = 1{t=0} − (1/2)1{t=±1}, t ∈ Z,
two MA(1) correlation functions. Note that only C+ and C− are of our interest,
we can choose some special values for ti and bi to meet our need. To this end,
in (A.1) let tj = j, bj = cos(jω) first, then let tj = j, bj = sin(jω), j = 1, . . . ,m
and ω ∈ R. Adding these two inequalities together with m divided gives{

1 +

(
1− 1

m

)
cosω

} n∑
i=1

n∑
i′=1

aiai′C+(si, si′)

+

{
1−

(
1− 1

m

)
cosω

} n∑
i=1

n∑
i′=1

aiai′C−(si, si′) ≥ 0.

When m tends to infinity, we obtain

(1+cosω)

n∑
i=1

n∑
i′=1

aiai′C+(si, si′)+(1− cosω)

n∑
i=1

n∑
i′=1

aiai′C−(si, si′) ≥ 0. (A.2)

Taking ω = 0 in (A.2) implies

n∑
i=1

n∑
i′=1

aiai′C+(si, si′) ≥ 0,
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which means that C+(s1, s2) is nonnegative definite. Similarly, taking ω = π in

(A.2) yields that C−(s1, s2) is nonnegative definite. This concludes the proof.

Proof of Theorem 2. With Theorem 1, it is equivalent to show that inequalities

(2.4) are necessary and sufficient condition for g0(s) ± 2g1(s) to be nonnegative

definite. Under scenario of this theorem,

g0(s)± 2g1(s) = c(α1∥s∥)νKν(α1∥s∥)(1± 2β1)

+(1− c)(α2∥s∥)νKν(α2∥s∥)(1± 2β2), s ∈ Rd.

Based on the spectral density of Matérn class of function ( see Eq. (32) of Stein

(1999)), the Fourier transforms of g0(s)+2g1(s) and g0(s)−2g1(s) can be readily

found to be positively proportional to

f1(u) = cα2ν
1 (∥u∥2+α2

1)
−ν−d/2(1 + 2β1)+(1−c)α2ν

2 (∥u∥2+α2
2)

−ν−d/2(1 + 2β2),

and

f2(u) = cα2ν
1 (∥u∥2+α2

1)
−ν−d/2(1− 2β1)+(1−c)α2ν

2 (∥u∥2 + α2
2)

−ν−d/2(1− 2β2),

u ∈ Rd,

respectively. Hence, it is reduced to show that inequalities (2.4) are necessary

and sufficient for f1(u) ≥ 0 and f2(u) ≥ 0, u ∈ Rd by Bochner’s Theorem.

Suppose that f1(u) ≥ 0 and f2(u) ≥ 0 hold for every u ∈ Rd. Since

0 < α1 < α2 and 0 ≤ 1 + 2β1 ≤ 1 + 2β2, the inequalities (2.4) follows from

0 ≤ lim
u→∞

(∥u∥2 + α2
1)

ν+d/2f1(u) = cα2ν
1 (1 + 2β1) + (1− c)α2ν

2 (1 + 2β2) (A.3)

and

0 ≤ f2(0) = cα−d
1 (1− 2β1) + (1− c)α−d

2 (1− 2β2). (A.4)

On the other hand, we are going to show that, under inequalities (2.4),

f1(u) ≥ 0 and f2(u) ≥ 0 hold for every u ∈ Rd. While this is obviously true if

0 ≤ c ≤ 1, it remains to consider the cases

Case I:

{
1− αd

2(1− 2β1)

αd
1(1− 2β2)

}−1

≤c≤0, and Case II:1≤c≤
{
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

}−1

.

Case I: 1− c is positive and (A.4) holds. Since 0 < α1 < α2, we have(
α2
2

∥u∥2 + α2
2

)ν+d/2

≥
(

α2
1

∥u∥2 + α2
1

)ν+d/2

.

Therefore

f2(u) ≥ {cα−d
1 (1− 2β1) + (1− c)α−d

2 (1− 2β2)}
(

α2
1

∥u∥2 + α2
1

)ν+d/2

≥ 0,
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and with 0 ≤ 1 + 2β1 < 1 + 2β2,

f1(u) ≥ {cα−d
1 + (1− c)α−d

2 }
(

α2
1

∥u∥2 + α2
1

)ν+d/2

(1 + 2β1) ≥ 0,

where the last inequality is obtained from

c ≥
{
1− αd

2(1− 2β1)

αd
1(1− 2β2)

}−1

≥
(
1− αd

2

αd
1

)−1

.

Case II: In this case, c is positive and (A.3) is valid. Thus

f1(u) ≥ {cα2ν
1 (1 + 2β1) + (1− c)α2ν

2 (1 + 2β2)}(∥u∥2 + α2
2)

−ν−d/2 ≥ 0,

and

f2(u) ≥ {cα2ν
1 + (1− c)α2ν

2 }(∥u∥2 + α2
2)

−ν−d/2(1− 2β2) ≥ 0, u ∈ Rd,

where the last inequality is due to

c ≤
{
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

}−1

≤
(
1− α2ν

1

α2ν
2

)−1

.

The proof is completed.

Proof of Theorem 4. The Fourier transform of (3.1) is positively proportional

to

f(u;ω)

= cα2ν
1 (∥u∥2+α2

1)
−ν−d/2 1− β2

1

1 + β2
1 − 2β1 cosω

+(1−c)α2ν
2 (∥u∥2 + α2

2)
−ν−d/2 1− β2

2

1 + β2
2 − 2β2 cosω

= {h1(u)− 2h2(u) cosω}
2∏

k=1

(1 + β2
k − 2βk cosω)

−1, u ∈ Rd, ω ∈ [−π, π],

where

h1(u) = cα2ν
1 (∥u∥2 + α2

1)
−ν−d/2(1− β2

1)(1 + β2
2)

+(1− c)α2ν
2 (∥u∥2 + α2

2)
−ν−d/2(1− β2

2)(1 + β2
1),

and

h2(u) = cα2ν
1 (1− β2

1)β2(∥u∥2 + α2
1)

−ν−d/2

+(1− c)α2ν
2 (1− β2

2)β1(∥u∥2 + α2
2)

−ν−d/2, u ∈ Rd.
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By Bochner’s theorem, (3.1) is a stationary covariance function on Rd×Z if and

only if its Fourier transform, f(u;ω), is nonnegative, or equivalently,

h1(u)− 2h2(u) cosω ≥ 0, u ∈ Rd, ω ∈ [−π, π]. (A.5)

Moreover, inequality (A.5) holds for all u ∈ Rd and ω ∈ [−π, π] if and only if

h1(u)− 2h2(u) ≥ 0, h1(u) + 2h2(u) ≥ 0, u ∈ Rd. (A.6)

In fact, on one hand we obtain (A.6) from (A.5) by simply taking ω = 0 and π

in (A.5), and on the other hand, inequalities (A.6) imply

h1(u) ≥ 2|h2(u)| ≥ 2h2(u) cosω, u ∈ Rd, ω ∈ [−π, π].

Notice that inequalities (A.6) are equivalent to

cα2ν
1 (∥u∥2+α2

1)
−ν− d

2 (1+β1)(1−β2)+(1−c)α2ν
2 (∥u∥2+α2

2)
−ν− d

2 (1+β2)(1−β1) ≥ 0,

(A.7)

and

cα2ν
1 (∥u∥2+α2

1)
−ν− d

2 (1−β1)(1+β2)+(1−c)α2ν
2 (∥u∥2+α2

2)
−ν− d

2 (1−β2)(1+β1) ≥ 0.

(A.8)

Hence, it suffices to show that inequalities (3.2) are necessary and sufficient for

(A.7) and (A.8) to hold.

Suppose that (A.7) and (A.8) hold for any u ∈ Rd, then inequalities (3.2)

follow by multiplying (∥u∥2+α2
1)

ν+d/2 on both sides of (A.7) and then letting u

tend to infinity, i.e.

cα2ν
1 (1 + β1)(1− β2) + (1− c)α2ν

2 (1 + β2)(1− β1) ≥ 0. (A.9)

as well as substituting u = 0 in (A.8), which gives

cα−d
1 (1− β1)(1 + β2) + (1− c)α−d

2 (1− β2)(1 + β1) ≥ 0. (A.10)

Conversely we are going to show that, under inequalities (3.2), (A.7) and

(A.8) hold for any u ∈ Rd. While this is obviously true if 0 ≤ c ≤ 1, it remains

to consider the cases

Case I:

{
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

}−1

≤ c ≤ 0;

Case II: 1 ≤ c ≤
(
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

)−1

.
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In Case I: 1−c is positive and (A.10) is valid. Similar to the proof of Theorem 2,

with 0 < α1 < α2 the inequality in (A.8) holds, because the left-hand side (LHS)

of (A.8) is greater than or equal to the following non-negative quantity

{cα−d
1 (1− β1)(1 + β2) + (1− c)α−d

2 (1− β2)(1 + β1)}
(

α2
1

∥u∥2 + α2
1

)ν+d/2

.

With (1 + β1)(1 − β2) < (1 − β1)(1 + β2), inequality (A.7) follows because the

LHS of (A.7) is greater than or equal to

{cα−d
1 + (1− c)α−d

2 }
(

α2
1

∥u∥2 + α2
1

)ν+d/2

(1− β2)(1 + β1),

which is non-negative by the first inequality in (3.2).

In Case II: c is positive and (A.9) holds. We can deduce inequality (A.7) in the

similar way as we did for the Case I by using the second inequality in (3.2). This

completes the proof of the theorem.
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