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Abstract: In this paper, we introduce a composite likelihood-based approach to

perform computer model calibration with high-dimensional spatial data. While

composite likelihood has been studied extensively in the context of spatial statistics,

computer model calibration using composite likelihood poses several new challenges.

We propose a computationally efficient approach for Bayesian computer model

calibration using composite likelihood. We also develop a methodology based on

asymptotic theory for adjusting the composite likelihood posterior distribution so

that it accurately represents posterior uncertainties. We study the application of

our approach in the context of calibration for a climate model.
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1. Introduction

Complex computer models are often used to approximate real-world pro-

cesses and study complex physical phenomena. A central source of uncertainty

regarding computer models, and hence the behavior of the process they are ap-

proximating, stems from uncertainty about the value of model input parameters.

Computer model calibration can pose nontrivial inferential challenges. In many

applications computer model runs are computationally expensive. In this case,

model runs are often available at only a limited number of parameter settings.

A popular method to overcome this hurdle is the Gaussian process approach (cf.

Sacks et al. (1989), Kennedy and O’Hagan (2001)). This method enables cal-

ibration with a limited number of model runs using probabilistic interpolation

between the model runs. However, this approach faces computational challenges

when applied to computer model output that are in the form of high-dimensional

spatial data, which are increasingly common in modern science and engineering

applications (see e.g., Higdon et al. (2009), Bhat, Haran, and Goes (2010); Bhat

et al. (2012), Chang et al. (2014)).

http://dx.doi.org/10.5705/ss.2013.219w
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The current approaches to overcome such limitation for high-dimensional

data rely on dimension reduction or basis expansion (Bayarri et al. (2007),

Bhat et al. (2012), Chang et al. (2014), Higdon et al. (2008)). Here we construct

a somewhat different method based on block composite likelihood (Caragea and

Smith (2006), Eidsvik et al. (2013)). To our knowledge this is the first time com-

posite likelihood methodology has been used in this context. In particular, we

adopt the idea of hybrid composite likelihood proposed by Caragea and Smith

(2006) that relies on two components: dependence between block means, and

dependence within each block conditioning on its block mean. This composite

likelihood approach allows for a substantial reduction in the computational bur-

den for maximum likelihood inference with high-dimensional spatial data. Also,

this opens up possibilities for flexible spatial covariance structure that vary de-

pending on each block. Moreover, since the composite likelihood from the block

composite likelihood framework is a valid probability model, no further justifica-

tion is necessary for its use in Bayesian inference.

The remainder of this paper is organized as follows. In Section 2 we outline

the basic model calibration framework using Gaussian random fields. In Section

3 we formulate the Bayesian calibration model using block composite likelihood,

discuss relevant asymptotic theory, and explain how Godambe information may

be used to adjust posterior uncertainty when using composite likelihood. In

Section 4 we describe an application of our method to a climate model calibration

problem using two-dimensional spatial patterns of ocean temperature change and

a relevant simulated example. Finally, in Section 5, we conclude with a discussion

and future directions for research.

2. Calibration Using Gaussian Processes

Here we introduce our computer model calibration framework which con-

sists of two stages: model emulation and parameter calibration (Bayarri et al.

(2007), Bhat et al. (2012), Chang et al. (2014)). We first construct an ‘emula-

tor’, which is a statistical model interpolating the computer model outputs as

well as providing interpolation uncertainties (Sacks et al. (1989)). Using the em-

ulator, we find the posterior density of computer model parameters while taking

into account important sources of uncertainty including interpolation uncertainty,

model-observation discrepancy, and observational error (Kennedy and O’Hagan

(2001)).

We use the following notation henceforth. Y (s,θ) is the computer model

output at the spatial location s ∈ S and the parameter setting θ ∈ Θ. S is

the spatial field that we are interested in, usually a subset of R2 or R3. Θ ⊂
Rq is the open set of all possible computer model parameter settings with an

integer q ≥ 1. Let {θ1, . . . ,θp} ⊂ Θ be a collection of p design points in the
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parameter space and {s1, . . . , sn} ⊂ S be the set of n model grid locations.

Yi = (Y (s1,θi), . . . , Y (sn,θi))
T is computer model output at the model grid

locations at the parameter setting θi. The concatenated np × 1 vector of all

computer model outputs isY = (YT
1 , . . . ,Y

T
p )

T . Typically p ≪ n since computer

model runs with high-resolution are computationally expensive. Finally, we let

Z(s) be an observation at spatial location s and Z = (Z(s1), . . . , Z(sn))
T be

the observational data, a spatial process observed at n locations. The notation

introduced in this section is summarized in Table S1 in Supplementary Material.

Model Emulation Using Gaussian Proccesses. Following Bhat et al. (2012)

and Chang et al. (2014), we construct a Gaussian process that interpolates com-

puter model outputs as Y ∼ N(Xβ,Σ(ξy)), where X is an np × b covariate

matrix containing all the spatial locations and climate parameters used to define

the covariance matrix Σ(ξy). β and ξy are the vectors of regression coefficients

and covariance parameters respectively. We construct an interpolation process

by finding the maximum likelihood estimate (MLE) of these parameters. This

interpolation model provides the predictive distribution of a computer model run

at any given location s ∈ S and θ ∈ Θ (Sacks et al. (1989)). We call this pre-

dictive process an emulator and denote it by η(s,θ). Throughout this paper, β

is set to 0 since the Gaussian process provides enough flexibility in modeling the

output process.

Model Calibration Using Gaussian Random Processes. We model the

observational data Z as

Z = η(θ∗) + δ, (2.1)

where θ∗ is the true or fitted value of computer model parameter for the ob-

servational data (Bayarri et al. (2007)), η(θ∗) = (η(s1,θ
∗), . . . , η(sn,θ

∗))T is

the emulator output at θ∗ on the model grid, and δ = (δ(s1), . . . , δ(sn))
T is

a term that includes both data-model discrepancy as well as observational er-

ror. The discrepancy process δ(s) is also modeled as a Gaussian process with

spatial covariance between the locations s1, . . . , sn. Model calibration with high-

dimensional spatial data leads to computational challenges as described in the

following section.

3. Calibration with High-Dimensional Spatial Data

In this section we briefly examine the challenges in model calibration using

high-dimensional spatial data and the existing approaches to the problem. We

then proceed to the formulation of our composite likelihood approach. We sum-

marize the notation used in this section in Tables S2 and S3 in the Supplementary

Material.
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3.1. Challenges with high-dimensional spatial data

The basic challenge with the approach in Section 2 stems from the fact

that the computational cost for a single likelihood evaluation is O(n3p3). For

large n, evaluating the likelihood function repeatedly when using algorithms like

Markov chain Monte Carlo (MCMC) can become computationally prohibitive.

One can reduce the computational cost by assuming a separable covariance struc-

ture between the spatial dependence and the dependence due to computer model

parameters, but the computational cost is still O(n3), and hence does not scale

well with n. Here we introduce an approach that relies on the block composite

likelihood for spatial data (Caragea and Smith (2006), Eidsvik et al. (2013)).

3.2. Composite likelihood for model calibration

In this framework, we partition the spatial field S into small blocks to avoid

the computational issues related to high-dimensional data. In Section 4 we de-

scribe an example of how such a partition can be constructed in practice. The

block composite likelihood method substitutes the original likelihood by a com-

posite likelihood that utilizes the spatial blocks, thereby resulting in a likeli-

hood function that requires much less computational effort. In particular, we

adopt the block composite likelihood formulation of Caragea and Smith (2006).

This framework assumes conditional independence between outcomes in differ-

ent blocks given the block means, and the dependence between blocks is modeled

through the covariance between block means. This framework gives a valid proba-

bility model, and therefore the posterior distribution defined using the composite

likelihood function based on this approach is also a valid probability model. Ob-

taining a valid probability model is important because we are embedding the

likelihood in a Bayesian approach; having a valid probability model automati-

cally assures us that the resulting posterior distribution is proper when all the

prior distributions used are proper.

Note that we do not use spatial blocking to fully specify the probability

model here. Instead, the blocking provides a way to find a computationally fea-

sible pseudo-likelihood estimator that has good asymptotic properties under the

original probability model described in Section 2. Since the composite likeli-

hood estimator based on blocking is not the correct likelihood estimator under

the original probability model, an additional adjustment step for its asymptotic

variance is required and this is discussed below.

We divide the spatial area for the computer model output into M dif-

ferent blocks and denote the output for each block by Y(1), . . . ,Y(M). The

blocks are made according to the spatial field, not the parameter space, be-

cause the number of computer model runs is usually quite limited due to the
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high computational costs of running the model. However, in principle our ap-

proach can be extended to blocking in parameter space as well if the number

of model runs is also large. Let ni denote the number of computer model out-

comes in the ith block. We denote the spatial locations in the ith block by

si1, . . . , sini . EachY(i) is a stack of (ni−1)-dimensional spatial output for p differ-

ent parameter settings, Y(i) = (Y (si1, ·)T , Y (si2, ·)T , . . . , Y (sini−1, ·)T )T , where
Y (sij , ·) = (Y (sij ,θ1), . . . , Y (sij ,θp))

T is the p × 1 vector of computer model

outcomes for all the parameter settings θ1, . . . ,θp. We omit one spatial location

for each block in defining the output vectors to avoid degeneracy. The compos-

ite likelihood function changes slightly depending on which spatial location in

each block is omitted. However, this difference is negligible unless the block sizes

n1, . . . , nM are very small. We let Ȳ(i) =
∑ni

j=1(Y (sij ,θ1), . . . , Y (sij ,θp))
T /ni be

the p-dimensional mean vector of model outcomes for the ith block, the means

for the spatial block consisting of same set of locations across all model parame-

ter settings. We define the vector of all block means by Ȳ = (ȲT
(1), . . . , Ȳ

T
(M))

T .

Similarly, we divide the observational data into M blocks in the same way and

omit one observation for each block to have Z(1), . . . ,Z(M), the vectors of obser-

vational data in different blocks. We let Z̄(i) =
∑ni

j=1 Z(sij)/ni be the ith block

mean of observational data and Z̄ = (Z̄(1), . . . , Z̄(M))
T be the collection of them.

Assuming separability, we model the covariance between the process at two

different spatial locations and parameter settings Y (s,θ) and Y (s′,θ′) by

Cov (Y (s,θ), Y (s′,θ′)) = Ks(s, s
′; ξs)Kθ(θ,θ

′; ξθ), where Ks and Kθ are valid

covariance functions respectively in S and Θ with parameters ξs and ξθ. The

covariance between discrepancy process at s and s′ is given by Cov (δ(s), δ(s′)) =

Kd(s, s
′; ξd) with a valid covariance function Kd in S and a vector of parameters

ξd. More specific definition of the covariance functions is discussed below.

Computer Model Emulation. The first component of our composite like-

lihood is the model for block means that captures the large scale trend. The

covariance between the block means is ΣȲ = H⊗ Σθ where Σθ is the covariance

matrix for the random variable across p parameter settings and H is the M ×M

covariance matrix between the blocks. It is straightforward to see that the block

covariance is

{H}ij =
1

ninj

ni∑
k=1

nj∑
l=1

Ks(sik, sjl; ξs), (3.1)

the mean of all possible cross covariances between two blocks.

The second component is the sum of the conditional likelihoods for each

block, which models the small scale dependence and variation. For the ith block,

the conditional distribution of output Y(i) given the block mean Ȳ(i) is a normal

distribution with the mean and covariance given by µ
Y|Ȳ
i = E(Y(i)|Ȳ(i)) =
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(γ(i)/{H}ii⊗Ip)Ȳ(i) and Σ
Y|Ȳ
i = V ar(Y(i)|Ȳ(i)) = (Γi−γ(i)

(
γ(i)

)T
/{H}ii)⊗Σθ

where Γi is the (ni− 1)× (ni− 1) spatial covariance matrix for the ith block and

γ(i) is the (ni − 1)× 1 covariance vector between the ith block mean and the ith

block locations (see Table S2 in the Supplementary Material for their definitions).

The log composite likelihood function for the model output is then cℓ(ξs, ξθ) ∝
−(log |ΣȲ|+ȲT (ΣȲ)−1Ȳ)/2−

∑M
i=1(log |Σ

Y|Ȳ
i |+(Y(i)−µ

Y|Ȳ
i )T (Σ

Y|Ȳ
i )−1(Y(i)−

µ
Y|Ȳ
i ))/2. We construct the emulator by finding the MLE of ξθ and ξs, denoted

by ξ̂θ and ξ̂s. The computational cost for a single likelihood evaluation is reduced

from n3/3 flops to
∑M

i=1

∑M
j=i ninj+M3/3+

∑M
i=1(ni−1)3/3 flops, where the first

term is the computational cost for finding H. This is a reduction from 6.86×1010

flops to 5.92× 107 flops in the climate model calibration example in Section 4.

Computer Model Calibration. We formulate the composite likelihood for

observational data in the same manner as above. Let Ω be the M×M covariance

between the M block means of the discrepancy δ, defined in the same way as

H, but with a different set of parameters ξd (see Table S3 in the Supplementary

Material for its definition). The conditional mean and covariance for the block

means of observational data Z̄ are µZ̄ =
(
IM ⊗ Σθ∗θΣ

−1
θ

)
Ȳ, an M×1 vector, and

ΣZ̄ = H⊗
(
Σθ∗ − Σθ∗θΣ

−1
θ ΣT

θ∗θ

)
+Ω, an M ×M matrix where Σθ∗θ is the 1× p

covariance vector between the fitted computer model parameter value θ∗ and

the design points θ1, . . . ,θp. Likewise, we define Λi and λ(i) as the discrepancy

counterparts of Γi and γ(i) with the covariance parameter ξd. Hence, Λi and

λ(i) are the (ni − 1) × (ni − 1) ith block discrepancy covariance matrix and the

(ni − 1) × 1 covariance vector between the block outputs and the block mean

respectively (see Table S3 in the Supplementary Material for their definitions).

The conditional mean and covariance for observational data in the ith block

are therefore µ
Z|Z̄
i = (Ini−1 ⊗ Σθ∗θΣ

−1
θ )Y(i) + (τ (i) + λ(i)){ΣZ̄}−1

ii (Z̄i − {µZ̄}i)
and Σ

Z|Z̄
i = (Γi ⊗ (Σθ∗ −Σθ∗θΣ

−1
θ ΣT

θ∗θ) + Λi)− (τ (i) + λ(i))(τ (i) + λ(i))T /{ΣZ̄}ii,
where τ (i) = γ(i) ⊗ (Σθ∗ − Σθ∗θΣ

−1
θ ΣT

θ∗θ). The log composite likelihood for the

observational data is then

cℓn(ψ) ∝ −1

2

(
log

∣∣∣ΣZ̄
∣∣∣+ (

Z̄− µZ̄
)T (

ΣZ̄
)−1 (

Z̄− µZ̄
))

−1

2

M∑
i=1

(
log

∣∣∣ΣZ|Z̄
i

∣∣∣+ (
Z(i) − µ

Z|Z̄
i

)T (
Σ
Z|Z̄
i

)−1 (
Z(i) − µ

Z|Z̄
i

))
, (3.2)

where the first line in (3.2) is the log likelihood corresponding to the block means

and the second line corresponding to the observations within each block. ψ de-

notes all the parameters being estimated in the calibration stage including θ∗

and ξd.
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By choosing a proper prior for ψ, f(ψ), we define the approximate log pos-

terior density, log(πn(ψ)) ∝ log f(ψ) + cℓn(ψ) and infer ψ using the standard

Metropolis-Hastings algorithm. We allow the scale parameters for the emulator

to be re-estimated along with the other parameters but fix the other emulator

parameters in ξs and ξθ at their estimated values from the emulation stage (Ba-

yarri et al. (2007), Bhat et al. (2012), Chang et al. (2014)). The formulation

results in the same computational gain as in the emulation stage.

In both the emulation and calibration stages, calculation of the covariance

matrix for the block means is a computational bottleneck, requiring
∑M

i=1

∑M
j=i

ninj flops of computation. While computationally very demanding, its contri-

bution to the likelihood function is usually not significant (Caragea and Smith

(2006)). Therefore, instead of using all cross covariances between spatial lo-

cations, we randomly sample a subset of cross covariances to approximate the

covariance between block means H. The computation of H in (3.1) is substituted

by

{H}ij =
1

mimj

mi∑
k=1

mj∑
l=1

Ks(uik,ujl; ξs), (3.3)

with mi ≤ ni and mj ≤ nj , where ui1, . . . ,uimi and uj1, . . . ,ujmj are randomly

chosen respectively from si1, . . . , sini and sj1, . . . , sjnj . This reduces the com-

putational cost from
∑M

i=1

∑M
j=i ninj to

∑M
i=1

∑M
j=imimj , that is, 1.32 × 107

flops to 2.86 × 105 flops for the calibration problem in Section 4.2. The same

approximation can be applied to Ω with ξd.

Covariance Function and Prior Specification. We use the exponential co-

variance function with a nugget term to define the covariance between parameter

settings (Kθ), spatial covariance for the emulator (Ks), and the spatial covari-

ance for the discrepancy (Kd). Thus the covariance between the process at two

parameter settings θ = (θ1, . . . , θq)
T and θ′ = (θ′1, . . . , θ

′
q)

T is Kθ(θ,θ
′; ξθ) =

ζθ1(θ = θ′) + κθ exp(−
∑q

i=1 ϕθ,i|θi − θ′i|), where ξθ = (ζθ, κθ, ϕθ,1, . . . , ϕθ,q), and

ζθ, κθ, ϕθ,1, . . . , ϕθ,q > 0. Likewise, the covariance between the process at two

spatial locations s and s′ for the emulator and the discrepancy term are

Ks(s, s
′; ξs) = κs (ζs1(s = s′) + exp (−ϕsg(s, s

′))) ,

Kd(s, s
′; ξd) = κd (ζd1(s = s′) + exp (−ϕdg(s, s

′))) ,
(3.4)

respectively, with ξs = (ζs, κs, ϕs), ξd = (ζd, κd, ϕd), and ζs, κs, ϕs, ζd, κd, ϕd > 0.

g(s, s′) denotes the distance between two points. In the climate model calibration

problem in Section 4, for example, g is the geodesic distance between two points

on the earth’s surface.

The parameters inferred by the Bayesian approach in the calibration stage

are κs, ζd, κd, ϕd, and θ
∗. Following Bayarri et al. (2007), the sill parameter for
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the emulator κs is initially inferred via maximum likelihood estimate in the emu-

lation stage and re-estimated by Bayesian inference in the calibration stage. We

impose informative priors on the above parameters to avoid potentially obtaining

improper posterior distributions (cf., Berger, De Oliveira, and Sansó (2001)) and

identifiability issues. The latter is explained further in Section 4. The sill pa-

rameters, κs and κd receive inverse-Gamma priors IG(aκs , bκs) and IG(aκd
, bκd

).

We also impose an Inverse-Gamma prior IG(aζd , bζd) for the nugget parameter

ζd. The prior density for the range parameter ϕd is assumed to be uniform with

a wide support. The fitted computer model parameter θ∗ also receives a uniform

prior over a wide range. Note that one can also assume a more informative prior

for θ∗ such as a unimodal distribution based on some physical knowledge. How-

ever, in the calibration problem in Section 4 we do not impose such a prior for

θ∗; this allows us to study the characteristics of the posterior density of θ∗ more

transparently.

Asymptotics and Adjustment using Godambe Information. The com-

posite likelihood in (3.2) is not based on the true probability model in (2.1), and

therefore the ‘composite’ posterior density based on (3.2) is quite different from

the true posterior based on (2.1). In this section, we discuss how the Godambe

information matrix (Godambe (1960)) for estimating equations may be used to

adjust for using the composite likelihood when making inferences.

We first provide the asymptotic justification for the adjustment using the

Godambe information matrix. We show that, for large n and p, the mode of

the approximate posterior ψ̂B
n = argmaxψ πn(ψ) is consistent and asymptoti-

cally normally distributed, with a covariance matrix given by the inverse of the

Godambe information matrix. If we let p → ∞, then the emulator converges

to the measurement-error model such that η(θ) ∼ N(Y(θ), ζθΣ
s), where Y(θ)

is the n × 1 vector of model output at the parameter setting θ and the spatial

locations s1, . . . , sn. This result holds as long as the computer model output

varies reasonably smoothly in the parameter space (Yakowitz and Szidarovszky

(1985)). The model for observational data is Z ∼ N(Y∗, ζθΣ
s + Σd), where

Y∗ = Y(θ∗), {Σs}ij = Ks(si, sj ; ξs), and {Σd}ij = Kd(si, sj ; ξd). The composite

likelihood in (3.2) then has means and covariances µZ̄ = Ȳ∗, an M × 1 vector,

ΣZ̄ = ζθH+Ω, an M×M matrix, µ
Z|Z̄
i = Y∗

(i)+(ζθγ
(i)+λ(i)){ΣZ̄}−1

ii (Z̄i−{µZ̄}i),

and Σ
Z|Z̄
i = (ζθΓi + Λi) − (ζθγ

(i) + λ(i))(ζθγ
(i) + λ(i))T /{ΣZ̄}ii, where Ȳ∗

(i) =∑ni
j=1 Y (sij ,θ

∗) /ni is the ith block mean of the computer model output at θ∗

and Ȳ∗ = (Ȳ∗
(1), . . . , Ȳ

∗
(M))

T is the collection of all their block means.

We now show the consistency and the asymptotic normality of the pos-

terior mode ψ̂B
n as n → ∞. We utilize expanding domain asymptotic results

(see e.g., Mardia and Marshall (1984), Cressie (1993), Cox and Reid (2004),
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Zhang and Zimmerman (2005), Varin (2008)). The first step is establishing

consistency and asymptotic normality of the maximum composite likelihood es-

timator.

Proposition 1. The following holds for the maximum composite likelihood esti-

mator ψ̂CL
n = argmaxψ cℓn(ψ): (i) (Consistency) ψ̂CL

n
P→ ψ0 as n → ∞, where

ψ0 is the vector of true values of parameters in ψ; (ii) (Asymptotic Normality)

G
1/2
n (ψ̂CL

n −ψ0)
D→ N(0, I) where Gn = QnP

−1
n Qn is the Godambe information

matrix (Godambe (1960)). Pn is the covariance matrix of the gradient ▽cℓn and

Qn is the negative expected value of the Hessian matrix of cℓn, where both are

evaluated at ψ = ψ0.

The main result of this section establishes the consistency and asymptotic

normality of the posterior mode, ψ̂B
n .

Proposition 2. (i) (Posterior consistency) |πn(ψ) − π0
n(ψ)|TV

P→ 0 as n → ∞
where | · |TV is the total variation norm and π0

n(ψ) is a normal density with the

mean ψ0 +Q−1
n ▽cℓn(ψ0) and the covariance Q−1

n with Q−1
n → 0 as n → ∞; (ii)

(Asymptotic normality) as n → ∞, G
1/2
n (ψ̂B

n −ψ0)
D→ N(0, I)

The proofs of the propositions are given in Section S1 in the Supplementary

Material.

Application of Gobambe Adjustment. We have several options for ad-

justing our composite likelihood-based inference. These include (a) direct use

of the asymptotic distribution in Proposition 2. (ii); (b) The ‘open-faced sand-

wich’ post-hoc adjustment (Shaby (2013)) of MCMC sample from the composite

posterior distribution πn(ψ); (c) ‘curvature’ adjustment (Ribatet, Cooley, and

Davison (2012)) for our MCMC procedure. We utilize (b) and (c) because these

MCMC-based methods can capture the higher-order moments of the posterior

distribution, which may be important in finite sample inference.

For any of these methods, it is necessary to evaluate Pn and Qn. See Section

S2 in the Supplementary Material for an example of their analytic computation.

Here Qn can also be obtained using MCMC runs from the posterior distribution

πn(ψ) by the asymptotic result in Proposition 2. (i). The matrix operation for

computing Qn and Pn is not computationally demanding as it can be done in

less than a few minutes using a high-performance single core and needs to be

done only once.

We caution that the adjustment procedures here rely on the identifiability of

parameters in ψ. In order to evaluate Pn and Qn under the correct probability

model Z ∼ N(Y∗, ζθΣ
s + Σd), we need to be able to estimate the true value ψ0
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accurately by the posterior mode ψ̂B
n . This may not always hold as there is a

trade-off between the discrepancy parameters in ξd for finite sample sizes.

The open-faced sandwich adjustment is one approach for adjusting the co-

variance based on Proposition 2 (Shaby (2013)). For any MCMC sample of ψ

from πn(ψ), the open-faced sandwich adjustment is defined by ψ̃open = ψ̂B
n +

C(ψ−ψ̂B
n ) withC = Q−1

n P
1/2
n Q

1/2
n . Similar to the curvature adjustment, this ap-

proach guarantees that the distribution of the adjusted posterior sample has the

same posterior mode and the desired asymptotic covariance G−1
n . This method

can be either embedded in each step of MCMC run, or applied after an entire

MCMC run is finished. Another possible approach is curvature adjustment (Rib-

atet, Cooley, and Davison (2012)), which likely leads to a similar result as shown

in Shaby (2013). We provide the details of this approach in Section S3 in the

Supplementary Material. It is also possible to infer the parameters using the

Godambe information matrix. However, Bayesian inference based on the adjust-

ment allows us to incorporate prior information and learn about the shape of

the posterior density which might be important for a finite sample. In computer

model calibration it is important to use prior information for identifying the dis-

crepancy function; a Bayesian approach is therefore a convenient framework for

doing this.

4. Application to UVic ESCM Calibration

We demonstrate the application of our approach to a climate model calibra-

tion problem. The computer model used here is the University of Victoria Earth

system climate model (UVic ESCM) of intermediate complexity (Weaver et al.

(2001)). The input parameter of interest is climate sensitivity (CS), defined as

the equilibrium global mean surface air temperature change due to a doubling

of carbon dioxide concentrations in the atmosphere (see e.g. Knutti and Hegerl

(2008)). We use ten UVic ESCM runs with different CS values (p = 10). Each

model run is a spatial pattern of ocean temperature anomaly on a regular 1.8◦

latitude by 3.6◦ longitude grid, defined as change between 1955-1964 mean and

2000-2009 mean in degree Celsius times meter (◦C m). At each location, the

ocean temperature anomaly is vertically integrated from 0 to 2,000 m in depth.

See Sriver et al. (2012) for a more detailed description of the model runs.

The model output has regions of missing data since it covers only the ocean,

and partition of the spatial area needs careful consideration. We partitioned

the spatial area using a random tessellation; this is also the approach followed

by Eidsvik et al. (2013). We first randomly chose M different centroids out of

total n locations and then assigned the spatial locations to different subregions

according to the nearest centroid in terms of geodesic distance. When finding

the nearest centroid for each point, we only considered the centroids in the same
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ocean to avoid assigning locations separated by land to the same block. This

random tessellation ensured, on average, that we have more subregions where

data points are densely distributed.

Choosing the number of blocks requires balancing two conflicting objectives,

using enough number of blocks to make the computation feasible, and ensuring

enough sample size for each block for asymptotic convergence. We provide a

guideline in Section S4 in the Supplementary Material.

4.1. Simulated examples

We conducted some perfect model experiments to answer the questions of

whether the the posterior density based on the composite likelihood (composite

posterior) is similar to the posterior density based on the original likelihood (orig-

inal posterior), of whether the posterior density with approximated block mean

covariance computation (approximated composite posterior) described in (3.3) is

close to the true composite posterior, and of how the number of spatial blocks

and the magnitude of the discrepancy affect the composite posterior density.

Each experiment followed four key steps: choose one of the parameter set-

tings for model runs as the synthetic truth; leave the corresponding model run

out and superimpose a randomly generated error on it to construct a synthetic

observation; emulate the computer model using the remaining model runs; cali-

brate the computer model using the emulator and compare the resulting density

with the synthetic truth. To be able to compute the original posterior density

with a reasonable computational effort, we restricted ourselves to a subset of

spatial locations consisting of 1,000 randomly selected points (n = 1, 000) and

assumed separable covariance structure for the spatial field and the computer

model parameter space. The synthetic truth for the climate sensitivity used here

was 2.153, but choosing other parameter settings gave similar results shown here.

A comparison between the composite posterior densities with 10 blocks and

the original posterior densities are shown in Figure 3(a) and 3(b). We used two

different realizations of the model-observation discrepancy. These were generated

from a Gaussian process model with exponential covariance (3.4) with ζ∗d = 0.01,

κ∗d =160,000, and ϕ∗
d = 690−1 km, where (ζ∗d , κ

∗
d, ϕ

∗
d) are assumed true values

of (ζd, κd, ϕd). We also conducted the same comparison for the approximated

composite posterior densities (Figure 3(c) and 3(d)). The posterior densities and

the resulting credible intervals from all three approaches are reasonably similar.

The composite posterior densities after adjustment are slightly more dispersed

than the original posterior due to the information loss caused by blocking, but

the modes are quite close to the original ones confirming the consistency result

in Proposition 2 (i).
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Figure 1. Comparison of posterior densities between three simulated exam-
ples with different block numbers: M = 10 (solid curve), M = 30 (dashed
curve), and M = 50 (dotted-dashed curve). The vertical line is the assumed
true value for our simulated example and the horizontal bars above are 95%
credible intervals. Posterior modes based on 30 and 50 blocks show slight
biases, but the width of intervals does not show notable differences.

.

We also compared the adjusted composite posterior densities with different

numbers of blocks to examine the effect of the number of blocks on calibration

results (Figure 1). The results show that using more than 30 blocks introduces

a slight bias for the posterior mode that might be due to the reduced number of

data points in each block or the smaller area covered by each block. When using

more than 30 blocks, there are several blocks for which the maximum distance is

less than the effective range. However, the credible intervals are again reasonably

similar to each other and our approach still gives a reasonable answer in this

setting. Similarly, we compare the adjusted composite posterior densities based

on datasets generated using different assumed sill values, κ∗d =40,000, 90,000,

and 160,000 to investigate the effect of magnitude of discrepancy on calibration

results (Figure S1 in the Supplementary Material). As one would expect, the

posterior density becomes more dispersed as we increase the value of the sill.

We used informative priors for the statistical parameters, important in re-

ducing the identifiability issues occurring in the calibration based on observa-

tional data in Section 4.2. We imposed a vague prior for the nugget parameter

ζd ∼ IG(2, 0.01(2 + 1)) and a highly informative prior for the sill parameter

κd ∼ IG(10,000, κ∗d(10,000 + 1)). The sill parameter for the emulator κs was
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Figure 2. Posterior densities of the climate sensitivity calibrated based on the
observational data from Levitus et al. (2012) using our composite likelihood
approach. The adjusted posterior density (dashed curve) is notably more
dispersed than the unadjusted one (solid curve), and the corresponding 95%
credible intervals (horizontal bars above) for the adjusted posterior density
is also much wider than the one for the unadjusted density.

given a mildly informative prior with IG(20, κ̂s(20+ 1)), κ̂s the MLE of κs com-
puted in the emulation stage. The shape parameters for the inverse-Gamma
distributions are specified in the way that the prior modes are aligned with cer-
tain target values. Note that inference for simulated examples does not suffer
from identifiability issues without the informative priors; we use these priors only
to be consistent with the calibration based on observational data. For example,
changing the shape parameter bκd

for the inverse-Gamma prior from 10,000 to 2
does not change the results in Figures 1−3.

4.2. Calibration using observed ocean temperature anomalies

As an illustrative example, we calibrated the climate sensitivity using the
observed spatial pattern of ocean temperature anomaly from the data product
constructed by Levitus et al. (2012). We interpolated the observational data onto
the UVic model grid using a simple bilinear interpolator. By placing the model
output and the observational data on the same grid, we take full advantage of
the computational gains from the separability assumption. We divided the 5,903
locations (n = 5, 903) into 50 blocks (M = 50) using the random tessellation
method described above. The covariance matrices for block means were approxi-
mated using (3.3) with mi = min(10, ni) for i = 1, . . . , 50. The prior specification
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was the same as in the simulated example with assumed sill (κ∗d) of 160,000, ex-
cept that the inverse of the discrepancy range parameter ϕ−1

d was restricted to be
greater than 800 km to reduce identifiability issues. Figure 2 shows the posterior
density of climate sensitivity. The length of the MCMC chain was 15,000, and
the computing time was about 15 hours (wall time) via parallel computing using
32 high-performance cores for a system with Intel Xeon E5450 Quad-Core 434
at 3.0 GHz. We verified that our MCMC algorithm and chain length were ade-
quate by ensuring that the MCMC standard errors for our parameter estimates
(Jones et al. (2006), Flegal, Haran, and Jones (2008)) were small enough and by
comparing posterior density estimates after various run lengths to see that the
results, namely posterior pdfs, had stabilized.

Unlike simulated examples described above, the calibration results with and
without the adjustment described in Section 3.2 were clearly different due to
the reduced block sizes. This indicates that the adjustment using the Godambe
information is an important step to account for the information loss caused by
blocking, especially when using many smaller blocks is unavoidable due to the
large amount of data. In our particular application blocking causes underesti-
mation of the variance of the parameter θ. Underestimation of the variances of
important input parameters can lead to an incorrect analysis in follow-up studies
based on the calibration results. For example, underestimating the uncertainty
in the important climate parameters such as the climate sensitivity can result in
incorrect risk assessment in climate change impact studies.

5. Discussion

This work is, to our knowledge, the first application of composite likelihood
to the computer model calibration problem. Our composite likelihood approach
enables computationally efficient inference in computer model calibration using
high-dimensional spatial data. We proved consistency and asymptotic normality
of our posterior estimates and established covariance adjustment for posterior
density based on them. The adjustment can be easily integrated into common
MCMC algorithms such as the Metropolis-Hastings algorithm. The block com-
posite likelihood used here yields a valid probability model, and therefore no
additional verification for the propriety of the posterior distribution is necessary.

An attractive benefit of this general framework is that it is relatively easy,
in principle, to extend the approach to a more complicated and easy-to-interpret
covariance model. For example, by allowing covariance parameters to vary across
the different spatial blocks, our approach can introduce non-stationarity in the
spatial processes of model output and observational data.

The method and the scientific result are subject to a few caveats that com-
monly apply to most calibration problems and composite likelihood approaches.
We refer to Section S5 in the Supplementary Material for a detailed discussion.
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(a) Realization 1 without approximation (b) Realization 2 without approximation

(c) Realization 1 with approximation (d) Realization 2 with approximation

Figure 3. Comparison between calibration results using i) the original like-
lihood without blocking (solid curves), ii) the block composite likelihood
without the variance adjustment (dashed line), and iii) the block composite
likelihood with the variance adjustment (dashed-dotted line). The vertical
lines represent the assumed true value for our simulation, and the horizontal
bars above show the 95% credible intervals. The results shown here are based
on two different realizations (two left panels for Realization 1 and two right
panels for Realization 2) from the same GP model. The posterior densities
with the approximation for the block means (two lower panels) are reason-
ably close to the densities without the approximation (two upper panels)
when the variance adjustment is applied.
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