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Abstract: With increasing accessibility to Geographical Information Systems (GIS)

software, researchers and administrators in public health routinely encounter areal

data compiled as aggregates over areal regions, such as counts or rates across coun-

ties in a state. Spatial models for areal data attempt to deliver smoothed maps by

accounting for high variability in certain regions. Subsequently, inferential interest

is focused upon formally identifying the “difference edges” or “ difference bound-

aries” on the map that delineate adjacent regions with vastly disparate outcomes,

perhaps caused by latent risk factors. We propose nonparametric Bayesian models

for areal data that can formally identify boundaries between disparate neighbors.

After elucidating these models and their estimation methods, we resort to simula-

tion experiments to assess their effectiveness, and subsequently analyze Pneumonia

and Influenza hospitalization maps from the SEER-Medicare program in Minnesota,

where we detect and report highly disparate neighboring counties.

Key words and phrases: Areal data, conditional autoregressive model, difference

boundary, Dirichlet process, stick-breaking process, wombling.

1. Introduction

With increasing accessibility to Geographical Information Systems (GIS),

researchers and administrators in public health are increasingly encountering

areal datasets that are aggregated as case counts or rates over areal units or

regions (e.g. counties, census-tracts or ZIP codes). This is common practice in

public health to protect patient privacy.

Statistical models for areal data can adjust for known causes of variability

in the data and also for sparsely sampled regions by smoothing across and bor-

rowing information from its spatial neighbors (see, e.g., Anselin (1988); Le Sage

and Pace (2009); Banerjee, Carlin, and Gelfand (2004)). An especially perti-

nent issue is to ascertain statistically significant differences among neighboring

regions, hence identifying the spatial barriers or difference boundaries that delin-

eate them. Ultimately, the underlying influences responsible for these boundaries

or barriers are typically of scientific and administrative interest. This ‘bound-

ary’ detection problem is often referred to as “wombling”, after a foundational
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386 PEI LI, SUDIPTO BANERJEE, TIMOTHY HANSON AND ALEXANDER MCBEAN

article by Womble (1951). While statistical boundary analysis has been applied

extensively to point-referenced and gridded (or lattice) data (see, e.g., Banerjee

and Gelfand (2006)), formal statistical inference in areal contexts present unique

challenges that we outline later.

Deterministic areal wombling is often carried out using algorithms (Jacquez

and Greiling (2003a,b)) that are fast and straightforward to implement but fail

to account for sources of uncertainty, such as extremes in counts and rates corre-

sponding to thinly populated regions. Li, Banerjee, and McBean (2011) proposed

statistical learning for boundaries using the Bayesian Information Criterion. In

hierarchical model based approaches, Lu and Carlin (2005), Lu et al. (2007) and

Ma, Carlin, and Banerjee (2010) investigated estimation of the adjacency matrix

within a hierarchical framework using priors on the edges. However, inference

from these models are usually highly sensitive to prior specifications on certain

parameters.

Our primary contribution is a method to deliver inference for areally aggre-

gated health outcome data, including assessment of difference boundaries, using

classes of more flexible and robust non-parametric Bayesian hierarchical models.

Section 2 offers a brief exposition to models for areally referenced count data.

Section 3 elucidates the key issues in areal boundary analysis and our Bayesian

nonparametric modeling approaches. Sections 4 and 5 discuss, respectively, a

simulation study and the analysis of a Minnesota Pneumonia & Influenza (P

& I) dataset to detect spatial health barriers between neighboring counties in

Minnesota. Finally, Section 6 concludes the article with an eye towards future

work.

2. Hierarchical Models for Areal Data

Areal data can be analyzed using Bayesian hierarchical models that incorpo-

rate geographical effects. For example, let Yi (random) be the observed number

of patients who underwent a specific preventive or clinical outcome in areal unit

i, i = 1, . . . , n, and let Ei (fixed) be the expected number of outcomes for that

unit. A commonly used likelihood is

Yi
ind.∼ Poisson(Eie

µi) , i = 1, . . . , n, (2.1)

where µi = x′
iβ+ϕi represents the log-relative risk, estimates of which are often

based on the departures of observed from expected counts, xi includes explana-

tory, region-level covariates or predictors for region i and β are the corresponding

regression coefficients.

The ϕi represent the spatial random effect associated with region i;

they are often modeled using Markov random fields (e.g., Cressie (1993);
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Banerjee, Carlin, and Gelfand (2004, Chap. 3)) that imply a joint distribution

for ϕ = (ϕ1, ϕ2, . . . , ϕn)
′:

ϕ ∼ Nn

(
0 , σ2 (D − ρW )−1

)
, (2.2)

where Nn denotes the n-dimensional normal distribution, D is a n× n diagonal

matrix with diagonal elements mi equal to the number of neighbors of area i,

and W = {wij} is the adjacency matrix with wii = 0, and wij = 1 if i is

adjacent to j and 0 otherwise. In the joint distribution (2.2), σ2 is the spatial

dispersion parameter, and ρ is a spatial autocorrelation parameter. We denote

this distribution concisely as CAR(ρ, σ2). A sufficient condition for D − ρW to

be positive definite is that ρ ∈ (1/λ(1), 1), where λ(1) is the minimum eigenvalue

of W (Banerjee, Carlin, and Gelfand (2004)).

The CAR model has been especially popular in Bayesian inference as its con-

ditional specification is convenient for Gibbs sampling and MCMC schemes. The

distribution in (2.2) reduces to the well-known intrinsic conditionally autoregres-

sive (ICAR) prior if ρ = 1, or an independence model if ρ = 0. The ICAR model

induces “local” smoothing by borrowing strength from the neighbors, while the

independence model assumes independence of spatial rates and induces “global”

smoothing. The smoothing parameter ρ in the CAR prior (2.2) controls the

strength of spatial dependence among regions, though it is well-appreciated that

a fairly large ρ may be required to deliver significant spatial correlation.

3. Bayesian Nonparametric Models for Areal Data

3.1. Modelling considerations for areal boundary analysis

Areal boundary analysis can be approached from different perspectives. For

example, Li, Banerjee, and McBean (2011) treat the problem as one of statistical

learning for the edges, where each model represents a different boundary hypothe-

sis. More generally, one can consider models varying in their specification of the

neighborhood matrix W that controls spatial smoothing. This requires sophisti-

cated MCMC model composition or MC3 algorithms or other types of stochastic

variable selection algorithms for selecting models (see, e.g., Hoeting et al. (1999));

these methods are computationally intensive in relatively large maps. Li et al.

(2012) reformulate the problem as one of Bayesian hypothesis testing within a

class of spatial moving average models and adjust multiple tests using false dis-

covery rates. The method, though still computationally intensive is competitive,

and provides a benchmark in our simulation studies. Another approach seeks to

estimate the adjacency matrix within a hierarchical framework using priors on

the adjacency relationships, see Ma, Carlin, and Banerjee (2010).
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We explore an alternative stochastic mechanism that allows us detect differ-

ence boundaries by considering probabilities such as P (ϕi = ϕj | i ∼ j). Clearly,

continuous priors for the ϕi’s do not work as they render P (ϕi = ϕj | i ∼ j) = 0.

A nonparametric Bayesian framework that models the spatial effects as almost

surely discrete realizations of some distribution comes to mind – the Dirichlet

process (Ferguson (1973)) presents itself as a natural choice, but how do we ac-

commodate spatial (areal) dependence? We addresses this issue in the subsequent

sections.

3.2. Dirichlet process mixture (DPM) models for clustered data

In the context of (2.1) and (2.2), a Dirichlet process mixture (DPM) prior

specifies ϕi ∼ G, where G ∼ DP (α,G0) is some unknown distribution modeled

as a Dirichlet process (DP) with baseline measure G0 (e.g., Ferguson (1973)).

Blackwell and MacQueen (1973) related the Dirichlet process to a generalized

Polya urn scheme that leads to effective sampling strategies if given an explicit

and simple prediction rule.

The stick-breaking representation of the DP (Sethuraman (1994)) says that

a draw from the Dirichlet process can be written as G(·) =
∑∞

i=1 piδθi(·) a.s.,

where δθi is the Dirac measure (point mass) located at θi, each θi is a random

draw from the base distribution G0, and pi = Vi
∏i−1

l=1(1 − Vl) with p1 = V1,

where each Vi
i.i.d.∼ Beta(1, α). The pi’s are called the “stick-breaking” weights

(their infinite sum equals 1) and the θi’s are called atoms. In practice, the

infinite sum is often replaced by the sum of the first N(N 6 n) terms, since

the probability mass in each term decays rapidly. We can simply let VN = 1

to truncate the sum to finite terms (Ishwaran and Zarepour (2000)). Many

authors simply choose N to be a number large enough that there exists some

empty components during the MCMC run or by examining the size of the last

weight pN under the prior. Following Reich and Fuentes (2007), we choose N

according to the latter (see Section 4). For concerns regarding truncation bias,

exact sampling can be executed using slice-sampling (Kalli, Griffin, and Walker

(2011)).

The stick-breaking representation is an extremely rich framework that sub-

sumes DP’s and other extensions (e.g., MacEachern (2001)) such as Dependent

Dirichlet processes (DDP)’s. In fact, for every conceivable joint distribution on

the stick-breaking weights and the atoms, there is associated a stick-breaking

stochastic process. Introducing dependence is now natural. For example, the

DDP introduces dependence through the stick-breaking weights and the atoms.

De Iorio et al. (2004) used the dependent Dirichlet process to define the desired

dependence across the related random distributions in any ANOVA-type mod-

els. Gelfand, Kottas, and Maceachern (2005) used DDP on geostatistical data
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and introduced spatial dependence through an underlying base measure, where

G ∼ DP (α,G
(n)
0 ) and G

(n)
0 is a Gaussian process with a given covariance struc-

ture. Alternatively, Griffin and Steel (2006) proposed an order-based DDP which

include dependence on predictors by permutation of elements in stick-breaking

priors. Variants include kernel stick-breaking processes by Dunson and Park

(2008) and the probit stick-breaking process by Chung and Dunson (2009). Spa-

tial Dirichlet process (SDP) mixture models (Gelfand, Kottas, and Maceachern

(2005)) are defined on a space of surfaces that yields almost surely discrete real-

izations with countable support. Duan, Guindani, and Gelfand (2007) extended

the SDP by allowing different surface selection at different sites. Reich and

Fuentes (2007) develop a spatial stick-breaking prior (SSB) to analyze hurricane

surface wind fields.

Our need to move into DP’s (and their extensions) is fundamental: to accom-

modate non-zero probability masses for spatial random effects without sacrificing

richness for areal models is problematic otherwise. The local Dirichlet process

(Chung and Dunson (2011)) offers an approach to the localized spatial “sharing”

of atoms and weights that could conceivably be extended to the areal setting

through a suitable definition of what a neighborhood is at each areal location;

also see Theorem 4 in Dunson, Pillai, and Park (2007) for a related idea. The

models we propose below correspond to a subclass of stick-breaking process priors

that includes the DP and the SDP as special cases. In particular, we construct

an areally-referenced stick-breaking process (ARSB) and an areally-referenced

Dirichlet Process (ARDP) that will serve well for areal data allowing formal

boundary analysis.

More recent developments in Dependent Product Partition Models (DPPM),

which refers to classes of predictor-dependent product partition models, encour-

age clustering among subjects with like covariates. Both Müller, Quintana,

and Rosner (2011) and Park and Dunson (2010) require a “similarity function”

g(x1, . . . , xk) that adjusts the (typically Dirichlet process) cohesion function, giv-

ing larger values for sets of covariates x1, . . . , xk that are “similar.” Park and

Dunson’s (2010) model development proceeds through the consideration of sim-

ilarity functions that place probability distributions on the covariates x1, x2, . . .,

treating them as continuous; specifically, they consider the DPM of normals

proposed by Müller, Erkanli, and West (1996). Müller, Quintana, and Rosner

(2011) consider normal models for continuous covariates, and other choices for

ordinal and nominal categorical predictors. For our model and application, we

require a cohesion function that gives larger values for proximal counties, so our

“predictor” is a categorical variable with spatial information. Here we propose

incorporating areal spatial information directly into the stick-breaking weights

(ARSB) or through a copula-type formulation (ARDP).
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3.3. Areally-referenced spatial stick-breaking prior

We adapt the point-referenced spatial stick-breaking approach of Reich and

Fuentes (2007) to areal data by incorporating spatial dependence in the DP by

introducing additional weights that borrow strength across the neighbors using

CAR priors (Section 2)

The spatial random effects are assigned a stick-breaking prior, whose weight

parameters pi1 = wi1V1, pik = wikVk
∏k−1

l=1 (1 − wilVl), i = 1, . . . , n, k = 1, 2, . . .,

depend not only on the Vks, but also on “location” weight parameters wik. These

weights satisfy 0 < pik < 1. Since the CAR distribution has support over the

entire real line, we introduce a transformation logit(wik) = zik and allow the zik’s

to be distributed as CAR. Of course, any other link mapping the unit interval

to the real line could be used. For each k, we let {zik}ni=1 be distributed as a

CAR distribution yielding a Markov random field (MRF) on the location weights

and allowing the desired smoothing across neighbors. Usually larger values of ρ

induce greater smoothing and setting ρ = 1 yields the popular ICAR prior. This

prior is improper as D −W is singular, but for a map without islands this issue

can be resolved by imposing the additional constraint
∑n

i=1 zik = 0.

The ARSB model, truncated to m terms for the stick-breaking representa-

tion, with a Poisson likelihood is

Yi |β, ϕi ∼ Poisson(Eie
µi), µi = x′

iβ + ϕi; ϕi ∼ G(i);

G(i)(·) =
m∑
k=1

pikδθk(·), θk ∼ N(0, σ2
s); pi1 = wi1V1, (3.1)

pik = wikVk

k−1∏
l=1

(1− wilVl), Vk
i.i.d.∼ Beta(1, α), {zik} ∼ CAR(ρ, σ2

k),

where logit{wik} = zik for k = 1, . . . ,m. The α parameter stochastically controls

the number of distinct values among the n observations, and the covariance

between dependent variables Yi and Yj is induced by the covariance of the spatial

random effects ϕi and ϕj .

The ARSB model incorporates dependence between the discrete distributions

on different regions but does not yield identical marginal distributions on the ϕi.

Duan, Guindani, and Gelfand (2007) introduced random distributions for the

spatial effects associated with point-referenced data allowing different surface

selection at different sites while ensuring that the marginal distribution of the

effect at each sites still comes from a Dirichlet process. Here we propose an areal

alternative, which we call the areally-referenced Dirichlet process (ARDP). The

ARDP maintains the marginal distribution of each spatial random effect to be a

regular univariate DP while incorporating the spatial dependence between these

DPs.
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Consider spatial random effects ϕi, i = 1, . . . , n, arising marginally from

an identical random measure G, where G ∼ DP (α,G0). We introduce spatial

dependence between these DPs by constructing dependent uniform (0, 1) ran-

dom variables. Suppose γ1, . . . , γn are jointly distributed as a CAR(ρ, σγ), and

F (1)(·), . . . , F (n)(·) denote the cumulative distribution functions of the marginal

distributions of each component of the CAR random vector. Marginally, each

F (i)(γi) is uniform (0, 1) but they are dependent through γ1, . . . , γn.

We formulate our hierarchical areally-referenced Dirichlet process (ARDP)

model as follows. We use a Poisson likelihood for the first stage model, though

this could be replaced by any discrete distribution in the exponential family.

Here,

Yi|β, ϕi,∼ Poisson(Eie
µi), µi=x′

iβ + ϕi; ϕ={ϕi}ni=1 ∼ Gn;

Gn=
∑

u1,...,un

πu1,...,unδθu1 · · · δθun ;

πu1,...,un =P
( u1−1∑

k=1

pk<F (1)(γ1)<

u1∑
k=1

pk, . . . ,

un−1∑
k=1

pk<F (n)(γn)<

un∑
k=1

pk

)
;

θk
i.i.d.∼ N(0, σ2

s); p1=V1; pj=Vj

∏
k<j

(1− Vk); Vj
i.i.d.∼ Beta(1, α);

γ = {γi}ni=1 ∼ Nn(0,Σ) , (3.2)

where k = 1, 2, . . . ,K truncates the stick breaking function to K terms, Σ =

σ2
γ(D− ρW )−1 is the covariance matrix of a proper CAR distribution. Using the

cumulative distribution function of the γi’s to model the weights is an adapta-

tion of the Hybrid Dirichlet Process (Petrone, Guindani, and Gelfand (2009)),

where copulas are used to model weights. The distinction is that we model areal

dependence using Markov random fields, while the hybrid DP models depen-

dence using continuous spatial processes for inference on uncountable sets. Both

methods ensure that the marginal distribution of G(i)(ϕi), for each i, follows an

identical DP

G(i)(ϕi)=

K∑
k=1

∑
u1,...,ui=k,...,un

πu1,...,ui=k,...,unδθu1 . . . δθui=k
. . . δθun =

K∑
k=1

pkδθk , (3.3)

where pk =
∑K

k=1 P
(∑k−1

t=1 pt < F (i)(γi) <
∑k

t=1 pt

)
. How the covariance be-

tween ϕi and ϕj depends upon the probabilities p1, . . . , pK can be seen from

Cov (ϕi, ϕj) = σ2
s

K∑
l=1

P (ui = uj = l)
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= σ2
s

K∑
l=1

P

( l−1∑
k=1

pk < F (i)(γi) <

l∑
k=1

pk,

l−1∑
k=1

pk < F (j)(γj) <

l∑
k=1

pk

)

= σ2
s

K∑
l=1

plP

(
F (i)−1

( l−1∑
k=1

pk

)
< γi < F (i)−1

( l∑
k=1

pk

)
∣∣∣ F (j)−1

( l−1∑
k=1

pk

)
< γj < F (j)−1

( l∑
k=1

pk

))
, (3.4)

where (γi, γj) follows a bivariate normal distribution with covariance specified by

the CAR model. Posterior inference for the ARSB and ARDP models are based

upon Markov chain Monte Carlo simulations (e.g., Gelman et al. (2004); Carlin

and Louis (2008)). The details are outlined in the Supplement.

3.4. A practical FDR-based method to select difference boundaries

To obtain a threshold for detecting difference boundaries, our approach treats

the spatial boundary analysis problem as one of multiple hypothesis testing.

For each pair of adjacent regions, say i and j, we test ϕi = ϕj against ϕi ̸=
ϕj . This produces as many hypothesis as there are edges. Recently, several

authors have advocated the use of the false discovery rate (FDR) to adjust for

multiplicities in hypothesis testing problems (see, e.g., Benjamini and Hochberg

(1995); Efron et al. (2001); Storey (2002, 2003)). Li et al. (2012) used the FDR on

Smoothed Moving Average (SMA) models involving some awkward constraints

on the random effects for model fitting. We adapt this approach to the ARDP

and ARSB models free of such constraints.

We identify a boundary (i, j) as a difference boundary if the posterior prob-

ability that P (ϕi = ϕj |Y ) exceeds a certain threshold t, where Y = {Y1, . . . , Yn}
is the entire collection of observed outcomes. For each pair of neighboring re-

gions, we construct A(i,j)(Y ; t) = {Y : P (ϕi ̸= ϕj |Y ) > t}, a critical region

that indicates evidence in favor of (i, j) being a difference boundary. The choice

of t will control the FDR below a level δ = 0.05. If Z(i,j) = I(ϕi = ϕj) and

v(i,j) = P (Z(i,j) = 0 |Y ), then the FDR is

FDR =

∑
i∼j Z(i,j)I(v(i,j) > t)∑

i∼j I(Z(i,j) > t)
, where i ∼ j if wij ̸= 0 . (3.5)

Estimation of (3.5) is straightforward. It is obtained as the posterior expectation

F̂DR = E[FDR |Y ] =

∑
i∼j(1− v(i,j))1(v(i,j) > t)∑

i∼j 1(v(i,j) > t)
, (3.6)
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Figure 1. A map of the simulated data with the grey-scales showing the six
different clusters, each having its own mean. There are 47 boundary seg-
ments that separate regions with different means(shades). The percentages
reflect the quantiles for the distribution of the outcomes.

where v(i,j) is computed as a Monte Carlo mean of the posterior samples for Zij .

Rejection rules can be then constructed to bound the FDR at target level δ:

reject if v(i,j) > t, where

t = sup

{
u :

∑
i∼j I(v(i,j) > u)(1− v(i,j))∑

i∼j I(v(i,j) > u)
≤ δ

}
.

4. A Simulation Study

To evaluate our methods, we conducted a simulation study using the tem-

plate of a Minnesota county map in Li, Banerjee, and McBean (2011). There

are n = 87 counties in Minnesota, and 211 pairs of neighboring counties. We

simulated 50 datasets on a map of Minnesota, where the state was divided into

six regions. Each dataset was generated from (2.1), where µi was one of five

different means corresponding to the five different shades mapped on Figure 1;

the darker shades correspond to higher means. To add some irregularity, we also

included one county (Sherburne county shaded white in Figure 1) that has all its

boundaries as true difference boundaries. This resulted in “six” different clusters

on the map and 47 “true difference boundaries” delineating the clusters with

substantially different means.

For every pair of geographical neighbors (i, j), we computed the posterior

probability P (ϕi ̸= ϕj |Y ) and chose the T = 35, 40, 45, 50 and 55 edges with the

highest posterior probabilities. As there are 47 true difference boundaries, these

choices encompass settings where we could, theoretically have obtained 100%

accuracy (when T = 35, 40, 45) and also where we are assured of a few false

positives (when T = 50, 55).
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The prior specification and computational details of the ARDP model are in

the Web Supplement. The parameter α can be fixed based upon the expected

number of clusters a priori. In this case, six clusters suggest a value of α around

1.25. We experimented with α ranging from 0.25 to 1.75 and obtained very

robust inference. The results presented here correspond to α = 0.5, which leads

to an expected number of clusters of around 3, which is half the number of true

clusters. We also fixed ρ = 0.98 in the ARDP model (ICAR is inappropriate since

the covariance matrix must be proper and nonsingular). Customarily, higher

values of ρ (≈ 1) yield sufficient smoothing, while values lower than 0.95 tend

not to (e.g., Banerjee, Carlin, and Gelfand (2004)). For ARSB, we used the

ICAR model (with ρ = 1) along with the sum-to-zero constraint, which yields

legitimate posterior samples. We assumed a regression structure with only an

intercept (i.e., xi ≡ 1) and placed a flat prior on the corresponding β. A weakly

informative prior Γ(0.01, 0.01) was specified for the precision parameters τs and

τγ . In both models, the stick-breaking prior was computed using about 15 terms.

We compared the performance of DPM, ARSB, ARDP with three exist-

ing methods: the deterministic Boundary Likelihood Value (BLV) algorithm of

Jacquez and Greiling (2003a,b) using the BoundarySEER software (see http:

//www.biomedware.com) with default thresholds set from a BLV histogram; the

model-based approach of Lu and Carlin (2005), which we call the “LC method”;

a class of discrete Spatial Moving Average (SMA) models outlined in Li, Baner-

jee, and McBean (2011). We ran these models within the R statistical software

environment running three parallel chains for each model and dataset. Con-

vergence was diagnosed after 12, 000 iterations of burn-in using Gelman-Rubin

diagnostics and autocorrelation plots from the coda package in R. A subsequent

5, 000× 3 = 15, 000 samples were used for posterior inference. On a workstation

using a Intel dual core 4 GHz processor, each model took less than five hours of

CPU time to deliver its entire inferential output for all the 50 simulated datasets.

Minnesota Pneumonia and Influenza data consumed less than fifteen minutes of

CPU time.

Table 1 presents the average detection rates for these different methods ap-

plied to the 50 simulated datasets. The DPM and the BLV methods do not

explicitly borrow strength across neighbors, while the other four methods in Ta-

ble 1 exploit the adjacency structure of the underlying map. There seems to

be little to choose between the ARDP and ARSB, but both methods seem to

be slightly outperforming the other methods in both sensitivity and specificity

under all five scenarios. In addition, while the performance of the SMA model

is perhaps comparable, it is computationally onerous and less robust to prior

assumptions (Li, Banerjee, and McBean (2011)) than ARDP or ARSB.

The LC method is based upon a parametric CAR model that does not render

itself to probabilistic boundary analysis (since P (ϕi = ϕj) will always be zero).

http://www.biomedware.com
http://www.biomedware.com
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Table 1. Sensitivity and specificity in the simulation study (50 datasets
generated on a Minnesota map) for the ARDP, ARSB, DPM, LC and BLV
methods.

T Method Sensitivity Specificity T Method Sensitivity Specificity
35 ARDP 0.768 0.998 40 ARDP 0.822 0.990

ARSB 0.771 0.991 ARSB 0.821 0.989
DPM 0.737 0.989 DPM 0.791 0.991
BLV 0.711 0.990 BLV 0.778 0.979
LC 0.702 0.989 LC 0.767 0.976
SMA 0.740 0.998 SMA 0.818 0.991

45 ARDP 0.881 0.971 50 ARDP 0.927 0.962
ARSB 0.878 0.972 ARSB 0.930 0.968
DPM 0.870 0.968 DPM 0.897 0.952
BLV 0.831 0.964 BLV 0.869 0.944
LC 0.813 0.959 LC 0.859 0.941
SMA 0.872 0.975 SMA 0.901 0.955

55 ARDP 0.940 0.943
ARSB 0.941 0.940
DPM 0.895 0.915
BLV 0.891 0.920
LC 0.881 0.917
SMA 0.925 0.930

However, one could fit parametric CAR models and use the posterior expectation

of the absolute differences of the rates E(∥ηi − ηj∥ |Y ), where ηi = µi/Ei acts

as a boundary difference score. Higher values indicate spatial barriers between

units i and j. The DPM, ARSB and ARDP models not only yield estimates of

ηi, as in the “LC” method, but they also deliver nonzero posterior probabilities

P (ϕi = ϕj |Y ). Therefore, we used the posterior expectation metric to compare

its performance. The SMA model does not deliver posterior estimates of spatial

effects from a single model. Hence, we exclude it from this comparison. we

compare our models with the deterministic Boundary Likelihood Value (BLV)

algorithm of Jacquez and Greiling (2003a,b).

Table 2 presents the results for four of the methods. The deterministic BLV

method detects 89.6% of the boundaries. The promise of our stochastic models

is evident from the superior performances of the ARDP and the ARSB models.

Since we know the true boundaries in Figure 1, we can assess the performances

of these approaches in detecting the true boundaries. Using direct posterior

estimates 47 difference boundaries. We find that the DPM, ARDP and the

ARSB models are each able to detect about 90% of the true boundaries. The

ARDP model performs slightly better than the other two. Using the posterior

expectation metric, we again find that the proposed ARSB and ARDP models
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Table 2. Assessment of the true wombling boundaries with those produced
by LC, ARDP and ARSB based on P (ϕi = ϕj |Y ) and E(∥ηi − ηj∥ |Y ) in
the simulation study.

Assessment using P (ϕi = ϕj |Y ) Assessment using E(∥ηi − ηj∥ |Y )

LC - 78.7%
DPM 89.3% 82.2%
ARDP 91.4% 88.3%
ARSB 89.1% 83.3%

outperforming the LC method; they outperform the DPM model as well in terms

of the posterior expectation metric.

5. Analysis of Minnesota P&I Dataset

We applied our method to the Minnesota Pneumonia and Influenza (P&I)

diagnosis dataset. P & I rank as the eighth leading cause of death in the United

States and the sixth leading cause in people over 65 years of age, with Pneu-

monia consistently accounting for the overwhelming majority of deaths of the

two. Together, they cost the U.S. economy in 2005 an estimated $40.2 billion.

Identifying difference boundaries that perform well with regard to sensitivity

and specificity can help identify so-called “health barriers” more accurately and

buttress an active surveillance program for an influenza-like illness.

We analyzed a dataset consisting of Minnesota residents above 65 years of

age who were enrolled in the Medicare fee-for-service program as of December

31, 2001. The Medicare Denominator file for 2001 was used to define the cohort.

The Medicare Provider Analysis and Review (MedPAR) manages patient records

based on date of discharge and supplied information regarding hospitalizations

resulting from P&I. Rates of P&I hospitalization are traditional measures of the

impact of influenza virus in the elderly population. We identify the ‘boundaries’

that separate the more affected areas from the less affected areas.

If Yi andOi are the observed number of hospitalizations and the population in

county i respectively, then Ei = (
∑n

k=1 Yi/
∑n

k=1Oi)Oi is the expected number of

cases (under the assumption of no spatial variation in rates), where n is the total

number of counties. The choropleth map of the raw data is shown in Figure 2.

The high-valued SMR (standard mortality ratio) counties are scattered over the

map, with a clump in the southwest and some isolated regions surrounded by

sparsely inhabited counties that also have lower counts.

We employed the models in Section 4 to detect boundaries on the P&I hos-

pitalization map. The same prior specification and model settings were applied

here as the simulation study, except we took α = 1, a customary choice when

one does not seek a prior distribution on this parameter (Escobar and West
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Figure 2. Choropleth map of the SMR in MN (P&I) dataset. The percent-
ages reflect the quantiles for the distribution of the SMR.

(1995)) or has no a priori information about the number of clusters. Three

parallel MCMC chains were executed on the same computing environment as

described in Section 4. Convergence was diagnosed after 10, 000 iterations of

burn-in using Gelman-Rubin diagnostics and autocorrelation plots and a sub-

sequent 5, 000 × 3 = 15, 000 samples were used for posterior inference. Each

model consumed less than ten minutes of CPU time to produce its entire infer-

ential output for the Minnesota Pneumonia and Influenza dataset with very little

difference between the ARSB, ARDP and the (non-spatial) DPM model.

Health administrators may prefer to use a “top bracket” of most likely differ-

ence boundaries for policy formulation. The top 50 difference boundaries detected

by each model are highlighted in Figure 3. Table 3 presents a comprehensive

“lookup table” containing the names of adjacent counties that have been ranked

in decreasing order according to 1 − P (ϕi = ϕj |Data) from the ARDP model.

Instead of selecting this “bracket” arbitrarily, statisticians may prefer a thresh-

old obtained by controlling the FDR. Setting δ = 5% yields Numbers 1-33 as

difference boundaries, while setting δ = 10% detects Numbers 1-42 as difference

boundaries. This table offers an easy reference for health administrators and

officials to identify the more substantial spatial health barriers in the state.

About 90% of the boundaries listed in Table 3 are detected by all four models.

As a specific example consider Cook and Koochiching county. The outcome

variable in the former is substantially higher than its only neighbor, Lake, while

Koochiching county is separated from all its neighbors due to its extremely high

P&I SMR, even after being smoothed by the model. Among the 50 difference

boundaries detected by the ARDP model, 47 are also detected by the ARSB

model. The three county-pairs that went undetected by ARSB were Goodhue

and Olmsted, Freeborn and Steele, and Big Stone and Traverse. The ARSB
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LC DPM

ARDP ARSB

Figure 3. Difference boundaries detected by various models in the Minnesota
(P&I) dataset.

model detected boundaries between counties Becker and Wadena, Cotton Wood

and Jackson, and Cook and Lake.

The map in Figure 2 does not display clustering as pronounced as did the

simulation example. It does, however, reflect well on our models that the rankings

in Table 3 are very consistent with competing methods. The agreement between

the ARDP and the SMA in terms of identifying the difference boundaries us-

ing FDR-based thresholds is very strong with over 95% agreement in boundary

selection.

6. Conclusion and Future Work

The paper presented a class of nonparametric Bayesian hierarchical models

for detecting difference boundaries on maps. An advantage of the new approach

is that it permits the probabilistic estimation of an edge as a difference boundary,

and improves the percentage of true detection. A disadvantage is that the model

cannot be easily fit into any existing commercial software. We fit these models

in R (www.r-project.org), and we hope to collect these models in an R package

in the near future.

The ARDP and ARSB models in conjunction with the FDR controlled

threshold selection provide a major improvement over earlier work by Li et al.

www.r-project.org


DETECTING AREAL DIFFERENCE BOUNDARIES 399

Table 3. Names of adjacent counties that have significant boundary effects
from the ARDP model. The numbers in the first column are the ranks
according to P (ϕi = ϕj |Y )

1 Beltrami , Koochiching 26 Koochiching, Lake of the Woods
2 Cass, Wadena 27 Isanti, Mille Lacs
3 Douglas , Pope 28 Chippewa, Renville
4 Freeborn , Steele 29 Murray, Pipestone
5 Goodhue , Olmsted 30 Becker ,Mahnomen
6 Itasca , Koochiching 31 Rice , Waseca
7 Kandiyohi, Pope 32 Blue Earth, Brown
8 Koochiching, St. Louis 33 Dodge, Olmsted
9 Pope, Stearns 34 Chisago , Isanti
10 Anoka , Isanti 35 Redwood , Yellow Medicine
11 Dakota, Goodhue 36 Pennington, Polk
12 Lincoln, Pipestone 37 Goodhue, Wabasha
13 Murray, Redwood 38 Pope, Swift
14 Steele, Waseca 39 Morrison, Todd
15 Renville, Yellow Medicine 40 Fillmore, Olmsted
16 Cottonwood, Murray 41 Cook , Lake
17 Jackson , Martin 42 Douglas, Grant
18 Kandiyohi, Swift 43 Mahnomen,Norman
19 Pope, Stevens 44 Grant, Wilkin
20 Todd, Wadena 45 Mahnomen, Polk
21 Lyon, Redwood 46 Jackson, Nobles
22 Murray, Nobles 47 Morrison, Todd
23 Isanti, Sherburne 48 Dodge , Olmsted
24 Otter Tail , Todd 49 Big Stone , Traverse
25 Clay, Otter Tail 50 Morrison, Stearns

(2012). However, issues related to optimal selection of boundaries warrants fur-

ther investigation, especially regarding the sensitivity of the inference to FDR-

based cutoffs and to prior specifications. Further extensions can be formulated

by incorporating classes of loss functions, as discussed by Müller, Parmigiani,

and Rice (2006), for a more comprehensive decision-theoretic framework. Such

developments may, in turn, lead to more definitive conclusions regarding the

performance of these models in maps that display weaker clustering patterns.

The ARDP and ARSB models render themselves to multivariate extensions,

where multiple health outcomes need to be modeled jointly. Analogous to the

univariate ARSB model, we can construct a multivariate areally referenced stick

breaking (MARSB) model such that the sticking breaking weights p are corre-

lated through another type of “weight” parameter that scales the Vi’s. We place

a multivariate CAR (MCAR) prior on these “weight” parameters so as to capture

both spatial correlation and inter-variable correlation (Jin, Carlin, and Banerjee
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(2005, 2007)). For the ARDP, the distribution of the spatial random effects can

be modeled by constructing multivariate areally referenced Dirichlet processes

(MARDP). These pursuits constitute natural extensions of our current work.
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