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Abstract: It is valuable to have a better understanding of factors that influence sea

motion and to provide more accurate forecasts. In particular, we are motivated by

data on wave heights and outgoing wave directions over a region in the Adriatic

sea during the time of a storm, with the overarching goal of understanding the

association between wave directions and wave heights to enable improved prediction

of wave behavior. Our contribution is to develop a fully model-based approach to

capture joint structured spatial and temporal dependence between a linear and

an angular variable. Model fitting is carried out using a suitable data augmented

Markov chain Monte Carlo (MCMC) algorithm. We illustrate with data outputs

from a deterministic wave model for a region in the Adriatic Sea. The proposed

joint model framework enables both spatial interpolation and temporal forecasting.
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1. Introduction

Better understanding and more accurate prediction of sea motion might help

to reduce risks in various marine related operations, such as navigation and safety

of ships, coastal erosion, and oil spill motion. However, sea motion data are

mostly available as the outputs from deterministic models, especially if we are

interested in exploring a relatively broad area of the sea. Recently, deterministic

models based on the dynamics and thermodynamics of the atmosphere have

been used to forecast the weather with increasing reliability. The outputs from

such models are usually computed at several spatial and temporal resolutions.

Building upon earlier work (Wang and Gelfand (2014)) which focused solely

upon wave directions, we extend our interest to include wave heights along with

outgoing wave directions and provide a framework for joint modeling these two

measurements. More generally, we offer a modeling approach for joint spatial

and spatio-temporal analysis of an angular and a linear variable.

http://dx.doi.org/10.5705/ss.2013.204w
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Wang and Gelfand (2014) have dealt with wave directions associated with

spatial locations over time. In fact, our available data include both significant

wave heights and outgoing wave directions (formally defined below) at the same

spatial and temporal resolution. Figure 1 displays both the outgoing wave di-

rections and wave heights over a region of the Adriatic sea, for a subset of avail-

able locations, at a particular time point during a storm. The wave heights

are displayed in the image plot, as an additional layer over the arrow plots of

the directions. Perhaps not surprising, there is strong visual evidence of spatial

dependence for both heights and directions, although with quite different pat-

terns. Rather than separately modeling the wave heights and wave directions,

it is natural to think of building a joint model to accommodate the underlying

association between them. (The analysis in Section S1 and Table S1.2 of the

online Supplement supports this.)

The association between wave directions and wave heights might seem to

be similar to that, say, between wind directions and wind speeds. However, for

wind data, we usually observe the N-S and W-E components as linear data which

induce a direction. We can then add wind speed as a third linear variable. In the

marine application, we observe a height and only a direction. For wind data, this

would be akin to having wind speed and only wind direction. To our knowledge,

there are no such joint models for spatial wave heights and wave directions.

More broadly, the contribution of this paper is to develop a fully model-based

approach to capture joint structured spatial dependence for modeling linear data

and directional data at different spatial locations. We employ a projected Gaus-

sian process for directions and, given direction, a linear Gaussian process for

heights. We show that Bayesian model fitting under such specification is straight-

forward using a suitable data augmented Markov chain Monte Carlo (MCMC)

algorithm. This joint modeling framework allows natural extension to space-time

data and can directly incorporate space-time covariate information, enabling,

within its specification, both spatial interpolation and temporal forecasting.

Wave height, like wind speed, is a linear variable which has been considered

in, e.g., Kalnay (2002); Wilks (2006); Jona Lasinio et al. (2007). Work on space

and space-time models of significant wave heights can be found in Baxevani,

Caires, and Rychlik (2009) and Ailliot et al. (2011). Again, wave directions are

circular variables, measured in degrees relative to a fixed orientation. There is

a smaller literature on modeling wave directions. Some recent work to build a

space and space-time model of wave directions can be found in Jona Lasinio,

Gelfand, and Jona Lasinio (2012) and Wang and Gelfand (2014).

Modeling linear and circular variables in a marine context has been consid-

ered in a likelihood framework by Lagona and Picone (2013) and Bulla et al.

(2012). These papers focus on classification of sea regimes in the Adriatic basin.
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Figure 1. Plot of wave heights (meters) and wave directions for 200 locations
at 12:00 on April 5th, 2010.

Classification is based on wind and waves directions and wind speed and wave

heights coming from a coastal meteorological monitoring station along with the

Ancona buoy. A hidden Markov model for the analysis of the time series of bi-

variate circular observations (wind and wave directions) is proposed in Lagona

and Picone (2013). They assume the data are sampled from bivariate circular

densities, whose parameters are driven by the evolution of a latent Markov chain.

In Bulla et al. (2012), wind and wave data are clustered, again by pursuing a

hidden Markov approach. Toroidal clusters are defined by a class of bivariate von

Mises densities while skew-elliptical clusters are defined by mixed linear models

with positive random effects. With just a single location, none of this work is

spatial.

We often simultaneously observe realizations of a circular variable Θ and a

linear variableX as pairs (θ1, x1), . . . , (θn, xn). In addition to the foregoing exam-

ples, Jammalamadaka and SenGupta (2001, Chap. 8.5) suggest pairs such as the

direction of departure and the distance to the destination or wind direction and

humidity. In the literature to date, the discussion usually focuses on conditional

modeling. For instance, if the angular variable Θ depends on linear variables,

it is referred to as a Linear-Circular regression model, a regression specification

that uses the linear covariates to explain a directional response. Such modeling
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typically adopts the von Mises distribution and with a suitable link function that

maps Rk to (−π, π), e.g., the arctan function, where k is the dimension of covari-

ates (Gould (1969); Laycock (1975); Johnson and Wehrly (1978); Fisher and Lee

(1992)). Regression under the general projected normal was proposed in Wang

and Gelfand (2013).

If the linear variable X depends on independent angular variables, Θ’s, we

have a regression model with a linear response and angular covariates, known

as a Circular-Linear regression model. Again, a link function is employed (Mar-

dia (1976); Mardia and Sutton (1978); Johnson and Wehrly (1978)). A flexible

approach is to employ trigonometric polynomials (see Jammalamadaka and Sen-

Gupta (2001)).

Measuring association between a circular and a linear variable is not as

obvious as that between two linear variables. Since the angular variable Θ has

the support on the circle, the pair (Θ, X) has the support on a cylinder. If their

relationship can be written as X = a+b cosΘ+c sinΘ, Mardia (1976) proposes a

measure using the ordinary multiple correlation in the regression setting between

X and (cosΘ, sinΘ). Similarly, Johnson and Wehrly (1977) discuss the dominant

canonical correlation coefficient betweenX and (cosΘ, sinΘ). The modeling that

we offer below is in the spirit of this representation, of conditioning X on Θ. In

particular, we build our joint model through a conditional times a marginal

specification where the marginal specification is a space or space-time directional

data process and then, conditionally, we specify a space or space-time linear

process. The only other spatial work involving a circular-linear regression model

we are aware of is the recent paper of Modlin, Fuentes, and Reich (2012). They

model wind angle and wind speed given wind angle. They model wind angle as

a wrapped normal model introducing conditionally autoregressive (CAR) spatial

random effects. They model wind speed on the log scale, conditional on wind

angle with a cosine link, again adding CAR spatial random effects. For our

setting with wave directions, we feel a projected Gaussian process is physically

more appropriate than a wrapping model. Furthermore, adding wave height

given wave direction we find a natural link function.

The format of this paper is as follows. Section 2 develops a static joint model

of spatial wave heights and wave directions. In Section 3, we consider strategies

for spatio-temporal extension. For example, a dynamic model specification is

straightforward but difficult to fit. A specification that imagines time to be

continuous is easier to work with. For the joint space-time setting, we propose

an illustrative model for the process to investigate and compare calm sea state

with stormy sea state. Section 4 offers a summary and future challenges. We

illustrate our proposed methodology in the online Supplement using data for the

Adriatic sea, off the coast of Italy.
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2. Static Joint Models

In this section, we propose a framework for jointly modeling spatial linear

variables and circular variables. In Section 2.1, we provide the model details.

Section 2.2 discusses the model fitting under this specification using data obtained

at a collection of spatial locations. Section 2.3 illustrates the post-model fitting

Bayesian kriging within this framework. In Section S1 of the online Supplement,

we provide a data example for illustration.

2.1. Model specification

We begin with a single linear variable and a single directional variable which,

illustratively, we refer to as the wave height and wave direction in the sequel. We

build a joint parametric model for the wave height H and the wave direction Θ

by introducing a latent variable R (which will be specified below), in the form

f(H,Θ|Ψh,Ψθ) =

∫
f(H,Θ, R|Ψh,Ψθ) dR

=

∫
f(H|Θ, R,Ψh)f(Θ, R|Ψθ) dR, (2.1)

where Ψh and Ψθ are sets of parameters associated with the conditional model

for height and the marginal model for direction, respectively, and are elaborated

below.

To briefly review the projected normal model, suppose a random vector

Y = (Y1, Y2)
T follows a bivariate normal distribution with mean µ and covariance

matrix Σ. The corresponding random unit vector U = Y/∥Y∥ is said to follow

a circular projected normal distribution (Small (1996); Mardia and Jupp (2000))

with the same parameters, denoted as PN2(µ,Σ).

Transforming Y (equivalently U) to an angular random variable Θ through

Θ = arctan∗(Y2/Y1) = arctan∗(U2/U1), the density for Θ can be derived (Mardia

(1972, p.52)). Here arctan∗(S/C) is formally defined as arctan(S/C) if C >

0, S ≥ 0; π/2 if C = 0, S > 0; arctan(S/C) + π if C < 0; arctan(S/C) + 2π if

C ≥ 0, S < 0; undefined if C = 0, S = 0.

This distribution is practically intractable and suggests that we introduce a

latent variable R = ||Y|| and work with the joint distribution of R and Θ, easily

obtained through polar coordinate transformation from the joint distribution of

Y1 and Y2. In fact, it takes the form,

f(r, θ|µ,Σ) = (2π)−1|Σ|−1/2 exp

(
−(ru− µ)TΣ−1(ru− µ)

2

)
r, (2.2)

where u = (cos θ, sin θ)T. Wang and Gelfand (2013) note that the general pro-

jected normal distribution is not fully identified; U = Y/∥Y∥ is invariant to scale



30 FANGPO WANG, ALAN E. GELFAND AND GIOVANNA JONA-LASINIO

transformation. In Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, Wang and Gelfand (2013) set σ1 = τ

and σ2 = 1 to ensure identifiability, resulting in a four-parameter (µ1, µ2, τ , ρ)

distribution with Σ = T =

(
τ2θ ρτθ
ρτθ 1

)
.

Next, for location s in the domain of interest D, denote the linear variable

(height) by H(s) and the angular variable (direction) by Θ(s). As the spatial

model for Θ(s)|Ψθ, we propose a stationary projected Gaussian process (Wang

and Gelfand (2014)) with a constant mean µ = (µ1, µ2)
T and separable cross-

covariance Cθ(s, s
′) = ϱθ(s−s′;ϕθ)·T , where ϕθ is the decay parameter associated

with the correlation function ϱθ(·) and T =

(
τ2θ ρτθ
ρτθ 1

)
. Altogether, we let

Ψθ = {µ, T, ϕθ}.
In particular, as in Wang and Gelfand (2014), the projected Gaussian pro-

cess is induced from an inline bivariate Gaussian process Y(s) = (Y1(s), Y2(s))
T

with a constant mean µ and cross-covariance Cθ(s, s
′). Essentially, we can trans-

form back and forth between the two random variable spaces (Θ(s), R(s)) and

(Y1(s), Y2(s)) through Y1(s) = R(s) cosΘ(s) and Y2(s) = R(s) sinΘ(s), thus

defining the latent process, R(s). As above and as detailed in Wang and Gelfand

(2014), this latent R(s) is introduced to facilitate model fitting of the projected

Gaussian process. Thus, we obtain f(Θ, R|Ψθ) under the integral in (2.1) in the

same fashion as we obtain (2.2).

At the top level of the hierarchy in (2.1), f(H|Θ, R,Ψh) is specified as

a univariate Bayesian spatial regression (a customary geostatistical model) for

the wave height H(s)|Θ(s), R(s),Ψh, with Θ(s) and R(s) included in the mean

through a link function g(·),

H(s) = g(Θ(s), R(s)) + w(s) + ϵ(s).

As usual, the residual is partitioned into the spatial effect term w(s) and the non-

spatial error term ϵ(s), where w(s) is assumed to follow a zero mean stationary

Gaussian process with covariance function Ch(s− s′) and ϵ(s)’s are uncorrelated

pure errors. Under this conditional specification, we are actually implementing

a regression model with both circular (Θ) and linear (R) covariates. A natural

choice for the link function g(·) will revert to the linear regression on Y1(s) and

Y2(s) from the “unobserved” inline Gaussian process Y(s). Explicitly, we have

H(s) = β0 + β1R(s) cosΘ(s) + β2R(s) sinΘ(s) + w(s) + ϵ(s) (2.3)

= β0 + β1Y1(s) + β2Y2(s) + w(s) + ϵ(s)

= X(s)Tβ + w(s) + ϵ(s), (2.4)
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where the spatial random effect w(s) follows a zero-centered GP with covariance

function Ch = σ2
hϱh(s− s′;ϕh) and the error term ϵ(s)

iid∼ N(0, τ2h).

In (2.4), we denote the regression coefficient vector β = (β0, β1, β2)
T and

the location specific covariate vector as X(s) = (1, R(s) cosΘ(s), R(s) sinΘ(s))T.

Under this model specification, the parameters associated with the heights are

Ψh = {β, ϕh, σ
2
h, τ

2
h}. Altogether, (H(s), Y1(s), Y2(s))

T specifies a trivariate

Gaussian process whose mean structure and cross-covariance structure, under

the above specification, is easily calculated. (See Appendix A of the online Sup-

plement.)

The coefficients of the spatial regression, β1 and β2, naturally provide in-

formation regarding the association between the circular random variable Θ and

the linear variable H under the specific specification in (2.3). When β1 and β2
are both 0, fitting the joint model essentially becomes fitting the wave heights

and the wave directions separately as, respectively, a spatial regression model

and a projected Gaussian process model. Also, we can use the square of the

multiple correlation coefficient, R2
H|Y, as a measure of the strength of the condi-

tional dependence (explanation), as is customary in linear regression. Notably,

it is for a regression where the covariates are not observed. However, using Ap-

pendix A of the online Supplement, it can be obtained, as a parametric function,

from the joint dependence structure and is free of location. In particular, if

∆ = β2
1τ

2
θ + β2

2 + 2β1β2τθρ,

R2
H|Y =

∆

∆+ σ2
h + τ2h

. (2.5)

The posterior distribution of R2
H|Y can be obtained directly from posterior sam-

ples of the parameters after model fitting.

2.2. Fitting

Suppose we have a joint spatial model for (H(s),Θ(s)), as specified in the

previous subsection. We then have to estimate: Ψθ = {µ, τ2θ , ρ, ϕθ}, and Ψh =

{β, ϕh, σ
2
h, τ

2
h}. We have observations (h,θ), where h = (h(s1), . . . , h(sn))

T

and θ = (θ(s1), . . . , θ(sn))
T. We need the likelihood, the joint distribution

f(h(s1), . . . , h(sn), θ(s1), . . . , θ(sn);Ψθ,Ψh).

Since Θ(s)|Ψθ follows a stationary projected Gaussian process, we have the

corresponding “unobserved” latent linear variable Y1(si) = R(si) cosΘ(si) and

Y2(si) = R(si) sinΘ(si), i = 1, . . . , n. We note that Y1 = (Y (s1), . . . , Y1(sn))
T

and Y2 = (Y2(s1), . . . , Y2(sn))
T, the realizations of the inline Gaussian process

Y = (YT
1 ,Y

T
2 )

T follow a multivariate normal with mean (µ111×n, µ211×n)
T and

covariance matrix Σ̃θ = T ⊗ Γθ(ϕθ), where {Γθ(ϕθ)}j,k = ϱθ(sj − sk;ϕθ), j, k =

1, . . . , n. For the conditional layer, the model fitting is exactly the same as that for
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a customary spatial regression. Therefore, the update of β, τ2h , and σ2
h is rather

standard. We let Σh = σ2
hΓh(ϕh) + τ2hIn, where {Γh(ϕh)}j,k = ϱh(sj − sk;ϕh),

j, k = 1, . . . , n.
The full conditional distribution for R(si) is a product of two terms, one from

f(Θ, R|Ψθ) and the other from f(H|Θ, R,Ψh). Block updating of the latent vec-
tor R is more difficult under the joint modeling framework than that for just the
marginal projected Gaussian process. Therefore, we resort to conditional up-
dating as R(si)|R(−si),Ψθ,Ψh,θ,h. As described in Wang and Gelfand (2014),
the properties of the inline GP are utilized to obtain the conditional distribution
Y(si)|Y(−si),Ψθ. The details of the posterior computation steps are shown in
Appendix B of the online Supplement.

To complete the Bayesian model, we specify the priors for the hyperpa-
rameters as follows. For Ψθ, conjugacy for µ arises under a bivariate normal
prior, e.g. µ ∼ N2(0, λµI2). For τ2θ , we choose the prior as an inverse Gamma
IG(aτθ, bτθ) with mean bτθ/(aτθ−1) = 1 while a uniform prior on (−1, 1) is used
for ρ. For the decay parameter ϕθ of the exponential covariance function, we
have worked with continuous uniform priors having support which allows small
ranges up to ranges larger than the maximum distance over the region. For the
MCMC implementation, the full conditional distributions are given in Appendix
B of the online Supplement. The parameters τ2θ , ρ, and ϕθ are updated using a
Metropolis-Hastings step. For Ψh, conjugacy for β arises under a multivariate
Gaussian prior, e.g., β ∼ N3(0, λβI3). For the decay parameter ϕh, similarly, we
use continuous uniform priors with support allowing small ranges up to ranges
to the maximum distance over the region. As discussed in Wang and Gelfand
(2014), from our limited experience, a projected Gaussian process seems to re-
quire a broader range than a linear process over the same region. As for σ2

h and
τ2h , inverse Gamma priors are used, IG(aσh, bσh) and IG(aτh, bτh), respectively.

2.3. Implementing kriging

For prediction at a new location s0, our goal is to obtain a joint distribution
of H(s0) and Θ(s0) given the data (θ,h), expressed as

f(θ(s0), h(s0)|θ,h)) =
∫∫∫

f(θ(s0), h(s0), r(s0)|r,Ψ,θ,h)f(r,Ψ|θ,h) drdr0dΨ,

where R(s0) is the latent random variable associated with Θ(s0) and the param-
eters Ψ = {Ψθ,Ψh}.

For kriging of the circular variable at the new location, Θ(s0), we simplify by
starting from the lower level, the joint distribution of Y(s0) = (Y1(s0), Y2(s0))

T

and Y∗ = (Y1(s1), Y2(s1), . . . , Y1(sn), Y2(sn))
T is,(

Y(s0)

Y∗

)
∼ MVN

((
µ(s0)

µ∗

)
,

(
1 ρT

0,Y(ϕθ)

ρ0,Y(ϕθ) ΓY(ϕθ)

)
⊗ T

)
,



SPACE-TIME MODELING OF WAVE HEIGHTS AND WAVE DIRECTIONS 33

where µ∗ = (µT(s1), . . . ,µ
T(sn))

T, {ΓY(ϕθ)}j,k = ϱθ(sj−sk;ϕθ) and {ρ0,Y(ϕθ)}j
= ϱθ(s0−sj ;ϕθ), j, k = 1, . . . , n. Thus, the conditional distribution for Y(s0)|Y∗

is a bivariate normal with mean Es0 and covariance matrix Σs0 , where

Es0 = µ(s0) + ρT
0,Y(ϕθ)⊗ T · Γ−1

Y (ϕθ)⊗ T−1(Y∗ − µ∗),

Σs0 = (1− ρT
0,Y(ϕθ)Γ

−1
Y (ϕθ)ρ0,Y(ϕθ))⊗ T.

In fact, the conditional distribution for Θ(s0)|Y∗ is a general projected

normal PN2(Es0 ,Σs0). The latent variable R(si) associated with the ith lo-

cation is updated during the model fitting. At the gth iteration, we gather

the posterior samples of Y∗ through y1(si)
(g) = r(si)

(g) cos θ(si) and y2(si)
(g) =

r(si)
(g) sin θ(si), i = 1, . . . , n and g = 1, . . . , G. Finally, we are able to draw

samples of Θ(s0) from the predictive distribution f(θ(s0)|θ,h), since there ex-

ists an explicit form for Θ(s0)|Y∗, equivalently, Θ(s0)|Θ,R. As a byproduct of

sampling Θ(s0), we also obtain a sample of R(s0) at the gth iteration, r(s0)
(g).

Let r(g) be the realization of R = (R(s1), . . . , R(sn))
T at the gth iteration. We

can evaluate f(θ(s0)|r(g),Ψ(g),θ) using a fine grid of points on [0, 2π) and take

the average of the density values on each grid. This resulting average is a usual

Rao-Blackwellized estimate of the predictive density at the kriged location s0. As

a mixture of general projected normal densities, its form is very flexible. (The-

orem 1 in Wang and Gelfand (2014) shows that mixtures of projected normals

are dense in the class of all directional data distributions.)

For kriging of the linear variable at the new location, H(s0), again we sim-

plify, now starting from the joint distribution of H(s0) and H = (H(s1), . . .,

H(sn))
T,(

H(s0)

H

)
∼ MVN

((
X(s0)

Tβ

Xβ

)
,

(
τ2h + σ2

h τ2hρ
T
0,H(ϕh)

τ2hρ0,H(ϕh) τ2hΓh(ϕh) + σ2
hIn

))
,

where X(s0)=(1, R(s0) cosΘ(s0), R(s0) sinΘ(s0))
T, {Γh(ϕh)}j,k=ϱh(sj−sk;ϕh),

{ρ0,H(ϕh)}j = ϱh(s0−sj ;ϕh), j, k = 1, . . . , n, and X is a n×3 matrix with the ith

row as (1, R(si) cosΘ(si), R(si) sinΘ(si)), i = 1, . . . , n. At the gth iteration, the

posterior samples, θ(s0)
(g) and r(s0)

(g), are included in x(s0)
(g) as the covariates.

The remaining kriging steps for the linear variable H(s0) are standard, and we

do not provide further details here.

3. Joint Space-Time Models

In Section 2, we focused on joint modeling of spatial wave directions and wave

heights at a static time slice and showed the benefit from jointly modeling these

two variables, especially during a storm. It is natural to envision an underlying

process for heights and directions in continuous space and time; fitting such a
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model would enable both interpolation and forecasting at future time points.

Since such data are also available across time at hourly resolution using the

ISPRA output, we consider such a process model.

To see the behavior of wave heights over the region, we selected 10 illustrative

locations, shown in upper panel of Figure 2. Their corresponding time series of

hourly heights across the first ten days in April, 2010 are plotted in the lower

panel of Figure 2. Following the foregoing definition of sea motion states based

on significant wave heights, we observe a range of behavior, including a transition

from calm to storm and back to calm.

So, now, denote the wave height and wave direction measurements at location

s and time t as H(s, t) and Θ(s, t). In Section 3.1, we offer a space-time model

for the pair (H(s, t),Θ(s, t)) under the continuous space-time setting. For illus-

tration, we use two portions of the ISPRA output, a calm window and a storm

window (highlighted in Figure 2). This data example is presented in Section S2

of the online Supplement.

3.1. Model specification

We have the wave height H(s, t) and the wave direction Θ(s, t) both over the

space-time domain, s ∈ D and t ∈ (0,K). We adopt the same joint framework

shown in (2.1), where Ψh and Ψθ are sets of parameters associated with the

conditional model for height and the marginal model for direction, respectively.

Again, this joint space-time model is provided conditionally. For the marginal

distribution of the circular variables Θ(s, t)|Ψθ, we propose a stationary spatio-

temporal projected Gaussian process with a constant mean µ = (µ1, µ2)
T and

separable cross-covariance form,

Cθ

(
(s, t), (s′, t′)

)
= ϱθ,s(s− s′;ϕθ,s)ϱθ,t(t− t′;ϕθ,t) · T, (3.1)

where ϱθ,s is the spatial correlation and ϱθ,t is the temporal correlation. The

parameters associated with the directions Ψθ = (µ, T, ϕθ,s, ϕθ,t), ϕθ,s and ϕθ,t are

the decay parameters associated with their corresponding correlation functions

ϱθ,s and ϱθ,t, and T =

(
τ2θ ρτθ
ρτθ 1

)
. This model has been considered in Wang and

Gelfand (2014).

As in the static case, we only need one space-time covariance function. For

simplicity, we assume separability in space and time in (3.1). Future work

will have us investigating space-time dependent covariance functions such as

those in Gneiting (2002) and Stein (2005). Under this model specification, the

projected Gaussian process is induced from an inline Gaussian process Y(s, t)

with a constant mean µ and cross-covariance Cθ((s, t), (s
′, t′)). So, we can

transform back and forth between the spaces for the pairs of random variables,
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Figure 2. Time series of wave heights (lower panel) for 10 illustrative loca-
tions (upper panel) from n = 200 in the Adriatic Sea region in April 2010.
The two time windows (calm and stormy) used in Section S2 of the online
Supplement are highlighted.

(Θ(s, t), R(s, t)) and (Y1(s, t), Y2(s, t)) through Y1(s, t) = R(s, t) cosΘ(s, t) and

Y2(s, t) = R(s, t) sinΘ(s, t). A latent variable R(s, t) has again been introduced
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to facilitate the model fitting.

At the conditional level, we introduce

H(s, t) = X(s, t)Tβ + w(s, t) + ϵ(s, t)

= β0 + β1Y1(s, t) + β2Y2(s, t) + w(s, t) + ϵ(s, t).
(3.2)

In fact, we simplify w(s, t) to w(s) where, again, the spatial random effect

w(s) follows a zero-centered GP with covariance function Ch = σ2
hϱh(s − s′;ϕh)

and the random the error term ϵ(s, t)
iid∼ N(0, τ2h). Now the parameters associated

with the heights are Ψh = {β, ϕh, σ
2
h, τ

2
h}. This model asserts that the temporal

dependence between H(s, t) is fully contributed by the latent components Y1(s, t)

and Y2(s, t). Restoring w(s, t) and perhaps allowing time dependent coefficients

introduces identifiability challenges and thus is deferred to future consideration.

Note, from the previous section, that the coefficient vector, β, changes with sea

state. Since, for now, we are not considering dynamics in β, it is only sensible

to fit the model in (3.2) to data in either a calm window or a storm window.

3.2. Fitting, kriging and forecasting

The model fitting for the joint space-time model is straightforward and only

requires some modification of the fitting for the static case with details in Section

2.2. We now have observations h,θ at a collection of locations s1, . . . , sn and a

collection of time points t1, . . . , tk, where h = {h(si, tj)} and θ = {θ(si, tj)},
where i = 1, . . . , n and j = 1, . . . , k. The parameters we need to estimate are

Ψh = {β, ϕh, σ
2
h, τ

2
h} and Ψθ = (µ, T, ϕθ,s, ϕθ,t). In addition, we have to update

the latent R(si, tj), where i = 1, . . . , n and j = 1, . . . , k. Again, we update

R(si, tj) conditioning on all the other latent variables R(−(si, tj)) by collecting

the relevant terms in the likelihood, from both the conditional, f(H|Θ, R,Ψh),

and marginal, f(Θ, R|Ψθ), specifications.

Kriging of both measurements at a new location s0 at any of the observed

time points is standard; we omit the details here. Instead, we focus on the one-

step ahead prediction to the time point tk+1 for the n locations with observations.

We start from the joint distribution,(
Ytk+1

Yt1:tk

)
∼ MVN

((
µtk+1

µt1:tk

)
,Γk+1(ϕθ,t)⊗ Γn(ϕθ,s)⊗ T

)
,

where Ytk+1
= (Y1(s1, tk+1), Y2(s1, tk+1), . . . , Y1(sn, tk+1), Y2(sn, tk+1)

T, Yt1:tk =

(YT
t1 , . . . ,Y

T
tk
)T, Ytj =(Y1(s1, tj), Y2(s1, tj), . . . , Y1(sn, tj), Y2(sn, tj))

T, Γk+1(ϕθ,t)

= {ϱθ,t(tj − tq;ϕθ,t)}, j, q = 1, . . . , k + 1 and Γn(ϕθ,s) = {ϱθ,s(si − sp;ϕθ,s)},
i, p = 1, . . . , n. Thus, we obtain the conditional distribution Ytk+1

|Yt1:tk ,Ψθ

from which the posterior samples ofYtk+1
can be easily obtained at each iteration.
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Then, the posterior sampling of the wave height at a future time point H(si, tk+1)

remains the same as that in the static case.

4. Summary and Future Work

We have proposed a general framework for jointly modeling spatially indexed

linear variables and circular variables, and have discussed the extension to the

space-time setting. We have focused on introducing the joint modeling, without

much attention to covariates. In particular, for wave data, wind information

would be a potentially useful covariate. Also, if the region is large enough, a

trend surface might be worthwhile to consider. However, it may be challenging

to interpret the trend through the projection.

Much more work can be done for the joint space-time modeling of directional

data and linear data. Working within a calm period or a storm period, we can

consider space-time dependence, as suggested in Section 3.1, that is space-time

dependence in the bivariate Gaussian process inducing space-time dependence in

the projected Gaussian process. More attractive, and potentially more useful,

would be a model across time that would accommodate calm, storm, and tran-

sition. To do so with regard to heights would require, at the least, introduction

of a β0(t) process, i.e., a time-dependent intercept. In fact, we would also want

time-dependent slope parameters, β1(t) and β2(t). Anticipating dependence be-

tween slopes and intercept, this leads to a three dimensional process over time.

Another aspect to consider is the fact that variability in height changes over sea

state. This suggest that we also add σ2
h(t), perhaps as a log Gaussian process.

(Of course, range might be time dependent, adding a further model feature.)

Then, there is the matter of dynamics in the space-time projected Gaussian pro-

cess. Here, we would want to extend the specification in Section 3.1 to allow

continuous time in µ and T . We encounter similar difficulties to those raised

at the end of the previous section. All told, there are clearly lots of challenging

modeling opportunities.

Included in the output of the deterministic models is mean wave period and

peak wave period. The mean wave period, Tm, is the mean of all wave periods in

time series representing a certain sea state, as opposed to peak wave period, Tp,

which is the wave period with the highest energy. Also, a trend surface might also

be worthwhile to introduce. It would be useful to investigate these additional

variables with regard to improved interpretation and prediction.

The reader will appreciate that we can extend our joint modeling approach

to handle multiple linear and directional variables in space and in space and

time. Following our conditioning approach, with say p directional variables we

would specify a marginal 2p-dimensional linear Gaussian process to project to a

p-dimensional directional process. Then, with say r linear variables, we would
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need an r-dimensional Gaussian process, appropriately conditioned on the 2p

dimensional process. It is easy to imagine such specifications but model fitting

will become extremely demanding.
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