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Abstract: Estimation of the parameters of Markov random field models for spatial

and temporal data arises in many applications. There are computational and sta-

tistical challenges in developing efficient estimators because of the complexity of

the joint distribution of the spatio-temporal models, especially when they involve

hidden states that also need to be estimated from the observations. We develop

composite likelihood estimators that are analytically and computationally tractable,

and show that they are asymptotically efficient under some mild correlation decay

assumptions.
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1. Introduction

Spatial data that are observed over time arise in many statistical applications

to disciplines that range from economics, political science and social networks

to neuroscience, earth sciences, engineering, epidemiology and imaging. Spatio-

temporal models for these data are inherently complex as they need to reflect the

dependence not only among different sites in space but also among different time

points. The likelihood functions are often specified up to normalizing constants,

which depend on the unknown parameters and are difficult to compute.

Motivated by applications to image analysis, we consider a class of spatio-

temporal models that belong to the general framework of hidden Markov random

fields. A random field of spatial and temporal data is characterized by a time

index t = 1, . . . , T , and a multidimensional spatial index ω ∈ Ω ⊂ Rd. Let Ytω
denote the observation at time t and site ω. This represents a noisy distortion

of the underlying signal Ztω. Let Yt =
(
Ytω, ω ∈ Ω

)
and Zt = (Ztω, ω ∈ Ω).

Given Zt, the Ytω are assumed to be conditionally independent. A parametric

spatio-temporal random field model is often assumed on the underlying signal

Zt, showing its joint distribution over different sites and how it evolves over

time. Because the observations Ytω are sampled at a finite collection of sites in
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practice, we assume throughout the sequel that Ω is a finite set. Moreover, since

we focus on applications to image analysis, we assume that the sites ω belong

to a lattice, as in the case of pixels of an image, which we can assume without

loss of generality (by rescaling if necessary) to be the integer lattice Zd. Thus,

Ω is the intersection of a bounded region with Zd. Commonly used models for

spatial interaction are Markov random fields, reviewed below in Section 1.1, and

those for time evolution assume Markovian dynamics. Because Yt instead of the

actual signal Zt is observed, we have a hidden Markov random field (HMRF),

in which parameter estimation poses computational and statistical challenges, as

will be explained in Section 1.2 in connection with an overview of methods in the

literature to address these challenges.

In Section 2, we propose a block maximum likelihood estimator (MLE) that

we show to be asymptotically efficient under certain correlation decay conditions.

Section 3 describes implementation details and illustrates how the block MLE

works in an example from brain imaging that involves both spatial and temporal

data. Some concluding remarks and discussion are given in Section 4.

1.1. Markov random fields for spatial data

In a spatial Markov random field, the sites in Ω are related to one another

by a neighborhood system N =
{
N(ω), ω ∈ Ω

}
, where N(ω) is the set of sites

v ̸= ω that are neighbors of ω. For any two sites ω, v ∈ Ω, ω ∼ v means that

ω ∈ N(v) and v ∈ N(ω). The set of neighbors of ω is often defined via a metric

d, e.g., N(ω) = {v : d(ω, v) ≤ r
}
. The pair

(
Ω,N

)
defines an undirected graph

in the sense that Ω contains the nodes and N determines the edges between the

nodes. In the graph
(
Ω,N

)
, a clique is defined as a set of sites that consists of

either a single site or sites which are neighbors of each other.

For fixed t, the set of random variables Ztω, ω ∈ Ω, is called a Markov

random field, with respect to the neighborhood system N , if the conditional

distribution of Ztω given Zt − {Ztω} depends only on {Ztv, v ∈ N(ω)}. One can

specify the distribution of the Markov random field via a specification of these

conditional distributions. Alternatively, one can specify the joint distribution of

Zt by a density function f(z) that is proportional to
∏

c∈C ηc(z), where C is the

collection of all possible cliques. Letting ηc = exp(−ψc), f(z) can therefore be

written in the form

h(z) = κ−1 exp
{
−
∑
c∈C

ψc(z)
}
, (1.1)

in which κ is the normalizing constant, and ψc is called a potential function.

When Zt is discrete, the normalizing constant is a sum and the distribution is

called a Gibbs distribution. The equivalence between Markov random field and
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Gibbs distribution under a positivity condition is known as the Hammersley-

Clifford theorem; see Besag (1974). In statistical mechanics, the Gibbs distribu-

tion has a density function of the form

h(z) =
1

κ(β)
exp

{
− βΨ(z)

}
, (1.2)

where Ψ(z) represents the energy, 1/β represents the temperature, and κ(β)

is called the partition function. In particular, Ψ(z) =
∑

ω∈Ω zω
∑

v∈N(ω) αωvzv
with zω ∈ {−1, 1} corresponds to the Ising model in the statistical physics of

magnetism, spin glass, lattice gas and in applications to neuroscience and im-

age analysis. For the Potts model that is discussed in Section 1.2, Ψ(z) =∑
ω∈Ω ψ(ω) +

∑
ω∈Ω

∑
v∈N(ω) αωvI{zω=zv}. From the Gibbs specification (1.1)

of the density of Zt, one can retrieve the conditional density of Ztω in the condi-

tional distribution specification:

ϕ
(
z
∣∣Zt − {Ztω}

)
=

exp
{
−
∑

c∈C ψc(z)
}

∑
z′ exp

{
−
∑

c∈C ψc(z′)
} , (1.3)

where z is the vector that has value z at site ω and the value of Zt at the other

sites, and z′ is a similar vector that does not impose restrictions on the value at

site ω. The Ψ and ψc in (1.2) and (1.3) are typically specified by a parametric

model. For example, the β in the Gibbs distribution (1.2) is a parameter.

Besag (1974, Sec. 4) gives an overview of the auto-models for which the cliques

c ∈ C consist of at most two sites and the energy function has the decomposition∑
c∈C

ψc(z) =
∑

{ω}∈C

zωΨ1(zω) +
∑

{ω,v}∈C

Ψ2(zω, zv), (1.4)

where Ψ1 and Ψ2 are functions that may depend on some unknown parameters.

In particular, he considers Ψ2(zω, zv) = βωvzωzv, in which βωv is an unknown

parameter. Because of the computational difficulty in computing the MLE of

the parameter vector θ, he proposes to work with the pseudo-likelihood∏
ω∈Ω

ϕθ(Ztω|Zt − {Ztω}), (1.5)

formed by taking the product of the conditional densities (1.3) because “the

lattice models under the conditional probability approach yield naturally to a

very simple parameter estimation procedure (the coding techniques)” that is

described in his Section 6.1; see Besag (1974, p.223).
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1.2. Composite likelihood for parameter estimation in HMRFs

We have focused on spatial data at a fixed time t and have assumed the

signal Zt to be observable on fitting Markov random fields to these data. We

now consider the more general setting of hidden Markov random fields (HMRFs)

of spatial-temporal data Yt, 1 ≤ t ≤ T , that are related to the signal Zt via the

conditional densities gθ(·|·) such that given {Ztω : 1 ≤ t ≤ T, ω ∈ Ω}, the Ytω are

conditionally independent with density function gθ(y|Ztω). Markovian transition

over time is assumed for Zt so that the conditional density hθ(·|Zt−1) of Zt given

Zt−1 is of the form (1.1), in which ψc(z) is replaced by ψc(z;Zt−1,θ) and the

normalizing constant κ depends on Zt−1 and θ. Thus, the likelihood function

has the form

fθ(Y1,Y2, · · · ,YT ) =
∑

z1,z2,...,zT

T∏
t=1

{[ ∏
ω∈Ω

gθ(Ytω|ztω)
]
hθ(zt|zt−1)

}
, (1.6)

in which hθ(zt|zt−1) = hθ(z1) for the case t = 1. In many applications such as

that in Section 3.2, gθ depends only on a sub-vector θ(1) of θ and hθ depends on

another subvector θ(2).

The likelihood function (1.6) involves summation over all possible values of

z1, . . . , zT and computation of the normalizing constant κ(θ, zt−1) in hθ(·|zt−1)

given by (1.1) with ψc(z) replaced by ψc(z; zt−1,θ). The computational task is

formidable if T |Ω| is large. We use |A| to denote the size (number of elements) of a

finite set A. Computing the likelihood function (1.6) is only part of computational

task for evaluating the MLE that involves also a maximization algorithm. Besides

its computational difficulty, the statistical properties of the MLE in HMRFs are

relatively unexplored because of the analytical intractability of the likelihood

function. To circumvent this difficulty, composite likelihoods have been widely

used in place of (1.6).

Varin, Reid, and Firth (2011) describe composite likelihood as a product

of component likelihoods, each component of which is a marginal or conditional

density. They give an overview of composite likelihood methods, including Be-

sag’s pseudo likelihood (1.5) for Markov random fields and its variants such as

pairwise likelihoods. Their Section 4.1 points out that “motivation for the use

of any version of composite likelihood is computation: to avoid computing, or,

in some cases, modelling the joint distribution of a possibly high-dimensional

response vector.” Lindsay, Yi, and Sun (2011, p.73) point out two basic “first

order” properties of the maximum composite likelihood estimator (MCLE). One

is that the standard Kullback-Leibler inequality applies to each sub-likelihood,

and therefore the maximum of the expected value (under the true parameter θ0)

of the logarithm ℓ(θ) of the composite likelihood is attained at θ0, which they

call “Fisher consistent.” Another is that under usual regularity conditions, the
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estimating equation formed by setting the gradient vector ℓ̇(θ) to 0 is unbiased in

the sense that Eθ0(ℓ̇(θ0)) = 0. They point out, however, that “the second order

properties of likelihood are not possessed by composite likelihood except under

special circumstances” and explain why “one cannot count on asymptotic effi-

ciency for the maximum composite likelihood estimators.” Okabayashi, Johnson,

and Geyer (2011) consider the Potts model and extend Besag’s pseudo-likelihood

to composite likelihoods that involve more general forms of C than those in (1.4).

Their simulation studies show some improvements over the case where C only

consists of singletons but the MCLEs are not as efficient as the MLEs that they

implement by the MCMC algorithm of Swendsen and Wang (1987). However,

their MCLE and Besag’s maximum pseudo-likelihood estimator “can be calcu-

lated exactly” without relying on MCMC approximations.

2. Block Likelihood and Asymptotic Efficiency

In this section, we introduce a new kind of composite likelihood, called the

“block likelihood”, and show how the block MLE addresses the difficulties with

previous MCLEs mentioned in Section 1.2. We then develop an asymptotic the-

ory for the block MLE, establishing its asymptotic normality and efficiency when

the HMRF generating the spatial and temporal data satisfies certain correlation

decay conditions.

2.1. Parameter estimation via block likelihood

As indicated in the second paragraph of Section 1, Ω is assumed to be the

intersection of a bounded region in Rd with the interger lattice Zd. Let n = T ×
|Ω|. We partition the time set {1, . . . , T} into Hn disjoint subsets of consecutive

integers so that the size of each set, except the last one, is [T/Hn]. Similarly,

we partition Ω into Kn subsets so that each subset has
(
1+ o(1)

)
|Ω|/Kn points,

except for the subset containing boundary points of Ω. In this way, the domain

{1, . . . , T} × Ω is partitioned into HnKn disjoint blocks Γhk, 1 ≤ h ≤ Hn, 1 ≤
k ≤ Kn. For A = Γhk, let YA =

(
Ytω, (t, ω) ∈ A

)
. The marginal density fθ(YA)

of YA for each block has the same form as (1.6) except that the block size is

n
/
(HnKn) or smaller, and the block likelihood function has logarithm

ℓ(θ) =

Hn∑
h=1

Kn∑
k=1

log fθ(YΓhk
). (2.1)

The considerable reduction of the sample size, from n for log fθ
(
Y1, . . . ,YT

)
to no more than n

/
(HnKn) for each summand log fθ

(
YΓhk

)
of (2.1), makes

computation of the block MLE θ̂n feasible by using an EM algorithm that will

be described in Section 3.1.
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2.2. Asymptotic normality of block MLE

Block likelihood is a composite likelihood that treats the YA as independent

random vectors for disjoint blocks A and approximates (1.6) by a product of

HnKn factors, with the (h, k)th factor being the marginal density of YΓhk
. For

A = Γhk, let DA =
(
∂/∂θ

)
log fθ(YA)

∣∣
θ=θ0

, where θ0 denote the true parameter

vector. For a,b ∈ {1, . . . , T} × Ω, let ∆(a,b) = max1≤i≤d+1 |ai − bi|, and define

∆A,B = inf
{
∆(a,b),a ∈ A,b ∈ B

}
for subsets A and B of {1, . . . , T} × Ω.

To establish the asymptotic normality of the block MLE, we first prove that∑
1≤h≤Hn

∑
1≤k≤Kn

DΓhk
is asymptotically normal. This requires the Lindeberg

condition, which would be necessary if the DΓhk
were independent, in which case

the covariance matrix of the sum would be −
∑

1≤h≤Hn,1≤k≤Kn
Eθ0

(
D2

Γhk
(θ0)

)
,

where D2
A(θ) =

(
∂2
/
∂θ∂θT

)
log fθ(YA). Accordingly, we make the following

assumptions: as n→ ∞,

(A1) −n−1
∑Hn

h=1

∑Kn
k=1Eθ0

[
D2

Γhk

(
θ0
)]

→ V,

(A2) n−1
∑Hn

h=1

∑Kn
k=1Eθ0

[
∥DΓhk

∥2I
(
∥DΓhk

∥ > ϵn
√
n
)]

→ 0,

where V is a positive definite matrix and ϵn is sequence of positive numbers such

that ϵn → 0. Although the usual Lindeberg condition assumes (A2) for every

fixed ϵ > 0, this actually implies that we can choose ϵn → 0 slowly enough such

that (A2) holds; see Durrett (2005, p.441). For A = Γhk, let

D
(n)
A = DAI

(
∥DA∥ ≤ ϵn

√
n
)
− Eθ0

{
DAI

(
∥DA∥ ≤ ϵn

√
n
)}
. (2.2)

Since the DΓhk
are actually dependent random vectors, (A1) and (A2) are not

sufficient for the CLT to hold for their sum. We therefore need additional as-

sumptions, which we state in terms of the correlation decay for the truncated

vectors D
(n)
A and D

(n)
B , in terms of the distance ∆A,B between the sets A = Γhk

and B = Γh′k′ :

(A3)
∥∥Eθ0

(
D

(n)
A ⊗D

(n)
B

)∥∥
∞ ≤ n

(
HnKn)

−1ρ
(
∆A,B

)
,

(A4)
∥∥Eθ0

(
D

(n)
A ⊗ [D

(n)
B ⊗D

(n)

Ã
⊗D

(n)

B̃
]
)∥∥

∞ ≤ n2
(
HnKn

)−2
ρ
(
min{∆A,B,∆A,Ã,

∆A,B̃}
)
,

where ⊗ denotes the Kronecker product, the norm ∥M∥∞ of a matrix M is the

maximum absolute value of the entries of M, and

(A5)
∥∥Eθ0(D

(n)
A |D(n)

B : ∆A,B ≥ m)
∥∥ ≤ n1/2(HnKn)

−1/2ρ(m), and∑∞
m=1m

d−1ρ(m) <∞.

Bolthausen (1982) has proved a central limit theorem for stationary random

fields under α- and ρ-mixing conditions that motivate (A3)−(A5). Instead of
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assuming the random fields to be mixing, our approach assumes correlation de-

cay conditions, similar to those of ρ-mixing, directly on the derivatives of the

summands of (2.1). Moreover, without requiring the random field to be station-

ary, we assume (A1) and (A2) to derive the CLT for sums of (2.2) over h and

k, when (A3)−(A5) are satisfied. These assumptions and their connections to

mixing conditions that underlie our use of block likelihood are discussed further

in Section 4. In the Appendix, we modify the arguments of Bolthausen (1982) to

prove the following result and also discuss (A3)−(A5) in the context of mixing

random fields.

Theorem 1. Under (A1)−(A5), n−1/2
∑Hn

h=1

∑Kn
k=1DΓhk

(
θ0
)
converges in dis-

tribution to the normal distribution with mean 0 and covariance matrix V as

n→ ∞.

We use Theorem 1 to derive the asymptotic normality of the block MLE θ̂n,

assuming log fθ
(
YΓhk

)
to be twice continuously differentiable in a neighborhood

of θ0. By Taylor’s theorem,

0 = ℓ̇n
(
θ̂n
)
= ℓ̇n

(
θ0
)
+ ℓ̈n

(
θn
)(
θ̂n − θ0

)
,

where θn lies between θ̂n and θ0 and we use ℓ̇n to denote ∂ℓn(θ)
/
∂θ and ℓ̈n to

denote the Hessian matrix of second derivatives. This can be rewritten in the

form

√
n
(
θ̂n − θ0

)
= −

(
n−1

Hn∑
h=1

Kn∑
k=1

D2
Γhk

(θn)
)−1

Hn∑
h=1

Kn∑
k=1

DΓhk
(θ0)√
n

. (2.3)

Hence, by Theorem 1,
√
n
(
θ̂n − θ0

)
has a limiting N

(
0,V−1

)
distribution if it

can be shown that

−n−1
Hn∑
h=1

Kn∑
k=1

D2
Γhk

(
θn
) P−→ V. (2.4)

If the D2
Γhk

(θ0) were independent, then it could follow from (A1) and the

law of large numbers that (2.4) holds with θn replaced by θ0 and under an

additional assumption justifying a truncation argument. Following the theory

for the independent case, we assume that for every ϵ > 0, there exists δ > 0 such

that

(B1) lim
n→∞

Hn∑
h=1

Kn∑
k=1

[
Pθ0

{
supλ∈Bδ(θ0)

∥∥∥D2
Γhk

(λ)−D2
Γhk

(θ0)
∥∥∥
∞
> ϵn

(
HnKn

)−1
}

+n−1Eθ0

{∥∥D2
Γhk

(
θ0
)∥∥I(∥∥D2

Γhk

(
θ0
)∥∥

∞ > n
)} ]

= 0,

where Bδ(θ) = {λ ∈ Θ : ∥λ − θ∥ < δ}. The first summand in (B1) is for

approximating D2
Γhk

(θn) by D2
Γhk

(θ0) when θn converges to θ0. To ensure the
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consistency of θ̂n, we need an assumption which is similar to the first summand

in (B1) but with log fλ
(
YΓhk

)
− log fθ

(
YΓhk

)
in place of D2

Γhk
(λ) − D2

Γhk
(θ0).

Specifically, we assume that for every ϵ > 0 there exists δ > 0 such that as

n→ ∞,

(B2)
Hn∑
h=1

Kn∑
k=1

[
Pθ0

{
sup

λ∈Bδ(θ)

∣∣∣ log fλ(YΓhk
)− log fθ(YΓhk

)
∣∣∣ > ϵn(HnKn)

−1
}

+n−1Eθ0

{
| log fθ(YΓhk

)|I
(
| log fθ(YΓhk

)| > n
)}]

→ 0

for all θ ∈ Θ. As noted in the third paragraph of Section 1.2, the Kullback-

Leibler inequality n−1
∑

h,k Eθ0

[
log fθ(YΓhk

)
]
≤ n−1

∑
h,k Eθ0

[
log fθ0(YΓhk

)
]
,

θ ̸= θ0, holds for block (and other composite) likelihoods. It will be assumed

in the sequel that the inequality is strict in the sense that the left-hand side is

bounded away from the right-hand side for all large n. It will also be assumed

that Θ is compact. The second summand in (B1) and that in (B2) enable us to

truncate D2
Γhk

(θ0) and log fθ(YΓhk
) similarly to (2.2) so that we can work with

D
2
Γhk,n

=D2
Γhk

(θ0)I
(∥∥D2

Γhk
(θ0)

∥∥
∞≤n

)
−Eθ0

{
D2

Γhk
(θ0)I

(∥∥D2
Γhk

(θ0)
∥∥
∞≤n

)}
,

ℓΓhk
(θ) = log fθ(YΓhk

)I
(
| log fθ(YΓhk

)| ≤ n
)

(2.5)

−Eθ0

{
log fθ(YΓhk

)I
(
| log fθ(YΓhk

)| ≤ n
)}
.

Since the D
2
Γhk,n

and ℓΓhk,n are actually dependent, we impose correlation decay

conditions analogous to (A3):

(B3) max
{∥∥∥Eθ0

(
D

2
A,n ⊗D

2
B,n

)∥∥∥
∞
, Eθ0

(
ℓA(θ)ℓB(θ)

)}
≤ n

(
HnKn

)−1
ρ̃
(
∆A,B

)
for θ ∈ Θ, A = Γhk and B = Γh′k′ , where ρ̃ satisfies

∑∞
m=1m

d−1ρ̃(m) < ∞. In

the Appendix, we prove the following results on the consistency and asymptotic

normality of θ̂n.

Theorem 2. Assume (A1)−(A5) and (B3). Assume also that for every ϵ > 0

there exists δ > 0 such that (B1) and (B2) hold. Then θ̂n is consistent and (2.4)

holds. Moreover,
√
n
(
θ̂n−θ0

)
has a limiting N

(
0,V−1

)
distribution as n→ ∞.

2.3. Asymptotic efficiency of block MLE

We now prove the asymptotic efficiency of the block MLE under the as-

sumptions of Theorem 2 and an additional assumption (C) below. A seemingly

insurmountable difficulty in proving asymptotic efficiency is the analytical in-

tractability of the full likelihood (1.6), which is often used to prove that the

inverse of the Fisher information matrix is asymptotically minimal among the
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covariance matrices of regular estimators in parametric models; see Andersen et

al. (1993, p.600). We circumvent the difficulty by assuming that additional sparse

observations Ztω of the signal are available at (t, ω) belonging to the boundary

∂Γhk of each block. Specifically, letting B =
∪

1≤h≤Hn,1≤k≤Kn
∂Γhk, we assume

that ZB = {Ztω, (t, ω) ∈ B} is also observed besides the Ytω, 1 ≤ t ≤ T, ω ∈ Ω.

Since the YΓhk
are conditionally independent given ZB, the “enriched” likelihood

function has logarithm ℓ̃n(θ) that can be expressed as the sum

ℓ̃n(θ) =

Hn∑
h=1

Kn∑
k=1

log fθ(YΓhk
|Z∂Γhk

) + log fθ(ZB), (2.6)

noting that the conditional distribution of YΓhk
given ZB depends only on Z∂Γhk

.

The block MLE θ̂n has already been shown in Theorem 2 to be consistent

and asymptotically normal. We can establish its asymptotic efficiency by showing

that the enriched MLE that maximizes (2.6) is asymptotically efficient and also

asymptotically equivalent to the block MLE θ̂n that maximizes (2.1). Choosing

Hn and Kn appropriately to ensure sparsity of ZB, one expects in view of (1.1)

and (1.6) that there exists ϵn → 0 such that
√
nϵn → ∞ and

(C) n−1

{
sup∥θ−θ0∥<ϵn

∥∥D log fθ(ZB)
∥∥2

+ sup∥θ−θ0∥<ϵn

Hn∑
h=1

Kn∑
k=1

∥∥D log fθ(YΓhk
|Z∂Γhk

)−D log fθ(YΓhk
)
∥∥2} Pθ0−−→ 0.

This condition will be discussed in Section 4 and is used to establish (a) lo-

cal asymptotic normality (LAN) of the enriched log-likelihood (2.6), and (b) the

asymptotically equivalent local behavior of (2.1) and (2.6) in an ϵn-neighborhood

of θ0. We first prove (a) and (b) and then use them to establish the asymptotic

efficiency of θ̂n via the Hájek-LeCam theory. Note that although the theorem

assumes additional observations ZB besides Y1,Y2, . . . ,YT , θ̂n is only based on

Y1,Y2, . . . ,YT and the Hájek-LeCam theory is used to show that it is asymp-

totically efficient even when the additional observations ZB are available and it

discards them.

Theorem 3. Under (C) and the assumptions of Theorem 2, θ̂n is asymptotically

efficient.

Proof. We first show that the enriched parametric family with log-likelihood

(2.6) satisfies

ℓ̃n(θ0 + n−1/2u)− ℓ̃n(θ0)− n−1/2uTDℓ̃n(θ0) +
uTVu

2

Pθ0−−→ 0 (2.7)
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uniformly in u ∈ K, for every compact subset K of Rd, and that n−1/2Dℓ̃n(θ0)

has a limiting N (0,V) distribution as n→ ∞. By Taylor’s theorem,

ℓ̃n(θ0 + n−1/2u)− ℓ̃n(θ0) = n−1/2uTDℓ̃n(θ
∗
u), (2.8)

where θ∗
u lies between θ0 and θ0 + n−1/2u. Combining (2.6) and (C) with (2.1),

it follows that Dℓ̃n(θ
∗
u) = Dℓn(θ

∗
u) + op(n

−1/2), in which op(n
−1/2) is uniform in

u ∈ K. Hence, applying Taylor’s theorem to Dℓn(θ
∗
u) yields

Dℓ̃n(θ
∗
u) = Dℓn(θ0) +D2ℓn(θ0)

u√
n
+ op(n

−1/2), (2.9)

in which op(n
−1/2) is uniform in u ∈ K. Under (A1)−(A5), the proof of Theorem

1 in the Appendix shows that

n−1D2ℓn(θ0)
P−→ V, (2.10)

where V is given in (A1). Combining (2.9) in the case u = 0 with Theo-

rem 1 shows that n−1/2Dℓ̃n(θ0) has a limiting N (0,V) distribution. Moreover,

(2.7) follows from (2.8)−(2.10), proving the LAN property for the enriched log-

likelihood (2.6).

In the Appendix, we show that under the assumptions of Theorem 2,

√
n
(
θ̂n − θ0

) D−→ N (u,V−1) under Pθ0+u/
√
n, (2.11)

for every u ∈ R, where D−→ denotes convergence in distribution. Hence, θ̂n is

a regular estimator in the Hájek-LeCam theory of asymptotic efficiency in LAN

models, and is asymptotically efficient by the Hájek convolution theorem since√
n(θ̂n−θ0) and n

−1/2Dℓ̃n(θ0) have the same N (0,V) limiting distribution; see

Andersen et al. (1993, pp.598-600).

3. Implementation and Simulation Study

In this section we describe an EM algorithm to compute the block MLE that

we use in conjunction with the block Gibbs sampler to estimate the unobserved

states Ztω in the hidden Markov model. We then consider an application of the

algorithm to estimate the hidden neuronal inputs in a task-based functional MRI

experiment, and illustrate the performance of the estimates with simulated data.

3.1. EM algorithm and estimation of states by block Gibbs sampler

The term fθ(YΓhk
) in (2.1) has the form (1.6) but with (t, ω) restricted to

the block Γhk. Using independence of different blocks as the working model,

we can apply the EM algorithm to maximize the corresponding log-likelihood
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(2.1). It consists of an expectation step (E-step) and a maximization step (M-

step) for each iteration. The E-step uses the current estimate θ̃old to substi-

tute for θ in the conditional expectation of the complete-data log-likelihood:

ℓc(θ; θ̃old) =
∑

h,k Eθ̃old

[
log fθ(YΓhk

,ZΓhk
)
∣∣Y], where Y = (Y1,Y2, . . . ,YT ).

The M-step can be carried out by taking partial derivatives of ℓc with respect to

the components of θ and solving the estimating equation ℓ̇c(θ; θ̃old) = 0 to obtain

an updated estimate θ̃new of θ. Thus the E-step is used for the conditional ex-

pectation
∑

h,k Eθ̃old

[
(∂/∂θ) log fθ(YΓhk

,ZΓhk
)
∣∣Y], which can be computed by

the Gibbs sampler; see Chapter 6 of Liu (2001).

The Gibbs sampler provides a powerful tool to estimate the posterior distri-

bution of the unobserved state ZΓhk
given the observed data YΓhk

in an HMRF.

As pointed out by Liu (2001, pp.130-131), the Gibbs sampler is a Markov chain

that converges geometrically to its stationary distribution, which is the posterior

distribution of interest. The convergence rate depends on how the Ztω correlate

with each other, leading Liu, Wong, and Kong (1994) to improve the efficiency

of the Gibbs sampler by grouping highly correlated components to sample the

groups (blocks) iteratively from their joint conditional distribution by the block

Gibbs sampler. In the present context, this corresponds to dividing Γhk into

smaller sub-blocks. Thus, the blocking idea is useful not only for parameter es-

timation but also for state estimation. Liu (2001) also describes other Markov

chain Monte Carlo (MCMC) methods such as the Swendsen-Wang algorithm and

generalized Gibbs to evaluate the posterior distribution of Ztω.

In view of Theorem 2 and (2.4), we can use the inverse of the observed

Fisher information matrix nV̂ = −
∑Hn

h=1

∑Kn
k=1D

2
Γhk

(θ̂n) to approximate the

asymptotic covariance matrix of the block MLE θ̂n. In particular, the standard

errors of the components of θ̂n can be evaluated by taking the square roots of

the diagonal elements of
(
nV̂
)−1

. Since the EM algorithm is used to compute

θ̂n, we can evaluate V̂ by the formula

V̂ = −n−1E
θ̂n

[
SST +

Hn∑
h=1

Kn∑
k=1

∂2

∂θ∂θT
log fθ

(
YΓhk

,ZΓhk

)∣∣∣Y] (3.1)

introduced by Louis (1982), in which S =
∑Hn

h=1

∑Kn
k=1

(
∂
/
∂θ
)
log fθ

(
YΓhk

,ZΓhk

)
and the partial derivatives are taken at θ = θ̂n.

3.2. Illustrative example

In task-based functional MRI (fMRI) experiments, BOLD (blood oxygen

level-dependent) signals, which are measured in response to input stimuli (or

task), are temporally delayed and distorted due to various technical reasons
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Table 1. Block MLEs, with estimated standard errors in parentheses, and
error rates in estimating binary pixel values for one simulated dataset.

block µ−1 µ1 σ2 β α FPR FNR ERR CPU
size (= 0) (= 2) (= 1) (= 0.10) (= 0.10) time

(mins)

12× 12 0.0050 2.0119 0.9989 0.0998 0.1003 0.1414 0.1395 0.1404 113.3
×30 (0.0050) (0.0051) (0.0056) (0.0012) (0.0032)

24× 24 0.0049 2.0121 0.9987 0.0996 0.1003 0.1415 0.1397 0.1406 141.1
×45 (0.0049) (0.0049) (0.0054) (0.0012) (0.0032)

48× 48 0.0049 2.0120 0.9986 0.0996 0.1004 0.1413 0.1395 0.1404 275.0
×90 (0.0050) (0.0051) (0.0057) (0.0011) (0.0031)

(Ward and Mazaheri (2006)). Estimation of the neuronal input stimulus func-

tion from an fMRI experiment provides insights into actual brain activity during

task activation (Höjen-Sörensen, Hansen, and Rasmussen (2000)). The fMRI

data of a slice of the brain consist of a time series, indexed by t = 1, . . . , T , of

two-dimensional noisy images Yt = {Ytω, ω ∈ Ω} that are distortions of binary

spatio-temporal hidden variables Ztω, where Ztω = 1 if the voxel ω is on stimulus

at time t and Ztω = −1 otherwise. We model Z =
{
Ztw, ω ∈ Ω, t = 1, . . . , T

}
by

a Markov random field undergoing Markovian dynamics over time so that with

θ = (θ(1),θ(2)), θ(1) = (µ1, µ−1, σ
2) and θ(2) = (α, β), the gθ and hθ in (1.6) are

given by

hα,β(Z) =
1

κ(α, β)
exp

{ T∑
t=1

∑
ω∈Ω

Ztω

(
β
∑

v∈N(ω)

Ztv + αZt−1,ω

)}
, (3.2)

where Z0ω = 0, and gθ(·|Ztω) is the normal distribution N (µ, σ2) with µ = µ1
if Ztω = 1 and µ = µ−1 if Ztω = −1. The neighborhood of an interior point ω

of Ω consists of four sites nearest to ω in the two-dimensional lattice Ω. Here

(3.2) basically augments the Ising model in the second paragraph of Section 1.1

by adding the autoregressive term αZt−1,ω at each voxel ω and time t, with the

logarithmic link function for the binary time series. We simulated data from the

above model with α= 0.1, β = 0.1, µ1 = 2, µ−1 = 0, and σ2 = 1. Figure 1 plots

a simulated dataset consisting of (Zt,Yt) at t=50 and 51. It shows the spatial

and temporal dependencies clearly in Z but not in Y.

Table 1 gives the block MLEs of α, β, µ−1, µ1, and σ
2 for a single simulated

dataset for 1 ≤ t ≤ 90 and Ω = {1, . . . , 48} × {1, . . . , 48}. The size of each
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Figure 1. True (Zt) and observed (Yt) images at t = 50 and t = 51.

block varies from (12 × 12) × 40 to (48 × 48) × 90 (corresponding to the full

MLE), with (24 × 24) × 45 as an intermediate choice. Thus, n = (48)290 and

(Hn,Kn) = (3, 42), (2, 22), (1, 1) for the three cases in the table. The convergence

criterion used by the EM algorithm in Section 3.1 is an upper bound of 10−5

for the size of each parameter increment. The table also reports the standard

errors of the estimates computed by Louis’ formula that is described in the last

paragraph of Section 3.1. Note that the 95% confidence intervals based on them

and asymptotic normality contain the true parameter values.

The table also gives the CPU times carried out on a desktop PC (Intel Core

i7-4770 CPU (3.40 GHz)) and misclassification rates that include the false posi-

tive rate (FPR), the false negative rate (FNR), and the total error rate (ERR).

Letting #S (or #NS) denote the number of voxels on (or not on) stimulus and

#T = #S+#NS, we have ERR=(number of misclassified pixels)
/
#T, FPR=(#NS

that are misclassified as on stimulus)
/
#NS and FNR=(#S that are misclassified

as not on stimulus)
/
#S. One sees that the error rates of the estimates of the

pixel values are almost the same over the three block sizes, and that using the

smallest block size results in 60% savings in CPU time over the block size that

corresponds to the MLE.

Table 2 reports the results for 100 simulated datasets from the model. Be-

cause each result is the mean of 100 simulations, the standard error can be com-
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Table 2. Means of block MLEs, error rates and CPU times in estimating
binary pixel values for 100 simulated datasets, with standard errors given in
parentheses. Also given in square brackets is the corresponding range over
the 100 simulations.

block µ−1 µ1 σ2 β α FPR FNR ERR CPU

size (= 0) (= 2) (= 1) (= 0.10) (= 0.10) time

(mins)

12× 12 0.0017 2.0027 0.9991 0.0993 0.1018 0.1445 0.1427 0.1436 142.0

×30 (0.00453) (0.00497) (0.00559) (0.00094) (0.00241) (0.00192) (0.00190) (0.00191) (33.6)

[-0.0010, [1.990, [0.989, [0.097, [0.097, [0.140, [0.138, [0.137, [62.4,

0.0015] 2.017] 1.014] 0.102] 0.109] 0.148] 0.146] 0.147] 213.4]

24× 24 0.0016 2.0029 0.9989 0.0990 0.1020 0.1425 0.1427 0.1436 150.0

×45 (0.00450) (0.00492) (0.00552) (0.00093) (0.00243) (0.00189) (0.00187) (0.00188) (28.4)

[-0.0010, [1.990, [0.989, [0.097, [0.097, [0.140, [0.138, [0.139, [71.7,

0.0015] 2.017] 1.014] 0.101] 0.109] 0.148] 0.146] 0.147] 220.3]

48× 48 0.0016 2.0029 0.9988 0.0990 0.1020 0.1425 0.1427 0.1436 311.7

×90 (0.00449) (0.00490) (0.00552) (0.00092) (0.00239) (0.00191) (0.00189) (0.00190) (60.3)

[-0.0010, [1.991, [0.989, [0.097, [0.097, [0.140, [0.138, [0.139, [190.2,

0.0016] 2.017] 1.014] 0.101] 0.109] 0.148] 0.146] 0.147] 484.1]

puted directly from these simulations, unlike the standard errors of the block
MLEs in Table 1 that use Louis’ formula. Moreover, to speed up the computa-
tion for 100 datasets, we relaxed the convergence criterion for the EM algorithm
to an upper bound of 10−4 for the size of each parameter increment. The biases
and the standard errors of the block MLEs are almost same for the three block
sizes. In all cases, the true parameter values are within the 95% confidence limits
using these standard errors and the normal approximation. On the other hand,
Table 2 which gives the minimum and maximum (in square brackets) for each
entry besides the mean over the 100 simulations shows substantial savings in
CPU time by using smaller block sizes than the full size of the MLE.

4. Discussion

Comparison of the full likelihood (1.1) and the pseudo-likelihood (1.5) shows
that they are not expected to be asymptotically equivalent, explaining why the
MCLE has been found to be less efficient than the full MLE in the simulation
studies of Okabayashi, Johnson, and Geyer (2011). The main idea underlying
the block log-likelihood (2.1) is to keep it close to the full log-likelihood under
the computational constraint that the block MLE is still computationally feasi-
ble. In fact, the asymptotic independence of suitably chosen blocks is expected
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in stationary mixing random fields. For stationary mixing sequences of random

variables, the asymptotic independence is used to establish the asymptotic nor-

mality of their sums via the CLT for sums of i.i.d. random variables; see Billings-

ley (1995, pp.366-367). Extensions of the CLT to stationary mixing random fields

using this approach require more restrictive mixing conditions; see Remark 2 of

Bolthausen (1982) who introduced another approach that is summarized in the

proof of Theorem 1 in the Appendix. A recent review of the developments in

the CLT for stationary mixing random fields is given by Wang and Woodroofe

(2013), who also introduce a new condition under which the stationary random

field has an m-dependent approximation and therefore satisfies the CLT.

Since our goal is to analyze the block MLE, we do not need the full force of

stationarity and mixing conditions on σ-fields that are separated in space-time

by the infimum of ∆A,B over A belonging to one σ-field and B belonging to the

other. We derive from the scratch the CLT for spatio-temporal random fields

that may be non-stationary. In particular, we replace the ρ-mixing condition for

stationary random fields in Bolthausen (1982) by the weaker and more direct

correlation decay conditions (A3), (A4) and (B3) for the partial derivatives D
(n)
Γhk

and D
2
Γhk,n

. The CLT is usually proved by a truncation argument and analysis of

the characteristic function of the truncated random variables. The assumptions

(A1), (A2), (A5), (B1), and (B2) are related to this truncation argument.

Since we have an HMRF in which the Ytω are conditionally independent

given Z, the correlation decay conditions for D
(n)
Γhk

and D
2
Γhk,n

are related to

those for Z. If Z has mixing properties, then one expects Ztω, and therefore

also Ytω, to be asymptotically independent of Z∂Γhk
if (t, ω) ∈ Γhk is suffi-

ciently separated from B. This is the background for assumption (C), in which

sup∥θ−θ0∥<ϵn ∥D log fθ(ZB)∥2 = o(n) is expected to hold when ∂Γhk has much

fewer sites than Γhk and Z is mixing. In particular, the MRF (3.2) undergo-

ing Markovian dynamics is geometrically mixing if β > log 3 and α > 0; see

Martin-Löf (1973).

Whereas the log-likelihood function (1.6) of θ based on Y is intractable, the

enriched log-likelihood function (2.6) can be expressed as a sum of tractable sum-

mands plus an asymptotically negligible term, in view of (C) and the assumptions

(A1)−(A5) and (B1)−(B3). Under these assumptions, the block MLE based on

Y is asymptotically equivalent to the MLE based on (Y,ZB), as shown in the

proof of Theorem 3. The simulation study in Section 3.2 shows that the block

MLE is indeed close to the full MLE and that both are close to the true param-

eter vector. We have also established in Section 2.3 the asymptotic efficiency

of the block MLE, which is not shared by other maximum composite likelihood

estimators in the literature.
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The asymptotic theory in Section 2 and the simulation study in Section 3.2

show that there is much flexibility in the choice of the block sizes. Basically

the block MLE chooses Hn to be a small fraction of T and Kn to be a small

fraction of |Ωn|. We can also minimize the trace of the inverse of the observed

Fisher information matrix, computed by Louis’ formula (3.1), over a grid of such

choices to determine the block size empirically. The results in Tables 1 and 2,

with moderate values of diameter(Ω) = 48 and t = 90 for which the full MLE is

computationally tractable, show the robustness to the choice of the block sizes.

They also show substantial savings in CPU time by using blocks for likelihood

maximization via the EM algorithm in Section 3.1.

In Section 3, we have focused on standard algorithms to implement the

block MLE. Here we describe other techniques to speed up the computation.

An obvious technique for computing the block likelihoods is parallelization by

using either graphical processing units (GPUs) or/and multiple CPUs. Whereas

GPU greatly speeds up tasks that involve many relatively small computations,

CPU can perform more complex tasks that require larger memory (Hockney and

Jesshope (1981); Owens et al. (2008); Yu et al. (2014)). Another technique is to

replace the Gibbs sampler by a faster algorithm for calculating MAP (maximum

a posteriori) estimates of the states; see Greig, Porteous and Seheult (1989),

Boykov and Kolmogorov (2004), Ravikumar and Lafferty (2006), Kumar and

Zilberstein (2011), and Bhole et al. (2014). For example, Greig, Porteous and

Seheult (1989), Boykov and Kolmogorov (2004) and Bhole et al. (2014) reformu-

late MAP estimation as the solution to a minimum-cut/maximum-flow algorithm

on a graph, whose computational complexity in computing the MAP estimates

of the states in the HnKn blocks in Section 3 is O
(
n4
/
(HnKn)

3
)
.

The divide-and-conquer approach used by the block MLE has also appeared

in other methods for the analysis of large spatio-temporal data sets. In particu-

lar, to detect spatio-temporal clusters in epidemiology and environmetrics, slices

of spatio-temporal cylinders are used to scan an area of interest; see Kulldorff

(1997), Kulldorff et al. (1998) and Tuia et al. (2008). The base of the cylinder

is a circular zone in space, while the axis of the cylinder represents time. The

objective of the data analysis is either retrospective identification of past clusters

or prospective detection of emerging clusters. Unlike the highly complex spatio-

temporal Markov random field models in image analysis, these spatio-temporal

clusters are modeled by relatively simple Poisson or Bernoulli models. On the

other hand, whereas the set Ω of sites considered herein is a lattice in Zd that

makes the choice of the blocks for the block MLE relatively straightforward, the

geographical region of interest in the aforementioned applications of local spatio-

temporal cylinders can be much more complicated, leading to statistical issues

on how to define these cylinders that are not considered here.
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Appendix: Proofs

Proof of Theorem 1. For notational simplicity, denote Pθ0 and Eθ0 by P and

E. Let a ∈ Rd − {0} be nonrandom, and let Xhk =
(
n
/
HnKn

)−1/2
aTD

(n)
Γhk

(θ0),

Sn =
∑Hn

h=1

∑Kn
k=1Xhk. In view of (A2), it suffices to prove that Sn, which has

HnKn summands, has a limiting N (0,aTVa) distribution as n → ∞. By (A1)
and Lemma 2 of Bolthausen (1982), who cites Stein (1973) for the basic idea, we
need only show that for any λ ∈ R,

lim
n→∞

E
{
(iλ− Sn)e

iλSn
}
= 0. (A.1)

In view of (A5), we can choose m = mn such that ρ(m)
√
n → 0 and

√
n/md →

∞. Denoting Γhk by A, let Shk,n =
∑

B=Γh′k′ :∆A,B≤mXh′k′ . As in Eq. 4 of
Bolthausen (1982), we write

(iλ− Sn)e
iλSn = I− II− III, (A.2)

where I = iλeiλSn(1 −
∑

h,kXhkShk,n), II = eiλSn
∑

h,kXhk(1 − e−iλShk,n −
iλShk,n), and III =

∑
h,kXhke

iλ(Sn−Shk,n). We can use (A3)−(A5) and argu-
ments similar to those of Bolthausen (1982, p.1049) to bound E(I2), E(|II|)
and |E(III)|. In particular, denoting Xhk and Xh′k′ by XA and XB for A =
Γhk and B = Γh′k′ , we have bounds similar to Bolthausen’s for |E(XAXB)|
and |E(XAXA′XBXB′)|, and can also follow Bolthausen to bound |E(III)| by
|E(III)| ≤

∑
h,k |E(Xhk|Sn − Shk,n)|, to which we can apply (A5), noting that∑

h,k has HnKn terms and that
√
nρ(m) → 0 by the choice of m = mn. There-

fore, similar to Bolthausen (1982, p.1049), we can show that E(I2), E(|II|) and
|E(III)| converge to 0 as n→ ∞, thereby proving (A.1).

Proof of Theorem 2. Let ϵ > 0. It follows from (B2) and the compactness of
Θ that there exist δ > 0 and θ1, . . . ,θJ ∈ Θ − {θ0} such that

∪J
j=1Bδ(θj) = Θ

and

P
{

max
1≤h≤Hn,1≤k≤Kn,0≤j≤J

sup
λ∈Bδ(θj)

∣∣ log fλ(YΓhk
)−log fθj (YΓhk

)
∣∣>ϵ(HnKn)

}
→0

(A.3)
as n→ ∞. For 0≤j≤J , it follows from (B3) that n−1Var

(∑Hn
h=1

∑Kn
k=1 ℓΓhk

(θj)
)

= O(1), and therefore by Chebyshev’s inequality,

n−1
Hn∑
h=1

Kn∑
k=1

ℓΓhk
(θj)

P−→ 0 as n→ ∞, for j = 0, . . . , J. (A.4)
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Since lim infn→∞ n−1
∑Hn

h=1

∑Kn
k=1E

[
log fθ0(YΓhk

) − log fθj (YΓhk
)
]
> 0 for 1 ≤

j ≤ J (see the paragraph preceding Theorem 2), it follows from (A.4) together

with (B2) and (A.3) that θ̂n
P−→ θ0. A similar argument can be used to prove

(2.4).

Proof of (2.11). By (2.7) and LeCam’s third lemma (Andersen et al. (1993,

p.596)), it suffices to show that under Pθ0 ,(
n−1/2uTDℓ̃n(θ0)− uTVu/2

n1/2(θ̂n − θ0)

)
D−−→ N

((
−uTVu/2

0

)
,

(
uTVu uT

u V−1

))
.

(A.5)
Making use of (2.3), (2.4), and Theorem 1, it can be shown that (A.5) indeed
holds.
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