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Abstract: When spatio-temporal datasets are large, the computational burden can

lead to failures in the implementation of traditional geostatistical tools. In this pa-

per, we propose a computationally efficient Bayesian hierarchical spatio-temporal

model in which the spatial dependence is approximated by a Gaussian Markov

random field (GMRF) while the temporal correlation is described using a vector

autoregressive model. By introducing an auxiliary lattice on the spatial region of

interest, the proposed method is not only able to handle irregularly spaced observa-

tions in the spatial domain, but it is also able to bypass the missing data problem in

a spatio-temporal process. Because the computational complexity of the proposed

Markov chain Monte Carlo algorithm is of the order O(n) with n the total number

of observations in space and time, our method can be used to handle very large

spatio-temporal datasets with reasonable CPU times. The performance of the pro-

posed model is illustrated using simulation studies and a dataset of precipitation

data from the coterminous United States.
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1. Introduction

The analysis of spatio-temporal data is a current research topic in such ar-

eas as geophysical and environmental sciences. Due to technological advances

in data collection, large amounts of observations can be obtained from many

spatial locations over time. These datasets impose computational challenges to

the implementation of traditional spatial statistical tools, such as maximum like-

lihood estimation and kriging. For a spatial process, various approaches have

been proposed to facilitate the computation of large datasets; examples include

covariance tapering (Furrer, Genton, and Nychka (2006)), Gaussian predictive

processes (Banerjee et al. (2008)), fixed rank kriging (Cressie and Johannesson

(2008)) and Gaussian Markov random fields (GMRF, Rue and Held (2005)).

See Sun, Li, and Genton (2012) for a review. Much less work has been done

on spatio-temporal modelling of geostatistical processes with large amounts of

observations and we addresses this issue.

http://dx.doi.org/10.5705/ss.2013.085w
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Let Y (s, t) denote a real-valued spatio-temporal Gaussian process observed

on Rd × Z. We consider the model

Y (s, t) = µ(s, t) + Z(s, t) + e(s, t), (1.1)

where Z(s, t) is an unobserved spatio-temporal process and e(s, t) is a temporally

and spatially uncorrelated Gaussian measurement error observed at location s

and time t with mean 0 and variance σ2
e . We suppose that

µ(s, t) = ξ0 + ξ1c1(s, t) + · · ·+ ξpcp(s, t), (1.2)

where c1, . . . , cp are some observed covariates at location s and time t, and ξ =

(ξ0, . . . , ξp)
T is a vector of parameters. In this model, µ(s, t), Z(s, t), and e(s, t)

represent the large-scale, small-scale, and fine-scale variability, respectively.

We focus on spatio-temporal datasets with a large number of spatial loca-

tions, assuming that the same locations are monitored over time but that ob-

servations from some locations may be missing at some time points, which is

common in geostatistical practice. Denote by (si,t, t) the ith location at time

t for i = 1, . . . , nt and t = 1, . . . , T . The nt’s may be different and the to-

tal number of observations is n =
∑T

t=1 nt. A motivating example is the an-

nual total precipitation data for the coterminous United States, available at

(http://www.image.ucar.edu/Data/US.monthly.met/). The original dataset

consists of monthly precipitation observations from 11, 918 stations throughout

the United States and we manually converted them into annual total precipitation

observations. In our dataset, for each year, observations from about 6,000–7,000

of these 11,918 stations are recorded. Due to missing observations, we have 6,905,

5,744, 6,595, 6,438, and 6,159 stations that have complete yearly records from

1980 to 1984. Since the stations with recorded observations are different from

year to year, it is challenging to analyze the data using a spatio-temporal model.

Our primary goal is to conduct computationally efficient spatio-temporal kriging

for any given location and time point, using the complete dataset. We revisit

this dataset in Section 4.

There are two main approaches to modelling Z(s, t). The first treats time

as an additional dimension and uses a (d + 1)-dimensional covariance function

to model the correlation among different locations and time points; see, e.g.,

Cressie and Huang (1999) and Allcroft and Glasbey (2003). This approach has

drawbacks. To define a valid spatio-temporal covariance function, it is critical

to define a meaningful distance that involves both space and time coordinates

and this is not easy when spatial distance and temporal distance have different

units and physical interpretations. The spatial domain is usually fixed while

the time domain usually keeps increasing and asymptotically, infill asymptotics

http://www.image.ucar.edu/Data/US.monthly.met/
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suit the spatial domain process while increasing domain asymptotics are more

appropriate for temporal processes; see Stein (1999). Then too, computation can

be prohibitive for a random field where the number of spatial locations is large.

A second approach to modelling Z(s, t) is to use dynamical probabilistic

models (Stroud, Müller, and Sansó (2001); Cressie and Wikle (2011)). There

are some recent developments in this direction. Cressie, Shi, and Kang (2010)

proposed modelling the spatial correlation function using a low rank basis approx-

imation and the temporal dependence with a vector autoregressive process. Katz-

fuss and Cressie (2012) further proposed a Bayesian hierarchical spatio-temporal

random effects model that uses the Markov chain Monte Carlo (MCMC) method

to efficiently generate samples from posterior distributions. Finley, Banerjee, and

Gelfand (2012) developed a space-time version of a Gaussian predictive process

to conduct Bayesian dynamic modeling for large spatio-temporal datasets. These

works focus on approximating the Gaussian random field by a lower dimensional

spatial process using smoothing techniques such as basis function approxima-

tions. Computational cost can be reduced to a certain extent, but can still be

high if the number of knots used is large, which is desirable if the primary goal is

to make accurate predictions. As pointed out in Banerjee et al. (2008) and Sang

and Huang (2011), a predictive process with a small number of knots provides

a poor approximation of the dependence structure between the pairs of observa-

tions obtained at locations very close to each other. Yet the nearest observations

have the largest impact on the prediction at a particular location (Stein (1999)).

Another approach is to use a Gaussian Markov random field (GMRF, Rue and

Tjelmeland (2002)) model that can approximate a Gaussian random field well

with small neighborhoods (Rue and Held (2005); Lindgren, Rue, and Lindstrom

(2011)). For example, Lemos and Sansó (2009) model an irregularly spaced

spatio-temporal process as a kernel convolution of a latent GMRF, where the

choice of the kernel is largely subjective and can have a substantial impact.

We propose a Bayesian hierarchical model using a latent GMRF defined on

an auxiliary lattice to approximate the spatial correlation at a given time point,

and a vector autoregressive model for the temporal transition of latent states.

The Bayesian model is appealing in that it can provide a better quantification of

uncertainty in estimating parameters and making predictions. By using precision

and transition matrices of particular forms, the proposed model can be used to

model more complex spatial and temporal correlations. At the same time, one

can avoid matrix inversion by taking advantage of analytical properties of block

circulant matrices and thus reduce the computational cost for MCMC iterations

to O(n), where n is the total number of observations in space and time.

The paper is organized as follows. Section 2 gives the details of the proposed

method and its implementation. In Section 3, simulations are assessed for the
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predictive performance of the proposed method. The example of precipitation

data is used in Section 4 to illustrate the use of the proposed model when the data

size is large. Some discussions are given in Section 5. The proof of Proposition

1 and a detailed MCMC algorithm are given in the supplementary document.

2. A Bayesian Spatio-Temporal Geostatistical Model

2.1. Auxiliary Gaussian Markov random fields

Suppose that we have a spatio-temporal dataset Y (sit, t) observed at location

sit at time t, where i = 1, . . . , nt and t = 1, . . . , T . Let Yt = {Y (sit, t), i =

1, . . . , nt}. To model the data, we introduce an m1 ×m2 auxiliary lattice, W =

{(k, l) : k = 1, . . . ,m1, l = 1, . . . ,m2}, to cover the spatial region of interest

and use the same grid points for all time points. We define a series of latent

GMRFs, U1, . . . ,UT , on the auxiliary lattice where Ut = {Ukl,t, (k, l) ∈ W}.
Denote Y1:t = {Y1, . . . ,Yt}, U1:t = {U1, . . . ,Ut} and let θ be the vector of all

parameters. We assume that the structure on (Yt,Ut|θ) is Markovian,

Yt|U1:t,Y1:(t−1),θ ∼ f(·|Ut,θ), Ut|U1:(t−1),Y1:(t−1),θ ∼ g(·|Ut−1,θ),

where f(·) and g(·) are some density functions. One can use a GMRF to model

the spatial dependence within each Ut and can model the temporal dependence

between Ut’s using a vector autoregressive model. Let U⃗t be the prolonged vector

of Ut arranged as

U⃗t = (U11,t, U12,t, . . . , U1m2,t, U21,t, . . . , U2m2,t, . . . , Um1m2,t)
T. (2.1)

Then g(·) can be modelled using the space-time autoregressive (STAR) model

U⃗t = Φ(βt)U⃗t−1 + ζ⃗t, ζ⃗t ∼ N(0,Σ(βt)), t = 1, . . . , T, (2.2)

where β1, . . . ,βT is a sequence of vectors of parameters and, for each time point

t, Φ(βt) and Σ(βt) are m1m2 × m1m2 matrices depending on βt. Here ζ⃗t is

a spatial GMRF defined on the lattice W , and ζ⃗t and ζ⃗t−1 are assumed to be

independent. Although not required, we take β1 = · · · = βT = β (Cressie, Shi,

and Kang (2010); Katzfuss and Cressie (2012)) to ease the model identifiability.

The complexity of the Φ(βt)’s and Σ(βt)’s determines the complexity of the

spatio-temporal dependence structure that the STAR model can handle and the

computational cost of the MCMC algorithm. A simple model can assume that

Φ(βt) = βIm1m2 andΣ(βt) = σ2
qIm1m2 for all t’s, where β and σ2

q are some scalars

and Im1m2 is the m1m2 ×m1m2 identity matrix. In fact, a much simpler spatio-

temporal AR(1) model has been used in Finley, Banerjee, and Gelfand (2012).

However, such an overly simple model may not be able to capture both the
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spatial and temporal dependence, which is crucial for accurate predictions (Wikle,
Berliner, and Cressie (1998)). On the other hand, non-diagonal choices of the
Φ(βt)’s andΣ(βt)’s can quickly lead to a significant increase of the computational
expense. Issue with (2.2) is the trade-off between the richness of the Φ(βt)’s and
Σ(βt)’s and computational feasibility.

2.2. GMRF with block circulant precision matrices

For ease of presentation, we take β1 = · · · = βT = β. We model the spatial
dependence of the elements within the ζ⃗t’s by a first-order GMRF with a block
circulant precision matrix, σ−2

q Λ(β), where σq > 0 is a scaling factor such that all
diagonal elements of Λ(β) are 1. Thus, Σ(β1) = · · · = Σ(βT ) = σ2

qΛ(β)−1 and

ζ⃗t ∼ N(0, σ2
qΛ(β)−1) for t = 1, . . . , T . Suppose that (k0, l0, t0) is a reference point

and that the element in Λ(β) corresponding to the spatial interaction between
locations (k0, l0) and (k, l) at the time point t = t0 in the auxiliary lattice W is
0 unless |k − k0| ≤ 1 and |l − l0| ≤ 1, as illustrated in the right panel of (2.3).
For example, β110 represents the strength of the interactions between Uk0l0,t0

and {Uk0−1l0−1,t0 , Uk0−1l0+1,t0 , Uk0+1l0−1,t0 , Uk0+1l0+1,t0}. Temporal dependence
is modelled through the transition matrices Φ(β1) = · · · = Φ(βT ) = Φ(β) in
(2.2), by assuming that, given all U1:(t0−1), Uk0l0,t0 depends only on the first-
order neighboring grid points, Ukl,t0−1, where |k − k0| ≤ 1 and |l − l0| ≤ 1, as
illustrated in the left panel of (2.3). For example, β001 represents the temporal
dependence strength between Uk0l0,t0 and Uk0l0,t0−1:∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0

0 β111 β101 β111 0

0 β011 β001 β011 0

0 β111 β101 β111 0

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
t0 v.s. t0−1 (Φ(β))

,

∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0

0 β110 β100 β110 0

0 β010 1 β010 0

0 β110 β100 β110 0

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
t0 v.s. t0 (Λ(β))

. (2.3)

This parameterizations give β = (β100, β010, β110, β001, β011, β011, β111)
T,

where the first three parameters control the spatial correlation within the GMRF
Ut0 and the last four parameters model the temporal dependence between Ut0

and Ut0−1. For the m×m spatial adjacency matrix

Sm =



0 1 0 · · · 0 1

1 0 1 0 · · · 0

0
. . .

. . .
. . .

...
...

...
... 1 0 1 0

0 0
...

. . . 0 1

1 0 · · · 0 1 0


m×m

,
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it is straightforward to show that

Φ(β) = β001Im1m2 + β011Im1 ⊗ Sm2 + β101Sm1 ⊗ Im2 + β111Sm1 ⊗ Sm2 , (2.4)

Λ(β) = Im1m2 + β010Im1 ⊗ Sm2 + β100Sm1 ⊗ Im2 + β110Sm1 ⊗ Sm2 , (2.5)

where ⊗ is the Kronecker product. Since Φ(β) and Λ(β) in (2.4) and (2.5)

have more complicated structures, they can model more complex space-time

dependence. It is straightforward to extend our results to a higher order GRMF,

where Φ(β) and Λ(β) can have more complicated structures. As long as they

maintain circulant structures, the computational complexity is the same.

Remark 1. The form of Sm, a spatial lattice wrapped on a torus, is adopted

to reduce the computational cost because of the properties of circulant matrices.

While somewhat artificial, this has been used in many geostatistical models (Rue

and Tjelmeland (2002); Allcroft and Glasbey (2003); Rue and Held (2005)).

The joint distribution of U1, . . . ,UT can be expressed in terms of the log-

likelihood of U⃗ = (U⃗T
1 , . . . , U⃗

T
T )

T as

log f(U⃗ |β, σ2
q )

=

T∑
t=2

log f(U⃗t|U⃗t−1,β) + log f(U⃗1|β)

∝ − 1

2σ2
q

T∑
t=2

(U⃗t −Φ(β)U⃗t−1)
TΛ(β)(U⃗t −Φ(β)U⃗t−1)−

1

2
U⃗T
1 Q(β)U⃗1

−m1m2T

2
log σ2

q +
T − 1

2
log |Λ(β)|+ 1

2
log |Q(β)|, (2.6)

where U⃗1|β ∼ N(0, σ2
qQ

−1(β)). Since we focus on the stationary model, we

assume that (2.2) is a stationary vector autoregressive model, so all eigenvalues

of Φ(β) are between −1 and 1.

Proposition 1. If the STAR model (2.2) is stationary and if Φ(β), Λ(β) are

block circulant matrices such that |λkl(Φ(β))| < 1 and λkl(Λ(β)) > 0 for all k =

1, . . . ,m1, l = 1, . . . ,m2, then the marginal distribution of U⃗t is N(0, σ2
qQ

−1(β))

with Q(β) = (I−Φ2(β))Λ(β).

By the properties of block circulant matrices, Q(β) is a block circulant ma-

trix and, since both Φ(β) and Λ(β) are sparse, Q(β) is sparse. Hence, the

most computationally expensive parts in evaluating (2.6) are log |Λ(β)| and

log |Q(β)|, which usually require O(m3
1m

3
2) floating operations. For block cir-

culant matrices Φ(β) and Λ(β) as (2.4) and (2.5), using the fact that λk(Sm)=
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2 cos{2(k − 1)π/m} (Jain (1979)) and properties of the Kronecker product, we
have

λk,l(Φ(β)) = β001 + 2β101 cos

{
2(k − 1)π

m1

}
+ 2β011 cos

{
2(l − 1)π

m2

}
+4β111 cos

{
2(k − 1)π

m1

}
cos

{
2(l − 1)π

m2

}
, (2.7)

λk,l(Λ(β)) = 1 + 2β100 cos

{
2(k − 1)π

m1

}
+ 2β010

{
cos

2(l − 1)π

m2

}
+4β110 cos

{
2(k − 1)π

m1

}
cos

{
2(l − 1)π

m2

}
, (2.8)

for k = 1, . . . ,m1, l = 1, . . . ,m2. Plugging eigenvalues back into (2.6), we have

log f(U⃗ |β, σ2
q )

∝ − 1

2σ2
q

T∑
t=2

(U⃗t−Φ(β)U⃗t−1)
TΛ(β)(U⃗t−Φ(β)U⃗t−1)−

1

2σ2
q

U⃗T
1 (I−Φ2(β))Λ(β)U⃗1

+
T

2

m1∑
k=1

m2∑
l=1

log λk,l(Λ(β)) +
1

2
log

(
1− λ2

k,l(Φ(β))
)
− m1m2T

2
log σ2

q , (2.9)

where, again, λk,l(Λ(β)) > 0 and |λk,l(Φ(β))| < 1.

2.3. Conditional distribution of Zt given Ut

Since for a time point t, {Z(sit, t)} is irregularly spaced over the spatial
domain, we need to make connections between {Z(sit, t)} and the latent GMRF
Ut’s. To do so, we assume that the Z(sit, t)’s are mutually independent given
the GMRF Ut. We then have

f(Z(s1t, t), . . . , Z(snt,t, t)|Ut) =

nt∏
i=1

f(Z(sit, t)|Ut).

The idea of inducing conditional independence in spatial processes by using a
Markov field as a latent process is not new, see Hughes and Guttorp (1999) and
Park and Liang (2012). Here, the conditional distribution, f(Z(sit, t)|Ut), is of
particular importance. We model f(Z(sit, t)|Ut) by assuming that, for a given
t, {Z(sit, t), i = 1, . . . , nt} and Ut are generated from the same spatial process,
utilizing the fact that a Gaussian random field can be approximated well by a
GMRF with small neighborhoods (Rue and Held (2005); Lindgren, Rue, and
Lindstrom (2011)). Since U⃗t ∼ N(0, σ2

qQ
−1(β)), we assume that Z(sit, t) and U⃗t

are jointly normally distributed with mean zero and covariance matrix

Ωit = σ2
q

[
c(β) c(β)rTit

c(β)rit Q−1(β)

]
, (2.10)
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Figure 1. A 2×2 neighborhood (left) and a 3×3 neighborhood (right). The
‘+’ is the target location and the set of ‘×’s are its neighboring points used
in the auxiliary lattice.

where c(β) = (1/m1m2)
∑

kl[λkl(Λ(β)){1−λ2
kl(Φ(β))}]−1 and rit = Corr(Z(sit,

t), U⃗t) for i = 1, . . . , nt. Here, c(β) is introduced to match the variance of Z(sit, t)

and that of the GMRF U⃗t. Following the argument in Park and Liang (2012),

we can show that if 1− c(β)rTitQ(β)rit > 0, then Ωit is positive definite. By the

property of the multivariate Gaussian distribution, we have

Z(sit, t)|Ut ∼ N
[
c(β)rTitQ(β)U⃗t, σ

2
qc(β){1− c(β)rTitQ(β)rit}

]
. (2.11)

The computational costs of evaluating c(β)rTitQ(β)U⃗t is O(m2
1m

2
2), which can be

quite expensive if the grid size is large, and the constraint 1− c(β)rTitQ(β)rit >

0 is restrictive, especially when the nt’s, m1, and m2 are large. The mean

c(β)rTitQ(β)U⃗t is the simple kriging prediction at sit based on Ut and gener-

ally most of the kriging coefficients are close to 0, known as the “screen” effect

(Stein (1999)). This motivates us to assume that, conditioned on Ut, Z(sit, t)

depends only on a fixed subset of Ut in the neighborhoods of the location sit
(denoted by ∂sit), say U∂sit,t. In this paper, we consider the 2 × 2 and 3 × 3

neighborhood structures, as illustrated in Figure 1.

As in (2.10), we assume that the joint distribution of Z(sit, t) and U∂sit,t

from a m×m neighborhood is Gaussian with mean zero and covariance matrix

Ω∂sit,t = σ2
q

[
c(β) c(β)rT∂sit

c(β)r∂sit Σ∂(β)

]
,

where c(β) is defined as in (2.10), r∂sit = Corr(Z(sit, t), U⃗∂sit,t), and Σ∂(β)

is a m2 × m2 submatrix of Q−1(β) corresponding to the covariance matrix of

U∂sit,t. In general, we cannot obtain Σ∂(β) without actually inverting Q(β), but
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because Φ(β) and Λ(β) are block circulant matrices, Q(β) and Q−1(β) are as

well. This enables us to use the two-dimensional inverse Fourier transform of the

eigenvalues of Q−1(β) to obtain each element in Q−1(β); see, e.g., Rue and Held

(2005, Chap. 2.6). Suppose that ai1j1,i2j2 is the entry in Q−1(β) corresponding

to the interaction between Ui1j1,t and Ui2j2,t. Then, we have

ai1j1,i2j2 =
1

m1m2

m1∑
k=1

m2∑
l=1

cos{2|i1 − i2|(k − 1)π/m1 + (2|j1 − j2|(l − 1)π)/m2}
{1− λ2

kl(Φ(β))}λkl(Λ(β))
,

where λkl(Φ(β)) and λkl(Λ(β)) are as defined in (2.7) and (2.8), k, i1, i2 =

1, . . . ,m1, l, j1, j2 = 1, . . . ,m2. For an m × m neighborhood, it suffices to cal-

culate ai1j1,i2j2 for i1, i2, j1, j2 = 1, . . . ,m to obtain Σ∂(β), which requires only

O(m1m2) floating operations when m is fixed to a small number (2 or 3). Then,

it follows that

Z(sit, t)|Ut ∼ N
[
c(β)rT∂sitΣ

−1
∂ (β)U⃗∂sit,t, σ

2
qc(β){1− c(β)rT∂sitΣ

−1
∂ (β)r∂sit}

]
,

(2.12)

subject to the constraint

1− c(β)rT∂sitΣ
−1
∂ (β)r∂sit > 0. (2.13)

Following Park and Liang (2012), the spherical correlation function is used

to model r∂sit , with

ri,klt = Corr(Z(sit, t), Uklt) = 1− 3

2

hi(klt)

ϕ
+

1

2

(
hi(klt)

ϕ

)3

, (2.14)

if 0 ≤ hi(klt) ≤ ϕ and 0 otherwise, where hi(klt) is the spatial distance between

the sites of Z(sit, t) and Ukl,t. Although the primary reason for this choice is be-

cause of its compact support, our empirical experience indicates that this choice

provides good spatio-temporal predictions even when the underlying spatial cor-

relation is not spherical (see Section 3.2.2).

2.4. Conditional distribution of Yt given Ut

Denote by θ the parameter vector consisting of σ2
e , the regression coefficients

ξ = (ξ0, . . . , ξp)
T as defined in (1.2), and the interaction parameters β of the

auxiliary GMRF. The likelihood function is f(Y|U,θ) =
∏T

t=1 f(Yt|Ut,θ) with

f(Yt|Ut,θ) =

∫
f(Yt|Zt,θ)f(Zt|Ut,θ) dZt

=

nt∏
i=1

∫
f(Y (sit, t)|Z(sit, t),θ)f(Z(sit, t)|Ut,θ) dZ(sit, t)

=

nt∏
i=1

1√
2π(σ2

e + σ2
it)

exp

{
−(Y (sit, t)− µ(sit, t)− νit)

2

2(σ2
e + σ2

it)

}
, (2.15)
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where νit = c(β)rTitΣ
−1
∂ (β)U⃗∂sit,t, σ

2
it = σ2

qc(β){1 − c(β)rT∂sitΣ
−1
∂ (β)r∂sit} and

U⃗∂sit,t is a stacked version of U∂sit,t arranged in the same way as in (2.1). Thus

Y (si, t) = µ(si, t) + c(β)rTitΣ
−1
∂ (β)U⃗∂sit,t + εit, (2.16)

where εit ∼ N(0, σ2
e + σ2

it), i = 1, . . . , nt, t = 1, . . . , T .

2.5. The Markov chain Monte Carlo algorithm

In this subsection, we describe a Markov chain Monte Carlo algorithm for the

proposed STAR model (2.2). For the regression parameters ξ = (ξ0, ξ1, . . . , ξp)
T,

we use the non-informative prior π(ξ) ∝ 1. It is generally reasonable to believe

that σ2
e ≤ σ2

q and σ2
q + σ2

e ≤ σ2
s , where σ2

s is the sample variance of the observed

data (Park and Liang (2012)). We use the priors for

π(σ2
q ) ∝

1

σ2
q

I(L1 ≤ σ2
q ≤ U1), π(σ2

e |σ2
q ) ∝

1

σ2
e

I(L2 ≤ σ2
e ≤ σ2

q ),

where L1 = 0.01σ2
s , U1 = 2σ2

s , and L2 = 0.001σ2
s . The joint prior of (β, ϕ) is

π(β, ϕ) ∝
m1∏
k=1

m2∏
l=1

I(λkl(Λ(β)) > 0)I(|λkl(Φ(β))| < 1)

×
T∏
t=1

nt∏
i=1

I(1− c(β)rT∂sitΣ
−1
∂ (β)r∂sit > 0)I(ϕ > 0).

Remark 2. Although in principle (2.13) is required for all observed locations,

sit’s, this is too restrictive and tends to result in under-estimation of the range

parameter ϕ. In our examples, we relaxed the constraint by forcing 95% of the

observed locations to meet (2.13) while making sure that σ2
it + σ2

e > 0 for all i =

1, . . . , n, where σ2
it is defined as (2.16). This does not cause numerical problems

because Z(s, t) is integrated out in (2.16) in the MCMC algorithm. Numerical

studies indicate that this is a useful strategy to achieve better prediction results.

With the above priors, the posterior of our model is

f(σ2
q , σ

2
e , ϕ,β, ξ,U|Y) ∝ π(ξ)π(σ2

q )π(σ
2
e |σ2

q )π(β, ϕ)

T∏
t=1

f(Ut|σ2
q ,β)f(Yt|Ut,θ),

(2.17)

with f(Ut|σ2
q ,β) and f(Yt|Ut,θ) given in (2.9) and (2.15). It is easy to show

that the joint posterior (2.17) is proper. For a new location, spt, at time t,

Y (spt, t) can be predicted by

E{Y (spt, t)|Y} =

∫ ∫
E{Y (spt, t)|Y,θ,Ut}f(θ,Ut|Y) dθ dUt, (2.18)
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where E{Y (spt, t)|Y,θ,Ut} = µ(spt, t)+ c(β)rT∂spt,tΣ
−1
∂spt,t

(β)U⃗∂spt,t, with r∂spt,t

= Corr(Z(spt, t), U⃗∂spt,t). Hence, (2.18) can be numerically estimated using

MCMC samples. A detailed MCMC algorithm is given in the supplementary

document.

2.6. Choice of the grid size

Each iteration of the MCMC algorithm costs only O(m1m2T )+O(n) floating

operations with n =
∑T

i=1 nt, where the first term is due to the imputation of the

GMRFs U1, . . . ,UT and the second term is the cost of the likelihood evaluation

when drawing samples of θ. Computational cost of the proposed algorithm is

thus determined by the grid size and the sample size. Our simulation studies and

data example indicate that the predictive performance of the proposed method

generally improves as the grid size increases. However, after the grid size reaches

a certain level, the benefits of using more grid points gradually vanish. In the

purely spatial case, Park and Liang (2012) suggested that using m1m2 = n is

sufficient for most applications. Our limited numerical experience suggests that

taking m1m2 = (1/T )
∑T

i=1 nt yields sufficiently good prediction. With this

choice of m1 and m2, the computational complexity of our method is of order

O(n).

As pointed out by a referee, when modelling irregularly spaced data the

resolution of the auxiliary lattice is highly dependent on the spatial pattern of

the data. In many cases, a much larger grid size than the sample size may

be necessary to capture important spatial correlations. In addition, the O(n)

computational cost is for each MCMC step using the Gibbs sampler. When

the dimension of the Ut’s increases, the mixing property of the Gibbs sampler

may be questionable and thus more steps may be needed to collect well-behaved

posterior MCMC samples. Therefore, the aforementioned O(n) complexity might

be a little overly optimistic. Alternatively, the block Gibbs sampler can be used

to achieve better mixing properties. How to balance the block size of the Gibbs

sampler and the computation cost is an interesting research question.

3. Simulation Studies

3.1. Model estimation

To show that the MCMC algorithm in Subsection 2.5 can correctly estimate

the parameters in the proposed model, we simulated data as follows. First, we

set β = (β010, β100, β110, β101, β011, β101, β111) = (−0.2,−0.2, 0.0, 0.4, 0.1, 0.1, 0.0)

and (σ2
q , σ

2
e) = (3, 1). For ease of presentation, we put no ξ term in the model.

With T = 5, we used (2.2) to simulate auxiliary GMRFs U1, . . . ,UT on a

32 × 32 lattice that covers the region [0, 100] × [0, 100]. For each time point
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t, nt = 1, 000 observation sites, s1, . . . , s1000, were randomly drawn on the region

[0, 100]× [0, 100] such that (2.13) held. We considered 2× 2 and 3× 3 neighbor-

hoods. We generated Z(sit, t) and Y (sit, t) for i = 1, . . ., 1,000 and t = 1, . . . , 5

according to (2.16) and (2.12). For each dataset, the Metropolis-within-Gibbs

sampler of Subsection 2.5 was run for 30, 000 iterations with the first 10,000 iter-

ations discarded for the burn-in process. Then, 1,000 samples were collected from

the remaining 20,000 iterations at equally spaced time points. The estimation

results are summarized in Table S1 in the supplementary document, where SE

stands for the standard error. The numerical results indicate that the sampling

scheme described in Subsection 2.5 can correctly estimate the parameters from

the proposed model, with either a 2× 2 or a 3× 3 neighborhood structures.

3.2. Approximation to spatio-temporal Gaussian random fields

In this subsection, we simulated the data from a spatio-temporal Gaussian

random field with mean 0 and covariance function

γ((s1, t1), (s2, t2)) = σ2
0 exp(−|t1−t2|/τ)ρsp(||s1−s2||/ϕ)+σ2

eI(t1 = t2, s1 = s2),

(3.1)

where τ determines the strength of the temporal dependence and ϕ is the range

parameter that determines the length of the spatial correlation. In the simula-

tion studies, we take τ = 2 and τ = 5, where the former represents moderate

temporal dependence and the later represents strong temporal dependence. We

took ϕ = 20 and ϕ = 40 to show the prediction accuracy of the proposed method

for a spatio-temporal Gaussian random field with short and long spatial corre-

lation lengths. Other parameters were σ2
0 = 7 and σ2

e = 1. For each scenario,

20 independent datasets of size 1, 000 × 5 using the spatio-temporal covariance

function (3.1) were simulated. The function GaussRF() in the R package Ran-

domFields (Schlather and Menck (2013)) was used to generate the data. For each

dataset, 1,000 locations, {s1, . . . , s1000}, were uniformly drawn from the region

[0, 100] × [0, 100] and the spatial locations were the same for each time point.

Then, at each time point t, nt = 800 samples were randomly drawn from the

1,000 samples as the training dataset and the remaining 200 samples were used

for the prediction. We therefore had 800 × 5 samples for the model estimation

and 200 × 5 samples for the prediction. We designed this simulation scheme to

mimic the situation when some observations are missing from a set of irregularly

located stations over time. To study the effect of the grid size on the prediction

performance, four grid sizes were used for comparisons.

3.2.1 Kriging with correctly specified correlation functions

As (2.14) relates an observation from any given location to the GMRF defined

on the auxiliary lattice, we supposed that the underlying covariance function was
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spherical. We simulated 1, 000× 5 observations from the model (3.1) with ρsp(·)
as in (2.14). Because observations were missed randomly at different time points,

we used two approaches to evaluate the prediction performance.

We treated the random field at different time points as if they were indepen-

dent of each other. For a given time point t, we used the maximum likelihood

approach to estimate θ and then plugged in the estimated parameters to con-

duct simple kriging in a purely spatial manner. Predictions from different time

points were then collected together to calculate the mean square prediction error

(MSPE), denoted as MSPE(SP), where “SP” stands for “spatial kriging”.

Our second approach was to plug the true values of θ back into (3.1) and then

use the estimated (3.1) to conduct spatio-temporal kriging for all prediction lo-

cations at different time points. The resulting MSPE is denoted as MSPE(SPT),

where “SPT” stands for “spatio-temporal kriging”, which can be viewed as a

surrogate of the minimal possible prediction error. The function Kriging() from

the R package RandomFields (Schlather and Menck (2013)) was used to conduct

spatio-temporal kriging.

For the proposed STAR model, we used a lattice of size 32× 32 to conduct

spatio-temporal kriging and denoted the corresponding mean square prediction

error as MSPE. For each dataset, we ran 30, 000 MCMC iterations and discarded

the first 10, 000 iterations as the burn-in period. Then, 1,000 samples were col-

lected from the remaining 20, 000 iterations at equally-spaced time points. The

results are summarized in Table S2 in the supplementary document. It can be

seen that, in this case, by taking into account the temporal dependence, our
method always outperforms the purely spatial kriging method and the difference

between MSPE and MSPE(SP) grows as the strength of the temporal depen-

dence increases. We see that the MSPE and MSPE(SPT) are reasonably close,

which implies that the proposed method provides good spatio-temporal predic-

tions. And, as the grid size increases, the MSPE becomes smaller in most cases.

The smallest grid size here, 24 × 24 = 576, is much smaller than the averaged

sample size 800 and does not do a sufficiently good job.

3.2.2 Kriging with mis-specified correlation functions

We wanted to evaluate the predictive performance of the proposed STAR

model when the underlying spatio-temporal Gaussian random field does not have

a spherical spatial correlation function. We simulated 1, 000×5 observations using

model (3.1) with ρsp(·) from the Matérn family

ρsp(s1, s2) =
1

Γ(ν)2ν−1

(
4
||s1 − s2||

ϕ

)ν

Kν

(
4
||s1 − s2||

ϕ

)
,

where ν = 1, Γ(·) is the gamma function andKν(·) is the modified Bessel function

of the second kind.
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For the proposed STAR model, we used a lattice of size 32× 32 to conduct

spatio-temporal kriging and denoted the corresponding mean square prediction

error as MSPE. For each data set, we ran 30, 000 MCMC iterations and discarded

the first 10, 000 iterations as the burn-in process. Then, 1,000 samples were col-

lected from the remaining 20, 000 iterations at equally-spaced time points. The

results are summarized in Table S3 in the supplementary document. MSPE(SP)

was obtained by plugging in the maximum likelihood estimator based on the as-

sumption that the underlying correlation function is spherical. MSPE(SPT) was

obtained by spatio-temporal kriging using the true spatio-temporal covariance

function. By comparing MSPE(SP) and MSPE, we see that our method yielded

better prediction results, especially in the case of ϕ = 20. This indicates that

our approach is more robust to the choice of the correlation functions than is the

likelihood approach, at least in terms of the predictive performance. Perhaps,

since most of the spatial dependence has been taken into account by the auxil-

iary GMRF, the correlation function plays a less important role in our method.

Again, MSPE(SPT) and MSPE are close, so even though the correlation function

is mis-specified, our method can still yield good prediction results. As the grid

size increases, the MSPE decreases in most cases, and the smallest grid sizes,

24× 24 = 576, seems not sufficient.

3.3. Computational complexity analysis

The computational complexity of the proposed method is of the order O(n).

We conducted a small simulation study to numerically demonstrate this point.

The data were generated in the same way as in Subsection 3.2.2 with sample sizes

400× 5, 625× 5, 900× 5, 1225× 5, 1600× 5, and 2025× 5. The corresponding

lattice sizes were chosen to match the sample size at a specific time point. Thus,

with n = 400 × 5, the lattice size was 20 × 20. For each case, the CPU times

of running 5, 000 MCMC iterations were recorded and the average CPU times

over 10 repetitions was calculated. We fit a linear function to the CPU times

used by a 2× 2 neighborhood structure, CPU(n)= 11.52+0.039n and by a 3× 3

neighborhood structure, CPU(n)= −23.29 + 0.062n. The fitted functions are

plotted in Figure 2, which shows a linear pattern between the CPU times and

the sample sizes. As one would expect, for the 3× 3 neighborhood structure, the

computation cost increases at a faster rate as the sample size grows.

4. Precipitation Data

To illustrate the effectiveness of our method, we used annual total precipita-

tion data. The longitudes of the stations ranged from −124.6 to −67.0 and the

latitudes ranged from 24.55 to 49.00. Besides the longitude and latitude, there

was also elevation (in meters) information available for each location. We made
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Figure 2. Computational complexity (CPU time measured in seconds on a
2.80Ghz Intel Xeon X5560 computer) of the proposed method with 2 × 2
neighborhood (“o”) and a 3× 3 neighborhood (“+”) as a function of sample
size, n.

a square root transform of the original data to make them more normal. Let

Y (s, t) be the square root of the annual precipitation for location s in year t. We

used model (1.1) to analyze the observed process, where an intercept term, ξ0,

and the elevation, elev(s, t) (calculated as the elevation (in meters) divided by

100), were included in the mean structure µ(s, t). Since the region of interest can

be roughly considered as flat, we used a grid of size 115× 55 to cover the region

[−125,−65]× [20, 50]; for comparison, we took the grid sizes 100× 50, 120× 60

and 125 × 65. The ratio of the grid numbers in longitude and latitude roughly

close to 2 : 1 so that the grid points are evenly spaced in the spatial region.

For prediction performance of the proposed method, we created 20 datasets by

randomly taking 90% of the available data as the training dataset and the rest

as prediction locations. For each dataset, we ran 23, 000 MCMC iterations and

took 1,000 samples from the last 20, 000 iterations at equally-spaced time points

to do the estimation and prediction. The estimation results are summarized in

Table 1. As the maximum likelihood approach brings prohibitive computation

cost, we compared the purely spatial prediction accuracy using our method (by

assuming that T = 1 and Φ(β) = 0 in (2.2)) and the spatio-temporal prediction

accuracy using the proposed STAR model. The ability of using the auxiliary



76 GANGGANG XU, FAMING LIANG AND MARC G. GENTON

GMRF to approximate the Gaussian random field in a purely spatial scenario

was discussed and illustrated by Park and Liang (2012). The results are summa-

rized in Table 1. The results indicate that, by taking into account the temporal

dependence, the STAR model spatio-temporal kriging yields better prediction

results with either a 2× 2 or a 3× 3 neighborhood structure. Increasing the grid

size will give better prediction performance.

We also used the univariate Bayesian dynamic space-time regression models

proposed in Finley, Banerjee, and Gelfand (2012) to do spatio-temporal kriging

on the same dataset. The implementation was carried out using the function sp-

DynLM() in the R package spBayes (Finley and Banerjee (2013)). The variable

“elevation” was used as the only predictor in the regression model. Predictions

were made based on 5, 000 MCMC samples with a burn in period of 5, 000 itera-

tions. Knots were chosen as the grid points on 10×5, 14×7, and 20×10 lattices,

which give the MSPE for the hold out data as 0.67, 0.53 and 0.42, respectively.

As expected, the MSPE decreases as the number of knots increases. Using 200

knots gives roughly the prediction accuracy of our method, but its computation

time for each iteration is almost 7 times as much as ours using a 115 × 55 grid

size and a 2× 2 neighborhood.

In Figure S1 in the supplementary document, we present the spatio-temporal

prediction of the annual total precipitation in 1982 for all 11, 918 stations. There

are 6,595 stations that have records in 1982. The locations of these stations are

plotted as green dots in Figure S1(a). The red dots in Figure S1(a) represent

stations that do not have records in 1982. An image of the observed precipi-

tation data is shown in Figure S1(b). Figures S1(c) and (d) present images of

the predicted precipitation for all 11, 918 stations in 1982 using the STAR model

spatio-temporal kriging with 2 × 2 and 3 × 3 neighborhood structures, respec-

tively. The observations from the 6, 595 stations with data from year 1982 are

also used in the model estimation step. The similarity between Figure S1(b) and

Figures S1(c) and (d) indicates that our method yields good prediction perfor-

mance. Figures S1(e) and (f) give the prediction standard errors calculated using

MCMC samples for all 11, 918 locations.

5. Discussion

We have proposed a computationally efficient Bayesian hierarchical model

for large spatio-temporal data. Our approach completely avoids matrix inversion

in MCMC sampling and its computational cost increases only linearly with the

sample size. Numerical examples show that, by using the STAR model (2.2), the

spatio-temporal prediction is more accurate than the purely spatial prediction.

Our method can be extended to more general treatments of spatio-temporal

processes in different ways. We can make the coefficients, ξ, in (1.2) dependent
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Table 1. The mean of the estimated parameters averaged over 20 datasets
drawn from the precipitation data. The numbers in the parentheses are the
standard errors of the estimates. The size of the auxiliary lattice is 115×55.

Neighborhoods 2× 2 3× 3
SPTKrig SPKrig SPTKrig SPKrig

β010 -0.08(0.05) -0.08(0.05) -0.10(0.06) -0.10(0.05)
β100 -0.12(0.04) -0.12(0.04) -0.15(0.05) -0.14(0.06)
β110 -0.15(0.03) -0.15(0.03) -0.11(0.04) -0.12(0.04)
β001 0.69(0.06) 0 0.55(0.18) 0
β011 0.05(0.03) 0 0.05(0.06) 0
β101 0.05(0.03) 0 0.07(0.04) 0
β111 0.01(0.02) 0 0.03(0.03) 0
ξ0 7.21(0.34) 7.36(0.42) 6.95(0.20) 7.70(0.28)
elev 0.30(0.00) 0.29(0.01) 0.28(0.03) 0.18(0.04)
ϕ 9.90(2.22) 2.94(0.33) 4.43(1.87) 1.61(0.21)
σ2
q 0.37(0.04) 0.97(0.15) 0.55(0.28) 1.35(0.21)

σ2
e 0.19(0.04) 0.22(0.03) 0.15(0.06) 0.28(0.06)

MSPE(100× 50) 0.44(0.03) 0.53(0.02) 0.47(0.05) 0.64(0.06)
MSPE(115× 55) 0.43(0.02) 0.52(0.02) 0.46(0.07) 0.64(0.05)
MSPE(120× 60) 0.40(0.01) 0.49(0.02) 0.43(0.05) 0.63(0.06)
MSPE(125× 65) 0.40(0.01) 0.49(0.01) 0.41(0.02) 0.65(0.07)

CPU (m) 75.34 23.80 121.10 64.20

on time, and model them as in Katzfuss and Cressie (2012) as a Markovian

Gaussian process evolving over time. We can also model the coefficients, βt, in

the STAR model (2.2) as a Markovian Gaussian process evolving over time. This

enables one to deal with a spatio-temporal process with a nonstationary temporal

dependence structure. As well, we can use higher-order GMRF to model spatial

correlations and a more complicated transition matrix, Φ(β), than those in (2.2).

If Φ(β) and Λ(β) are circulant, the computational complexity can be maintained

as O(n).

There are some limitations of the proposed method. The use of the circulant

matrices makes it difficult to generalize our method to deal with a spatially

nonstationary process. Although the use of circulant matrices helps lower the

computational expense, it can be difficult to verify the corresponding boundary

conditions in a real data problem. Then too, the autoregressive structure used

in (2.2) may not be flexible enough to handle a spatio-temporal process where

the spatial and temporal interaction is very strong and complicated.
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