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Abstract: We consider the problem of estimating an unknown covariance function of

a Gaussian random field for data collected by a polar-orbiting satellite. The com-

plex and asynoptic nature of such data requires a parameter estimation method

that scales well with the number of observations, can accommodate many covari-

ance functions, and uses information throughout the full range of spatio-temporal

lags present in the data. Our solution to this problem is to develop new estimating

equations using composite likelihood methods as a base. We modify composite like-

lihood methods through the inclusion of an approximate likelihood of interpolated

points in the estimating equation. The new estimating equation is denoted the I-

likelihood. We apply the I-likelihood method to 30 days of ozone data occurring in

a single degree latitude band collected by a polar orbiting satellite, and we compare

I-likelihood methods to competing composite likelihood methods. The I-likelihood

is shown capable of producing covariance parameter estimates that are equally or

more statistically efficient than competing composite likelihood methods and to be

more computationally scalable.

Key words and phrases: Composite likelihood, estimating equations, Gaussian ran-

dom elds, Godambe information, remote sensing.

1. Introduction

Analysis of spatial and spatio-temporal data sets with a large number of

observations has driven many recent advances in statistical modeling and com-

putation (Stein, Chi, and Welty (2004), Kaufman, Schervish, and Nychka (2008),

Cressie and Johannesson (2008) Banerjee et al. (2008), Liang et al. (2013), among

many others). Spatial and spatio-temporal data are commonly modeled using

Gaussian Random Fields (GRFs) with parameterized mean and covariance func-

tions determined by unknown parameter vectors, µ and θ respectively. However,

evaluating the likelihood of n observations from a GRF is generally a procedure

of O(n3) complexity and requires O(n2) RAM storage. Maximum likelihood es-

timation via numerical optimization can therefore become difficult on desktop

computers when n is only moderately large. Though classification of a data set

as ‘large’ depends on the problem and the computational resources available, fol-

lowing Kaufman, Schervish, and Nychka (2008), for systems with 2GB memory,

http://dx.doi.org/10.5705/ss.2013.227w
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a data set of size 10,000 may yield an unstructured covariance matrix too large

to store in RAM and thus requires frequent and slow reading and writing to

hard disk. With the advance of remote sensing techniques and the development

of spatio-temporal data sets with billions of observations, a number of covari-

ance parameter estimation methods for large n data sets have been developed to

work in different contexts. In this paper, we consider the problem of covariance

parameter estimation in the context of data produced by recording instruments

aboard polar-orbiting satellites.

Polar-orbiting satellites are often used to collect daily global data on atmo-

spheric conditions and other natural phenomena. Currently, NASA employs a

group of polar-orbiting satellites called the A-Train to collect information on to-

tal column ozone, temperature, rainfall, aerosols and other data of environmental

interest. In 2014, NASA is set to expand this program to include instruments

that measure global concentrations of carbon dioxide (NASA (2012)). The daily

global coverage provided by these satellites makes them attractive scientific in-

struments from a data collection perspective, but it also places these data sets

solidly in the large n category. For example, the Ozone Monitoring Instrument

(OMI) on NASA’s Aura polar-orbiting satellite collects over 1 million observa-

tions per day.

In addition to the computational difficulties in analyzing these data sets,

two more characteristics of polar-orbiting satellite data create problems for co-

variance parameter estimation. First, the natural processes being monitored by

polar-orbiting satellites are complex. This complexity requires modeling flexibil-

ity and thus requires an estimation method that can accommodate many different

covariance models without loss of computational viability. Second, polar-orbiting

satellites move simultaneously through space and time as data is collected. This

movement sparsely distributes and confounds spatial and temporal information

in the data, making certain effects difficult to estimate. Figure 1(a) roughly

depicts the shape of a polar orbit, and subfigures (b) and (c) give plots of the

spatio-temporal locations of OMI observations in a single latitudinal band. Fig-

ure 1(b) shows how OMI observations in single latitude band centered at 39◦ N

are situated in time, and Figure 1(c) is a close-up view of two consecutive orbits

of data collected by the Aura satellite again at 39◦ N. These plots show how

information in data collected by a polar-orbiting satellite can be distributed. At

39◦ N, consecutive orbits occur at different spatial and temporal locations with

a small amount of overlap in space. Due to the shape of a polar orbit, less

spatial replication occurs across consecutive orbits near the equator and more

occurs near the poles. Spatial replication is needed to untangle the confounding

of spatial and temporal effects; however, as Figure 1(b) shows, this replication

occurs largely at daily intervals. Therefore, the information needed to satisfac-

torily estimate certain structures in the data is distributed within orbits, across
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Figure 1. (a) A basic visual of the orbital path of some types of polar orbiting
satellites. Arrows indicate rotation of the earth. Note other types of polar
orbits do not pass exactly over the poles. (b) OMI Observational locations
in a single latitude band centered at 39.5◦ N on two consecutive days viewed
from above the north pole. Time is represented by distance from origin and
longitude is the angle with the ray marked 0◦. (c) Two consecutive orbits
of the OMI data in the same latitude band. An offset is applied by orbit to
better show the spatial—but not temporal—overlap of these data.

orbits and across days. A useful covariance parameter estimation method must

respect this information structure and thus must be capable of accommodating

the relationships between observations over the full range of spatio-temporal lags

present in the data.

The problems inherent to polar-orbiting satellite data have been considered

previously by Fang and Stein (1998) but not in the context of covariance param-

eter estimation. Current large n estimation methods are not specifically geared

toward addressing the data structure of polar-orbiting satellites and hence may

be ill-suited to solve these problems, though several versatile large n techniques

are currently available.

One class of estimation techniques that has proven to be quite flexi-

ble can be described as composite likelihood methods (Vecchia (1988), Cur-

riero and Lele (1999), Stein, Chi, and Welty (2004), Caragea and Smith (2007),
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Bevilacqua et al. (2013), Eidsvik et al. (Accepted). These methods produce esti-

mations through maximization of an objective function that relates the data to

the parameters, where the objective function is the product of marginal or con-

ditional likelihoods (Lindsay (1988)). If Y1, . . . , Yk and C1, . . . , Ck are subvectors

of the vector of observations, Y , a log composite likelihood can be written

log(LC) =

k∑
i=1

ℓ(θ;Yi|Ci), (1.1)

where each ℓ is a marginal or conditional log-likelihood. Note that any Ci may

be empty.

The difficulty in using composite likelihood methods is in choosing the sub-

vectors, Y1, . . . , Yk and in choosing the conditioning sets, C1, . . . , Ck. Many

composite likelihood methods choose both sets with a focus only on preserving

close spatio-temporal lag relationships, but this strategy is incompatible with the

structure of polar-orbiting data. Stein, Chi, and Welty (2004) advocate use of

longer range conditioning sets, but their focus is in the spatial setting. Exten-

sion of their method to polar-orbiting satellite data or general spatio-temporal

settings remains unclear. Caragea and Smith (2007) provide a composite likeli-

hood method that considers longer range relationships, but scaling this method

to extremely large data sets remains difficult.

Another class of large n estimation methods focuses on approximating a

GRF with a Gaussian markov random field (GMRF) (Lindgren, Rue, and Lind-

ström (2011)). These methods have considerable flexibility but ultimately rely

on specific forms of the covariance function to produce computational savings.

Additionally, since a GMRF relies on placing observations on a graph, the special

observational location structure of polar-orbiting satellite data makes implemen-

tation of this procedure problematic.

In this paper, we propose a new method of space and space-time covariance

model estimation that matches the needs created by polar-orbiting satellite data.

We develop an estimating equation that captures relationships between observa-

tions at all spatio-temporal lag scales while simultaneously retaining flexibility in

terms of covariance function modeling and maintaining computational feasibility.

Our approach builds on composite likelihood methods. The estimating equation

we develop uses (1.1) as a base estimating equation; however, this is modified

through the addition of an approximate log-likelihood of strategically interpo-

lated points into the estimating equation. In calculating this log-likelihood, the

interpolated values are treated as actual observations of the continuous com-

ponent of the spatial or space-time process being measured. For this reason,

we say we use the interpolated points as pseudo-observations, and we name the
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estimating equation developed here the Interpolation likelihood or I-likelihood.

Using interpolated points as pseudo-observations adds simplicity to this esti-

mation method and provides additional computational savings. The estimation

procedure we present in this paper may be usefully applied to data from sources

other than polar-orbiting satellites and is thus quite general; any large n data set

can be analyzed using this method, and in particular, analysis of any data set

produced by a scientific instrument that moves as it collects data may especially

benefit from the methods presented here. The example of polar-orbiting satellite

data, however, remains the primary motivator for this research.

In the following section of this paper, we more formally state the problem

and our method of solution in generality. In Section 3, we apply the I-likelihood

method to a large data set gathered by a polar-orbiting satellite, and we explicitly

show the computational viability of our method as well as the statistical efficiency

gains produced in using it.

2. Methodology

2.1. Problem

We assume observations from a polar-orbiting satellite or some known func-

tion of the observations are samples from a GRF, Y(s, t), indexed by space and

time locations s and t. The GRF Y(s, t) is determined by the sum

Y(s, t) = X (s, t) + ηW(s, t)

with η ≥ 0, where X (s, t) is a continuous GRF and W(s, t) is a GRF inde-

pendent of X that has values distributed as independent standard normal ran-

dom variables at distinct space-time locations. The distribution of observations

Y = (Y(s1, t1), . . . ,Y(sn, tn))
T = (y1, . . . , yn)

T is therefore Gaussian distributed

with some mean and covariance. We assume the covariance structure of Y is

determined by a function Kθ(·, ·) with parameter θ ∈ Rd. Note η is included

in θ. We also assume E(Y(s, t)) = 0 for simplicity. Extension of this problem

to the unknown mean setting is straightforward. If the mean is linear in the

unknown parameters, we suggest using restricted likelihood methods (Stein, Chi,

and Welty (2004)). We write the distribution of observations: Y ∼ N(0,Σ(θ)),

where Σ(θ) is a positive definite matrix with the ij-th entry, Σ(θ)ij = Kθ(yi, yj).

The log-likelihood function of Y is ℓ(θ;Y ), the form of which is given by

ℓ(θ;Y ) = −n

2
log(2π)− 1

2
log

∣∣Σ(θ)∣∣− 1

2
Y TΣ(θ)−1Y. (2.1)

In this work, we also consider the distribution of the continuous GRF, X . We

write the log-likelihood of a sample from X as ℓX (θ; ·). In this model, ℓX (θ; ·) =
ℓ(θ; ·) when η = 0.
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The problem we address here is to develop an estimator of θ that has three

specific properties. Property A, the estimation procedure must make use of the

relationships between observations at all spatio-temporal lag scales. Property

B, the number of floating point operations and the amount of RAM storage

needed to carry out the estimation must scale well with n. And Property C, the

estimation procedure must not rely on computational shortcuts that require a

specific form of the covariance matrix, Σ(θ), or the covariance function, Kθ.

2.2. Estimation method

Our covariance parameter estimation method builds off composite likelihood

methods in a way that observational relationships occurring over the full range

of spatio-temporal lags are explicitly considered in the estimation. We construct

a new function, g(θ;Y ), based on a composite likelihood that we maximize with

respect to θ. Our primary departure from composite likelihood methods is that

g contains one or more likelihoods based on interpolated points. We denote g

as the log of the I-likelihood. A more in-depth comparison of the I-likelihood to

more familiar composite likelihoods is in Section 2.3. Here we discuss the general

construction of g.

The I-likelihood is constructed in at least two stages that we call tiers. The

first tier, g1, is an ordinary composite log-likelihood. An appropriate composite

log-likelihood for the first tier will preserve the relationships between points that

are close in space and/or time. For this paper, we use a Vecchia (1988) type for-

mulation of (1.1) that involves partitioning the data into blocks of computable

size and constructing the first tier composite likelihood as the product of the

likelihoods of these blocks conditioned on the data in other blocks. We also use

a first tier composite likelihood that treats each block of data as independent.

In practice, conditioning and blocking considerations must follow the application

of interest while simultaneously respecting the computational resources at hand,

but loosely, the closer g1 is to the true log-likelihood, ℓ, the better the com-

posite likelihood will approximate the true likelihood, likely improving overall

estimation.

The second tier function, g2, is built using interpolated points. The method

and placement of these interpolated points may vary, but generally the inter-

polated points should represent information at a coarser spatial or temporal

scale than is captured by g1. We use the following block interpolation method.

First, the vector of observations, Y , is partitioned into k blocks, Y1, . . . , Yk, of

computable size. This partitioning may follow that used in g1, but it is not

necessary. Second, using only data from the i-th block, mi new points are

interpolated, X̂i(Yi) ∈ Rmi . Denote the set of interpolated points as X̂ =
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(X̂T
1 (Y1), . . . , X̂

T
k (Yk))

T . With these interpolated points, the second tier func-

tion is calculated g2 = ℓX (θ, X̂). For this reason, we say we use X̂ as pseudo-

observations, where pseudo-observations are defined to be the values of X at the

interpolation locations. The log I-likelihood for two tiers, g, is subsequently given

by g = g1 + g2. Our estimator is θ̂ = argmaxθ g(θ;Y ).

In the case where the number of interpolated observations is large, it may be

that the second tier function g2 is still too difficult to calculate. In this scenario,

a third tier would be generated by calculating a composite likelihood for the

second tier and using a second set of interpolated points to generate the third

tier log-likelihood. The function g would therefore be the sum of g1, g2 and now

g3. Further tiers may be included in g to ensure this estimation method scales

to larger and larger data sets. An outline of the calculation of the I-likelihood is

below.

Algorithm for Calculation of g(θ;Y ), the I-Likelihood

1. Calculate a composite log-likelihood of Y that preserves small scale spatio-

temporal lag relationships. Denote this by g1(θ;Y ).

2. Break Y into k blocks, Y ⇒ Y T
1 , . . . , Y T

k of computable size.

3. Interpolate mi new points within each block, X̂1(Y1), . . . , X̂k(Yk), where

X̂i(Yi) ∈ Rmi , and calculate the log-likelihood of these points as pseudo-

observations. Denote this by g2(θ;Y ) = ℓX (θ; (X̂
T
1 (Y1), . . . , X̂

T
k (Yk))

T ).

4. The I-Likelihood is given by g(θ;Y ) = g1(θ;Y ) + g2(θ;Y ).

5. If g2 is too difficult to calculate, use a composite likelihood for g2 and repeat

Steps 2-4 using a second set of interpolated points to form g3. The locations

of this second set of interpolated points should be more sparsely distributed

than those used for g2. Form g = g1 + g2 + g3.

One interpretation of this formulation is the following: the first calculation,

g1, captures the small scale information, while the second calculation g2 captures

the larger scale information that may get omitted in the first tier calculation.

In this way, relationships at all spatio-temporal lags are accounted for in the

formation of g; thus, this estimation method has Property A outlined in Section

2.1. Note further that nowhere is the covariance function assumed to take any

specific form; hence, this estimator has Property B.

We now consider Property C, the computational viability of this method.

Composite likelihood methods at the first tier can be made quite scalable. For

example, if we consider the block independent composite likelihood and use the
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blocks formed in Step 2 of the algorithm, the calculation complexity at the first

tier is O(k(n/k)3) with storage O((n/k)2). Writing c for n/k, the complexity

is O(c2n) with storage O(c2). If we can think of c as bounded independent of

n, these orders are O(n) and O(1), respectively, but we retain the factors of c2

here because c can be quite large. In this example, c is essentially a constant

representing the maximum number of observations ideally considered at any given

time. In practice c can be chosen based on time or memory constraints.

At the second tier (and if necessary the third and beyond tiers), if we bound

the number of observations in any single block in any tier by the constant c,

the storage burden at any given time is O(c2). Under the assumption that a

fixed fraction of the blocks needed in one tier are needed in the subsequent tier

(implyingO(log n) tiers), the order of the floating point operations isO(c2nlog n).

However, use of more tiers than absolutely needed should be avoided since each

tier adds further approximation into the estimation.

Beyond the complexity and storage calculations, this procedure can be quite

friendly to parallelization. Each tier can be calculated independently, and if block

structure at any level is utilized, with sufficient memory, a näıve parallelization

technique can produce estimations at a fraction of the time a serial algorithm

would require.

2.3. Comparison to composite likelihood and additional computa-

tional benefits of the I-Likelihood

The similarity between the I-Likelihood and composite likelihood estima-

tion methods warrants a more thorough comparison. The difference between an

I-Likelihood and a general composite likelihood is the inclusion of a likelihood

of interpolated points, using the assumption that the interpolated points are

pseudo-observations. This is a critical assumption, and it creates tremendous

computational savings by itself. At first glance, this assumption may seem un-

necessary. Interpolated points are often calculated as linear combinations of the

actual observations, denoted X̂ = AY ; therefore EX̂X̂T = AΣ(θ)AT , and thus

the exact log-likelihood of X̂ can be calculated for any given θ. By contrast, we

approximate EX̂X̂T by simply using the locations of X̂ to generate ΣX̂(θ) under

the assumption X̂ are pseudo-observations. Using AΣ(θ)AT instead of the ap-

proximation, one could cast our method as a purely composite likelihood method

similar to that proposed by Caragea and Smith (2007), but doing so does not

produce a procedure that is computationally scalable. Specifically, AΣ(θ)AT in-

volves the n×n matrix, Σ(θ). Calculation of this matrix can be carried out piece

by piece to avoid memory limits, however, it is an O(n2) calculation. Therefore,

any estimation procedure that scales well with n must avoid use of all entries of

Σ(θ). As a brief example, the calculation savings in the application in Section
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3 can be shown to be tremendous. Use of ΣX̂(θ) instead of AΣ(θ)AT amounts

to replacing a 220,426 × 220,426 matrix with a 4,360 × 4,360 matrix; therefore,

for every calculation of g, using AΣ(θ)AT instead of its approximation lengthens

the calculation by a minimum of over 24 billion covariance function evaluations.

In practice, the closeness of the approximation of AΣ(θ)AT with ΣX̂(θ) must

be evaluated. Consideration of the Kullback-Leibler divergence provides one

method of comparison. Comparison of the Kullback-Leibler divergence can be

made considering models with different parameter values, and an example in-

cluded in the supplemental material shows these divergences can be quite small

in some circumstances. As expected, the divergence is closest to zero when in-

terpolated locations are in regions near many actual observations.

Finally, a comparison of the I-likelihood to a similarly multi-tiered compos-

ite likelihood is informative. If a likelihood of some subset of the observations

was used in place of g2, g would simply be a composite likelihood with irregu-

larly shaped blocks (we numerically compare this approach to the I-likelihood

approach in Section 3.4). The advantages to using interpolated points instead

of actual observations at the second tier are two-fold. First, interpolated points

may provide a better summary of local information than any single actual obser-

vation due to the removal of a nugget effect. Second, the interpolation locations

can be chosen by the statistician. For certain models and data, interpolation to

a grid can produce ΣX̂(θ) with Toeplitz or Block-Toeplitz structure. Exploiting

this structure can speed up computations and save substantially on memory re-

quirements (Akaike (1973)). As an added benefit, computational savings at the

second level allows more interpolated observations to be considered and reduces

the need to use a third tier in the I-likelihood. This likely improves the overall

performance of the estimator.

2.4. Estimating efficiency and inference

A measure of estimating efficiency can be obtained for θ̂ via estimating func-

tions theory. If we assume g is twice differentiable with respect to the set of

parameters, θ, and denote the gradient of g as G and the hessian as Ġ, we form

the inverse of the Godambe information matrix (Godambe (1960));

G−1 = Eθ(Ġ)−1Eθ

(
GGT

)
Eθ(Ġ)−1. (2.2)

Extending the geometric argument from Godambe (1960), for an unbiased esti-

mating equation, a desirable g has a gradient at the true value θ that is close

to zero over repeated simulations, and g is concentrated: it should take large

values near the true parameter value and very small values away from the true

parameter value. These properties are encoded in the components Eθ

(
GGT

)
and Eθ(Ġ)−1, implying that G−1 should be small in the set of positive definite
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matrices. More specifically, if G−1
a and G−1

b correspond to separate equations

ga and gb, the estimator from ga would be preferred to that of gb if G−1
b − G−1

a

is a positive definite matrix. Less precise but still informative comparisons can

be made considering the diagonal elements of G−1, smaller loosely indicating a

parameter more efficiently estimated.

When g is unbiased, and under sufficient regularity conditions, θ̂ is asymp-

totically normally distributed centered at θ with covariance matrix G−1 (Heyde

(1997)); Varin, Reid, and Firth (2011)). This result is an extension of the asymp-

totic normality of the MLE. However, since the gradient of the I-likelihood does

not have an exactly zero expectation at the true parameter value, this result

does not specifically hold for our estimator. Further, the complex structure of

polar-orbiting satellite data makes establishing regularity conditions problematic;

hence, asymptotic normality would be difficult to prove even for exact likelihood

methods. Nonetheless, since the bias of the I-likelihood estimator will be small

in many cases, we believe G−1 to be a reasonable measure of efficiency in the

non-asymptotic case, and we expect G−1 to be close to the covariance matrix of

θ̂ when using larger sample sizes.

To calculate an approximation of (2.2), we plug θ̂ in for θ, but the calculation

remains quite difficult. Insertion of the observed hessian, Ġ(θ̂), in place of the

expected hessian is often used to shorten this calculation. For the I-likelihood,

we propose an additional shortcut to approximate the middle term, the vari-

ance of the gradient, Eθ̂

(
GGT

)
. The shortcut is to again use X̂ as pseudo-

observations. Briefly, for any θ, computation of Eθ

(
GGT

)
involves covariance

calculations of quadratic forms of normally distributed random variables. This

calculation therefore uses interpolated points covariances and cross covariances,

AΣ(θ)AT and Σ(θ)AT . The shortcut we propose is to replace these matrices

with the corresponding approximations, ΣX̂(θ) and ΣY X̂(θ), created using X̂

as pseudo-observations. Further details of this calculation can be found in the

supplemental materials. A problem with this shortcut is that the approximate

G−1 is calculated assuming X̂ are additional observations, whereas without this

shortcut, the covariance matrix treats X̂ more accurately as linear combinations

of Y . This assumption has the potential to produce measures of efficiency that

are too optimistic, but this appears not to happen in the settings we consider

in this work. We address this issue more rigorously in the simulation study in-

cluded in the supplemental materials. Results there show (2.2) calculated with

our shortcut produces valid standard errors in several reasonable scenarios.

The proposed substitution still requires use of the full covariance matrix,

Σ(θ). This inflates computation time, but in many applications, the variance

need only be calculated a single time at the end of an estimation. The esti-

mation time itself is not affected by the estimator’s covariance calculations. For
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faster inference, the variance of the gradient may be approximated using stochas-

tic trace approximations (Hutchinson (1990)) as described in Stein, Chen, and

Anitescu (2013).

3. Application to Total Column Ozone Data

We applied the I-likelihood estimation technique to data from the Ozone

Monitoring Instrument (OMI) from NASA’s Aura satellite. To assess the per-

formance of the I-likelihood methods, we compared two I-likelihood estimators

to four separate composite likelihoods that may be seen as competing estimation

methods for fitting this model to these data.

3.1. The data

The Aura satellite collects data at approximately local noon over nearly the

entire globe each day. To do this, the satellite takes measurements as it moves

over the sunlit side of the globe in a south to north direction. No data is collected

as the satellite passes from north to south on the unlit portion of the globe. The

satellite orbits the earth 14-15 times each day, collecting data on each orbit and

generating around 1.2 million observations per day. Several observations on air

quality are derived from spectrometer readings at different wavelength ranges,

total column ozone being one of these (Levelt et al. (2006)). More information

on both air quality measurement programs and associated satellites can be found

at http://ozoneaq.gsfc.nasa.gov/ and http://aura.gsfc.nasa.gov/.

The data are a subset of the OMI OMDOAO3G product. We considered data

recorded over a 30 day period from December 27, 2006 through January 25, 2007.

These dates were chosen to avoid missing orbits of data. This completeness allows

us to illustrate gridding interpolated points at the second tier, but generally, the

I-likelihood can be used even when there are missing orbits. We consider a one

degree latitude band centered at 39◦ North latitude; hence our observations lie

within the latitude band 38.5◦ N – 39.5◦ N. The data set contains 436 orbits with

a total of 220,426 irregularly spaced ozone observations, the associated longitude,

latitude positions of these observations, and the times (measured in seconds since

January 1, 1993) and orbit numbers indicating when the observations were taken.

We used hours as the unit of time because the time gap between orbits is more

naturally measured in hours. Figure 1(c) again shows the observational locations

of a subset of these data. Additional plots of the data are in the supplemental

material.

We considered data for a single month to avoid seasonal non-stationarities.

Since ozone levels are different over land and sea, a mean function was estimated

by fitting a spline depending only on longitude for three years worth of January

data. Observations were then centered using this mean function. In fitting the

http://ozoneaq.gsfc.nasa.gov/
http://aura.gsfc.nasa.gov/
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spline, we placed extra knots at land and sea borders to account for possible

sharp changes in mean ozone levels at these points. We do not consider mean

variation in latitude, since the one degree latitude window we consider is small.

To perform the blocking and interpolation steps in the I-likelihood, we set

single orbits as blocks, and we interpolated 10 points evenly within an orbit at

exactly 39◦ N. Specific details of these steps are given in the supplement.

3.2. The covariance model

The covariance model we considered has several components. We included

spatial and temporal range and standard deviation parameters. We considered

anisotropy in space oriented on the sphere, and we considered a drift in ozone

through time. We also included a parameter indicating the smoothness or de-

gree of differentiability of the process and a nugget standard deviation term as

well. Specific details of the model construction can be found in the supplemental

materials. Briefly, if Z1 and Z2 are independent isotropic (after rescaling spatial

and temporal distances by the range parameters, α and β respectively) Matérn

processes in R4 restricted to the sphere × time and indexed by latitude, L, lon-

gitude, l and time, t, with smoothnesses ν + 1 and ν respectively, the model for

the detrended ozone is

Y (L, l, t|α, β, ϕ, λ, ω, σ, η, ν) = ϕ

(
sin(λ)

∂

∂L
+ cos(λ)

∂

∂l

)
Z1(L, lω, t)

+σZ2(L, lω, t) + ηW (L, l, t), (3.1)

where lω = l − ω/24 · t and W (L, l, t) is the nugget effect.

Setting the smoothness parameter for Z1 to ν + 1 implies that(
sin(λ) ∂

∂L + cos(λ) ∂
∂l

)
Z1(L, lω, t) has the same degree of mean square differen-

tiability in any direction as Z2. A visual of this covariance model is given in

Figure 2.

This model was picked after favorable model fit comparisons to other models

containing the same general components, but this model does not exhaustively

account for all structure in the data. There remain several possible areas of

improvement, including use of different range parameters for Z1 and Z2 and

consideration of temporal non-stationarities as well as allowing for different de-

grees of smoothness in space and time. We avoided these complications in this

application to simplify fitting procedures.

The components of the model can be loosely broken into parameters reflect-

ing information at different time and distance scales. The parameters that can

be reasonably estimated using only within orbit information (α, σ, ϕ, λ, η, ν)

are the spatial range α, the standard deviation of the isotropic component σ, the

standard deviation of the anisotropic component ϕ, the anisotropy angle λ, the
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Figure 2. Correlations given by model (3.1) at θ̂ given by estimating equation
(B, I) in Table 1. The first figure gives a contemporaneous view of the
covariance function with a much wider latitude band than in the data to
help visualize the spatial anisotropy. The second shows the estimated drift
of the process through time.

nugget standard deviation η and the smoothness parameter ν. These parameters

can be estimated using a composite likelihood that preserves only short-range

spatio-temporal lags or within-orbit relationships. Since each orbit has a rela-

tively short spatial domain, however, better estimations result if longer spatio-

temporal lags are taken into account. The temporal range parameter β cannot

be estimated using only within orbit information, but at 39◦ N, results indicate

consecutive orbits contain enough temporal variability and spatial replication to

make this parameter estimable. The parameter ω is the number of degrees lon-

gitude drift or rotation observed in one day. Positive ω indicates westerly drift.

We expect the speed of the drift of the process on the globe to be slow relative to

the time difference observed for observations within a single orbit (less than 100

seconds); hence, this parameter effectively cannot be estimated using a compos-

ite likelihood that only uses within-orbit information. Use of consecutive orbits

may make this effect estimable, but our results show that it is best estimated

using data across multiple days.

3.3. Notation

We denote different estimating equations using an ordered pair. The esti-

mating equations we compare have two components, a first tier likelihood, g1
and a second tier likelihood, g2. Some of the estimating equations we use are

standard composite likelihoods. In these cases g2 = 0.

The set of six estimating equations we consider are denoted by the ordered

pairs: (B,N), (B, I), (B,S), (C,N), (C, I), (C, S). The first letters characterize

the composite likelihood g1. Estimating equations under B calculate g1 assuming

blocks of observations are independent. This is a block independent composite

likelihood. Estimating equations under C calculate g1 assuming observations in
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blocks are conditionally independent of prior blocks given the previous block.

From the form in (1.1), Ci is the set of observations from orbit i − 1, with C1

empty.

The second letters I, N , and S characterize g2. The letter I indicates g2 is

calculated based on the interpolated points. These estimating equations follow

exactly the I-likelihood recipe given in Section 2.2. Letter N indicates there is no

second tier, g2 = 0. These are previously considered composite likelihoods of the

form in (1.1) where either the conditioning set is empty or contains observations

from the previous orbit. Letter S indicates g2 is formed using a subset of actual

observations that are omitted from the calculation of g1 for this estimating equa-

tion. Since g2 is formed using actual observations, we include the nugget effect

in this second tier calculation. The observations included in g2 from each block

in this case are the ten closest observations to the interpolation locations. Note

that (B,S) and (C,S) are composite likelihoods but they are not, as far as we

are aware, explicitly considered previously in the literature. Among the methods

considered here, (B,S) and (C,S) are the closest composite likelihoods to the

I-likelihoods (B, I) and (C, I) respectively.

3.4. Results

Using these six estimating equations, we fit the model to 30 days worth of

data or 220,426 observations in total. The estimations were carried out in MAT-

LAB on a single 2.67Ghz thread. Details of the optimizations are given in the

supplemental material. Estimation results along with the associated computa-

tional resources used for each computation are in Table 1. To capture estimating

efficiency information, we calculated the inverse of the Godambe information

matrix in (2.2) using the computational shortcuts presented in Section 2.4. A

section of the supplement is devoted to evaluating the accuracy of this calcula-

tion with these data. The results of this evaluation showed the square root of the

diagonal elements of this matrix can serve as reasonable standard error estimates

for each of the parameter estimators; hence we call these values standard errors

here. The set of standard errors for β̂ and ω̂ for (B,N) are empty because these

effects are not estimable without cross block comparisons. Under preliminary

model fitting, convergence issues led to use of (B,N) fixing β̂ = ∞ and ω̂ = 0.

In Table 1, we see the I-likelihood method improves overall estimation of

within-orbit, consecutive-orbit, and across-day parameter types compared to B

and C type composite likelihood methods. Comparing (B,N) to (B, I), we see

a remarkable reduction in the standard errors for all estimates. Each standard

error under (B,N) is over 3 times larger than the corresponding standard error

from (B, I). Moreover, the drift parameter ω and the temporal range, β, can

be estimated with (B, I) where using (B,N) they cannot. Between (B,N) and
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Table 1. (*) Note optimization of estimating equation (C, S) was started at
the (C, I) point estimate, leading to fewer total function evaluations. Addi-
tionally, the algorithm used to calculate g2 was different between (C,S) and
(B,S); hence, memory usage is not comparable between these two estimating
equations. Details are in the supplemental material.

Estimating Equation Comparisons on 30 Day Estimations

Estimates and (Standard Errors)
Estimating Equation

Parameter (B,N) (B, I) (B,S) (C,N) (C, I) (C,S)
Spatial Range α 4.81 4.24 4.43 3.58 3.51 3.46
(1000s of Km) (5.21) (1.35) (3.03) (0.28) (0.28) (0.26)
Temporal Range β ∞ 116.77 119.84 60.64 66.57 64.79
(Hours) (37.79) (78.71) (5.00) (5.19) (4.91)
Isotropic SD σ 36.23 33.72 34.62 26.54 26.65 26.69
(Dobson Units) (25.39) (6.92) (10.26) (1.10) (1.01) (1.35)
Anisotropic SD ϕ 17.95 14.48 15.59 11.46 11.05 10.93
(Dobson Units) (32.51) (7.54) (15.41) (1.41) (1.36) (1.47)
Anisotropy Angle λ 0.551 0.583 0.585 0.574 0.572 0.569
(Radians) (0.075) (0.018) (0.017) (0.014) (0.014) (0.014)
Nugget SD η 2.404 2.424 2.428 2.373 2.394 2.400
(Dobson Units) (0.056) (0.017) (0.047) (0.013) (0.014) (0.013)
Drift term ω 0 10.74 10.64 16.16 11.60 11.67
(Degrees/Day) (0.28) (0.77) (2.26) (0.46) (0.50)
Smoothness ν 0.579 0.582 0.581 0.560 0.564 0.566

(0.024) (0.006) (0.024) (0.004) (0.005) (0.004)
Memory Used 1.3G 1.5G 4.1G 1.7G 1.7G 1.6G*
Comp. Time 26h 33h 41h 57h 82h 21h
Func. Evaluations 110 72 152 82 90 27*
Observations n 220,426
Thread Speed 2.67Ghz

(B, I), there is good agreement among the estimates of the other parameters.

No estimate pair is more than 0.5 standard errors away from one another when

using the larger of the two standard errors.

Comparison of (C,N) to (C, I) tells a similar story. The parameter estimates

are consistent with one another (with ω being the most incompatible), and the I-

likelihood estimating equation is shown to estimate all parameters with similar or

better efficiencies. Most notably, the drift parameter, ω is much more efficiently

estimated in (C, I) as compared to (C,N).

Looking at (B, I) and (B,S), we see a high degree of consistency despite

the first and second tiers being slightly different. No pair of estimates is more

than 0.14 standard errors away from one another. Furthermore, comparison of

standard errors shows that, except for λ, the model parameters appear to be much
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better estimated in (B, I) than they are in (B,S). In particular, the standard

error on the smoothness parameter is almost 4 times larger under (B,S) than it

is under (B, I). We attribute these efficiency gains to the removal of the nugget

effect at the second tier in (B, I), a procedure that is not possible in (B,S); thus,

the interpolated observations serve as a better summary of local information and

lead to more efficient estimation.

The estimating equations (C, I) and (C, S) also exhibit consistency, but un-

like the (B, I) and (B,S) comparison, the performances of the (C, I) and (C, S)

estimators are roughly equal. Unlike B, using C for g1 provides information

on consecutive-orbit relationships; therefore, any efficiencies added by g2 in the

(C, ·) case would be primarily due to the added use of cross-day relationships.

However, cross-day relationships are much less local in time than consecutive-

orbit relationships; hence, precisely measuring local behavior by using X̂ in the

(C, ·) cases might not be as relevant as it is proven to be in the (B, ·) cases.
For larger data sets, (C, I) will have substantial computational advantages

over (C, S). Specifically, the locations of the interpolated points give Block-

Toeplitz ΣX̂(θ). This structure can be exploited via the methods in Akaike

(1973) leading to more efficient computation of g2 and lower memory usage. By

comparison, the (C, S) estimator uses an unstructured Cholesky decomposition

to calculate g2; thus, fewer second tier points may be handled using (C, S).

Slight discrepancies arise in comparison of the (B, ·) estimators to the (C, ·)
estimators. In any set of estimates of a single parameter, no two pairs are more

than 3.4 standard errors away from one another. The largest difference relative

to the standard errors between the (B, ·) and (C, ·) estimators is in the estima-

tion of the smoothness and drift parameters. The (C, ·) estimates of ν are each

slightly smaller than all ν̂ given by the (B, ·) estimations, and each ω̂ under (C, ·)
estimations are larger than those using the (B, ·) estimators. These discrepancies

are likely a sign of modest model misfit.

A surprising outcome in these comparisons is the smaller standard error

for ω̂ under (B, I) than under (C, I) and (C,S). With the more complex first

tier composite likelihood in (C, I) and (C,S), a more efficient estimator of all

parameters is expected. This pattern is observed for all but the ω̂ estimates. The

reversed pattern for ω̂ is again likely a sign of model misfit or an insufficiently

flexible model. Conflicting information at different scales may have driven the

resulting standard error for ω̂ under (C, I) and (C,S) higher. Evidence of this

can be seen through comparison of the (C,N) estimate of ω to those from (C, I),

(C, S) and (B, I).

Overall, the I-likelihood appears to increase the estimating efficiency of pa-

rameters that require use of data in multiple blocks compared to standard com-

posite likelihood methods. It does this while simultaneously preserving (and also
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improving) estimations of parameters that may be estimated using only within
block information. Through comparison of (B, I) and (B,S), the I-likelihood
method can also be said to outperform at least some purely composite likelihood
methods both in terms of computational resources needed and estimating effi-
ciency in this example. We also find potential in estimating equations of type
(·, S), though further study of these estimators may be necessary. Finally, we
find differences in estimates using information at different spatio-temporal scales
may serve as a useful way of detecting model misfit.

4. Conclusion

In this paper, we present a new method of spatial or spatio-temporal co-
variance parameter estimation for large data sets that explicitly considers the
relationships between observations at all ranges of spatio-temporal lags. This
method is strongly motivated by consideration of data collected by polar orbit-
ing satellites. These types of data sets are massive in size, complex, and the
data collection structure implies that sensible estimation of traditional covari-
ance parameters as well as parameters of physical interest must be able to take
into account the relationships between observations over the full range of spatio-
temporal lags.

The method we propose can be seen as a computationally efficient extension
of composite likelihood methods. A new estimating function, the I-likelihood,
is developed in multiple tiers. A first tier composite likelihood captures close
spatio-temporal relationships, while a second tier likelihood based on interpo-
lated points captures the medium to large scale spatio-temporal relationships.
The innovation in this technique is in the use of multiple tiers to explicitly cap-
ture the full range of spatio-temporal lag information and in the use of interpo-
lated points on top of composite likelihood methods. Using interpolated data as
pseudo-observations leads to tremendous computational savings. Through con-
sideration of total column ozone data gathered from a polar orbiting satellite,
the I-likelihood estimation method is shown to be capable of providing fast and
efficient estimation.

The I-likelihood relies on approximation of the interpolated process with a
process based only on the locations of the interpolated points. This approxima-
tion is shown to be inconsequential in our application. We believe the I-likelihood
to be broadly applicable, but a more general consideration of this approximation
remains necessary.

Application of the I-likelihood in a Bayesian setting may also be an area
of exploration. Papers by Ribatet, Cooley, and Davison (2012) and Shaby (Ac-
cepted) consider Bayesian estimation using composite likelihoods and more gen-
erally using consistent estimating equations, respectively. A Bayesian estimation
employing I-likelihood methods may follow the methods of these papers closely.
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