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Abstract: Modeling high-dimensional functional responses utilizing multi-dimensional

functional covariates is complicated by spatial and/or temporal dependence in the

observations in addition to high-dimensional predictors. To utilize such rich sources

of information we develop multi-dimensional spatial functional models that employ

low-rank basis function expansions to facilitate model implementation. These mod-

els are developed within a hierarchical Bayesian framework that accounts for several

sources of uncertainty, including the error that arises from truncating the infinite-

dimensional basis function expansions, error in the observations, and uncertainty

in the parameters. We illustrate the predictive ability of such a model through a

simulation study and an application that considers spatial models of soil electrical

conductivity depth profiles using spatially dependent near-infrared spectral images

of electrical conductivity covariates.
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1. Introduction

With advances in instrumentation such as satellites, sensor networks, data

storage tags, and spectroscopes, scientists are often faced with the challenging

problem of incorporating extremely high-dimensional covariates into statistical

models. The efficient use of such “big data” is the subject of much active re-

search in the statistics and computer science communities. Such problems are

compounded when these data are collected over space and/or time, thereby in-

troducing dependence. In cases where the response is also spatial and/or tem-

poral, this dependence may be accounted for through covariates, but may also

require temporal and/or spatially-explicit error structures. Another complication

arises when the responses themselves are inherently functional (e.g., “curves” in

time and/or space). This paper presents methodology that can accommodate
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multi-dimensional covariates that vary in space, as well as purely spatial scalar

covariates, in the context of modeling spatially-dependent functional responses,

with the goal being spatial prediction. The methodology is presented using a

hierarchical Bayesian approach to account for uncertainties that arise in the ob-

servations, process, and parameters.

The use of two-dimensional functional predictors (i.e., “image predictors”)

has seen increased utility in statistical models over the last few years (e.g., see

Reiss and Ogden (2010); Morris et al. (2011); Holan et al. (2010, 2012); Martinez

et al. (2013); Yang et al. (2013)). Holan et al. (2010) showed in the context of

insect communication that one could treat a time-frequency representation of a

high-frequency nonstationary time signal as a two-dimensional “image” and, with

suitable functional dimension reduction and stochastic search variable selection

(SSVS), easily incorporate such big data covariates into traditional generalized

linear mixed models. This type of modeling was subsequently considered in the

context of business cycle estimation (Holan et al. (2012)) and in characterizing

spawning success of shovelnose sturgeon by incorporating nonlinear interactions

into the model (Yang et al. (2013)). Recently, Martinez et al. (2013) consid-

ered a functional mixed model approach to modeling acoustic signals associated

with bats. To our knowledge, modeling spatially-correlated functional data with

spatially-dependent image predictors has not been considered to date.

The use of spatially-dependent image predictors is compounded when one has

responses that are spatially-dependent functions as well. Although functional re-

sponses have been considered in the context of image predictors (e.g., Morris

et al. (2011)), the spatially-dependent functional case has not been considered.

Functional data analysis is fairly mature in statistics (e.g., Bosq (2000); Ramsay

and Silverman (2005), among others), yet spatial functional data analysis has

just recently become an active sub-field of spatial statistics and functional data

analysis. Excellent reviews of recent work in the area can be found in Delicado

et al. (2010), Ruiz-Medina (2012a), and Kokoszka (2012). In general, geostatis-

tical predictive and clustering approaches have focused on co-kriging ideas (e.g.,

Goulard and Voltz (1993); Monestiez and Nerini (2008); Giraldo, Delicado, and

Mateu (2010, 2012)) and the general theory of spatial autoregressive and mov-

ing average Hilbertian processes (Ruiz-Medina (2011, 2012b); Ruiz-Medina and

Espejo (2013)). In addition, a more traditional functional principal components

approach to spatially-dependent functions, where interest is on estimation of

mean functions, is given in Gromenko et al. (2012) and Gromenko and Kokoszka

(2013). These approaches have been from the classical perspective, with relatively

few Bayesian implementations. Notable exceptions include Baladandayuthapani

et al. (2008) who consider a Bayesian hierarchical model with relatively simple
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spatial dependence on the functions at low levels of the hierarchy. This was ex-

tended by Zhou et al. (2010) to have a more flexible covariance structure, and

was implemented using an expectation-maximization (EM) algorithm.

The contribution of this paper is then the development of methodology for

modeling spatially-dependent functional responses in terms of spatially-dependent

functional-image predictors, along with spatially-dependent covariates, within a

Bayesian paradigm that can account for the uncertainty associated with data,

spatial processes, and parameters. Section 2 describes the methodology. A mo-

tivating example of estimating electrical conductivity in soils using visible and

near-infrared (VNIR) spectral images is given in Section 3, followed by a dis-

cussion and concluding remarks in Section 4. For convenience of exposition, a

comprehensive description of model choices, simulation study, sensitivity analyses

corresponding to the application, full conditional distributions, and details of the

sampling algorithm and implementation are provided in an online supplement.

2. Methodology

In this section, we introduce a class of spatially-explicit functional models.

Different from traditional spatial models, the proposed models allow for func-

tional responses and functional covariates. In general, these functional covariates

can be curves of one dimension, images of two dimensions, or objects of higher

dimensions. For simplicity, we focus on two-dimensional image covariates that

exhibit spatial dependence, although the method is general with regards to the

use of functional objects of higher dimension, and can be easily generalized to

account for interactions of functionals (e.g., see Yang et al. (2013)). We note that

the use of multiple truncated basis expansions effectively reduces this complicated

spatial model to a multivariate multiple mixed-effects regression model, greatly

facilitating its implementation. Inference is performed in the Bayesian hierarchi-

cal framework, which allows one to directly account for uncertainty associated

with observations, functional truncations, and parameters.

2.1. Spatially-dependent functional-image process model

We denote a response functional to be a continuous spatial process {Y (s, d) :

s ∈ D ⊂ R2, d ∈ D ⊂ R}, where D is a continuous spatial domain and D

represents a continuous one-dimensional domain such as time or depth. For

convenience of exposition, we refer to this dimension as “depth” to coincide with

the application presented in Section 3, but note that there are many applications

in which this index would correspond to time. Also, denote Xj(s,uj) the jth

observed two-dimensional functional covariate, j = 1, . . . , J , at spatial location

s with {uj = (d, ωj)
′ : d ∈ D, ωj ∈ Ω} corresponding to the index of the two

image dimensions of interest (e.g., depth and wavelength). The j subscript on
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uj serves to indicate that the functional coordinates may be different for the

different covariates. However, to simplify notation, we subsequently assume that

the functional coordinates are the same for all “image” covariates and drop the

subscript. To give this notation some perspective relative to our application

in Section 3, we let Ω correspond to the continuous frequency (or wavelength)

domain.

The primary model can be written at location s and depth d as the relation

between the response functional, Y (s, d), and functional covariates as follows

Y (s, d) =

J∑
j=1

∫
Xj(s,u)βj(u, d)du+ z′(s)δ(d) + η(s, d), (2.1)

where βj(u, d) is a square integrable functional coefficient corresponding to Xj(s,

u), δ(d) is a np-vector of depth-specific regression coefficients associated with

the np × 1 spatially indexed covariate vector z(s), and η(s, d) is a mean zero

random process capturing spatial and depth dependence. Typically, we spec-

ify η(s, d) to be a Gaussian process with covariance function C(s, s′; d, d′) ≡
cov(η(s, d), η(s′, d′)). In a traditional spatial analysis, one might consider a three-

dimensional spatial covariance function if d corresponds to the vertical dimension,

or a spatio-temporal covariance function if d corresponds to time (e.g., Cressie

and Wikle (2011)). Here, we deliberately keep these indices separate given that

the response and covariate vary functionally in the dimension d, and, motivated

by the application in Section 3, this depth dimension is assumed to operate on

a different scale of variability relative to the two-dimensional horizontal spa-

tial component of the process. That is, in the application that motivates this

work, it is reasonable to assume separability between the horizontal and vertical

spatial dimensions. This assumption can be relaxed, however, as discussed in

Section 2.1.1. Different from traditional geostatistics concerning scalar or vector

variables at location s, our methodology considers that the response variable of

interest is a functional (curve) in depth (or time) and some of the covariates are

also functionals. In this sense, the function βj(u, d) can be thought of as a kernel

that “distributes” the covariate Xj(s,u) to the depth of the response variable at

location s.

We now derive a basis function expansion representation for the model in

(2.1). First, assume that {ϕjk(u) : k = 1, 2, . . .} form a complete orthonor-

mal basis corresponding to the jth functional covariate. Then, we have the

unique representation of the functional covariate Xj(s,u) =
∑∞

k=1 ξjk(s)ϕjk(u),

where ξjk(s) are expansion coefficient functions (for a given location s) associated

with the jth functional covariate. By considering the same basis, we also have

βj(u, d) =
∑∞

k=1 bjk(d)ϕjk(u), where bjk(d) are expansion coefficient functions
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(for a given depth d) associated with the jth square integrable function. Sub-

stituting these expressions into (2.1) and making use of the orthogonality, we

obtain

Y (s, d) =

J∑
j=1

∞∑
k=1

ξjk(s)bjk(d) + z
′(s)δ(d) + η(s, d). (2.2)

In addition, assume that {ψi(d) : i = 1, 2, . . .} form a complete orthonormal

basis corresponding to depth. Then, we have the unique representations Y (s, d) =∑∞
i=1 αi(s)ψi(d), bjk(d) =

∑∞
i=1 bjkiψi(d), and η(s, d) =

∑∞
i=1 θi(s)ψi(d), where

αi(s) and θi(s) are expansion coefficient functions (of s) corresponding to Y (s, d)

and η(s, d), respectively, and bjki are expansion coefficients associated with bjk(d).

Replacing Y (s, d), bjk(d), and η(s, d) in (2.2) with these expansions, we can

rewrite (2.2) as

∞∑
i=1

αi(s)ψi(d) =

J∑
j=1

∞∑
k=1

∞∑
i=1

ξjk(s)bjkiψi(d) + z
′(s)δ(d) +

∞∑
i=1

θi(s)ψi(d), (2.3)

where we could additionally write the pth element of δ(d) as δp(d)=
∑∞

i=1hpiψi(d),

depending on whether it was determined appropriate to view the depth response

to the spatial covariates, z(s), as functions.

Finally, assume that {wℓ(s) : ℓ = 1, 2, . . .} form a complete orthonormal

basis corresponding to s, which then gives the unique representations αi(s) =∑∞
ℓ=1wℓ(s)aiℓ, ξjk(s) =

∑∞
ℓ=1wℓ(s)fjkℓ, and θi(s) =

∑∞
ℓ=1wℓ(s)giℓ, where aiℓ,

fjkℓ, and giℓ are the expansion coefficients associated with αi(s), ξjk(s), and θi(s),

respectively. As with the δ(d) coefficients, if one is interested in considering the

spatial predictors as functionals, then it would be appropriate to expand the pth

element of z(s) as zp(s) =
∑∞

ℓ=1wℓ(s)qpℓ. Substituting the above expansions into

(2.3), we obtain the representation

∞∑
i=1

∞∑
ℓ=1

wℓ(s)ψi(d)aiℓ =

J∑
j=1

∞∑
k=1

∞∑
i=1

∞∑
ℓ=1

wℓ(s)ψi(d)fjkℓbjki + z
′(s)δ(d)

+

∞∑
i=1

∞∑
ℓ=1

wℓ(s)ψi(d)giℓ. (2.4)

From a functional data analysis perspective, using the spatial basis expansions to

accommodate spatial structure is quite reasonable. However, one could alterna-

tively consider a more traditional spatial co-kriging approach (see the references

in Section 1). We choose the basis expansion formulation here because our ap-

plication in Section 3 is concerned with fairly smooth functional spatial surfaces,

which, along with the potential for future “big data” applications, is facilitated

by the use of rank-reduced spatial models (e.g., see the review in Wikle (2010)).
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Similar to applications in traditional functional data analysis, one can con-

sider finite approximations to the infinite summations in (2.4), e.g.,

ni∑
i=1

nℓ∑
ℓ=1

wℓ(s)ψi(d)aiℓ =

J∑
j=1

nkj∑
k=1

ni∑
i=1

nℓ∑
ℓ=1

wℓ(s)ψi(d)fjkℓbjki + z
′(s)δ(d)

+

ni∑
i=1

nℓ∑
ℓ=1

wℓ(s)ψi(d)giℓ. (2.5)

In practice, the truncations nkj , ni, and nℓ are typically problem specific and

can be chosen based on percent of variance explained, cross-validation, and/or

sensitivity analysis. Critically, with a hierarchical Bayesian implementation (see

Section 2.2), one can account for potential truncation and observation error cor-

respond to the response and covariate functionals. Given these truncations, we

denote the basis vectors associated with depth and spatial location by ψ(d) ≡
[ψ1(d), . . . , ψni(d)]

′ and w(s) ≡ [w1(s), . . . , wnℓ
(s)]′, respectively. Then, we can

rewrite (2.5) in matrix form as

w′(s)Aψ(d) =
J∑

j=1

w′(s)F jBjψ(d) + z
′(s)δ(d) +w′(s)Gψ(d), (2.6)

where A and G are nℓ × ni random matrices (see below) with elements {aℓi}
and {gℓi}, respectively, F j is an nℓ × nkj matrix with elements {fjℓk}, and Bj

is an nkj × ni matrix with elements {bjki}, for i = 1, . . . , ni, k = 1, . . . , nkj , and

ℓ = 1, . . . , nℓ. Thus, A is related to the functional response, G the spatial error

process, Fj the image covariates, and Bj the “regression” coefficients associated

with the image covariates.

In practice one is typically interested in prediction at a specific set of spatial

locations and depths, say {s1, . . . , sns} and {d1, . . . , dnd
}, respectively. In this

case, we denote the ni × nd depth basis matrix as Ψ ≡ [ψ(d1), . . . ,ψ(dnd
)] and

the ns × nl spatial basis matrix as W ≡ [w(s1), . . . ,w(sns)]
′. Consequently, we

can write (2.6) for these specific locations and depths as

WAΨ =

J∑
j=1

WFjBjΨ+ Z∆+WGΨ, (2.7)

with ns × np matrix Z ≡ [z(s1), . . . , z(sns)]
′ and np × nd matrix ∆ ≡ [δ(d1), . . .,

δ(dnd
)]. Assuming that W and Ψ are known orthogonal matrices of rank nℓ and

ni, respectively (which is true if nd > ni and ns > nℓ), it follows that W
′W = Inℓ

and ΨΨ′ = Ini and we can simplify (2.7) to

A =

J∑
j=1

FjBj +W′Z∆Ψ′ +G.
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In the case mentioned above where we treat z(s) and δ(d) as functionals expanded

in terms of spatial and depth basis functions, this further reduces to

A =
J∑

j=1

FjBj +QH+G, (2.8)

where Z = WQ, Q is an nl × np matrix of expansion coefficients associated

with the spatial covariates, and H ≡ ∆Ψ′ is an np × ni matrix of associated

expansion coefficients associated with the depth-specific regression coefficients.

Consequently, one advantage of our approach is that by using multiple reduced-

rank basis expansions, our model effectively reduces to a multivariate multiple

mixed-effects regression model with response matrix A, covariates Fj and Q,

and parameters Bj , where G is a random error matrix.

2.1.1. Error distributions

As previously described, η(s, d) is a mean-zero spatial Gaussian random pro-

cess that, in the application that motivates our work (Section 3), is reasonably

assumed to be separable in the horizontal and vertical dimensions. A convenient

way to represent a matrix variate separable Gaussian process is via a matrix

normal distribution, as introduced by Dawid (1981). That is, generally, if an

m × t matrix U follows a matrix normal distribution, it can be expressed as

U ∼ Nm,t(L,Σm,Σt), where L is an m × t matrix of mean values, Σm is an

m × m covariance matrix between rows, and Σt is an t × t covariance matrix

between columns. This can also be written as a multivariate normal distribu-

tion with vec(U) ∼ MVN(vec(L),Σt ⊗Σm), where vec(U) is the vectorization

of a matrix U, and one can see by the Kronecker product that the standard

matrix normal representation implies a separable covariance structure between

the matrix row and column variables. In addition, matrix normal distributions

have the property that linear transformations of U still follow a matrix normal

distribution; i.e., MUT′ ∼ Nm,t(MLT′,MΣmM′,TΣtT
′).

Therefore, given that η(s, d) is assumed to be a separable and mean-zero

Gaussian random process, G in (2.8) has a matrix normal distribution after dis-

cretization via basis functions. In our model, we then note that G ∼ Nnℓ,ni(0,

Σnℓ
,Σni), where Σnℓ

= W′CsW and Σni = ΨCdΨ
′. In this case, Cd and

Cs are nd × nd and ns × ns depth and spatial covariance matrices, respectively.

These can be specified, as is typical in geostatistics, according to some valid spa-

tial covariance function (e.g., a Matérn model) or empirically, as in functional

principal components analysis. Alternatively, in the Bayesian paradigm Σnℓ
and

Σni can be assigned prior distributions (e.g., inverse-Wishart distributions) to

increase model flexibility. Note that a non-separable covariance structure could

be specified between depth and space if desired, but given that the complicated
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joint dependence is likely accommodated by the functional covariates, the sepa-

rable structure on the errors is reasonable for most applications. Certainly, the

added simplicity of the separable structure makes it appealing in this complex

modeling framework, especially for “big data” applications.

Upon estimation of the parameters, one can then perform prediction of the

response at any location and depth by utilizing the appropriate basis expan-

sions to obtain the posterior predictive distribution of the functional response at

desired spatial locations. Importantly, one must have basis functions that are de-

fined at any desired spatial and depth location. In addition, one should account

for the uncertainty associated with the observations of the response and covari-

ates, as well as the uncertainty associated with the basis truncations as they

apply to the data. We prefer to approach this problem using the hierarchical

Bayesian paradigm.

2.2. Hierarchical representation

As summarized in Cressie and Wikle (2011), the hierarchical Bayesian frame-

work can facilitate the quantification of uncertainty in complicated spatial and

spatio-temporal models. Here we consider it to accommodate the functional

model presented in Section 2.1 in a way that uncertainty in the observed quan-

tities, the basis functions and the parameters are accounted for.

2.2.1. Data models

We consider the possibility that the spatial locations at which we have ob-

servations are not the same as those at which we wish to predict. We start with

two-dimensional spatial observations at locations {r1, . . . , rnr} which could be a

subset of the predictions prediction {s1, . . . , sns}. We could easily make a similar

assumption for the depths, but in the application in Section 3 we predict at the

same depths at which we have observations and so avoid the extra cumbersome

notation of allowing for different depth observation locations.

For the functional response variables, we have j = 1, . . . , nr observations

ỹ(rj) ≡ [ỹ(rj , d1), . . . , ỹ(rj , dnd
)]′, which can be written in terms of the nr × nd

matrix Ỹ ≡ [ỹ(r1), . . . , ỹ(rnr)]
′. This is then related to the “true” ns × nd re-

sponse matrix Y=[Y(s1), . . . ,Y(sns)]
′, where Y(si)=[Y (si, d1), . . . , Y (si, dnd

)]′.

We consider the matrix data model

Ỹ = K(y)Y +Em,y = K(y)WAΨ+Et,y +Em,y = K(y)WAΨ+Eỹ,

where K(y) is an nr × ns observation matrix (typically, an incidence matrix of

1’s and 0’s, but can accommodate change of spatial support as summarized in

Cressie and Wikle (2011)), Em,y is an nr × nd measurement error matrix, Et,y
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is an nr × nd truncation error matrix, and W, A, and Ψ were defined previ-

ously. In this case, A corresponds to the process component specified at the

next level of the hierarchy according to the model in (2.8). The main assump-

tion here is that we are interested in doing prediction on the smooth functionals

(WAΨ) and so the truncation error is accommodated in the covariance structure

of Eỹ = Et,y+Em,y. In general, we consider the matrix normal error distribution,

Eỹ ∼ Nnr,nd
(0,Σy,nr ,Σy,nd

). In practice, typically one must have fairly reliable

prior information concerning these error structures, as they are not otherwise

identifiable (for example, see Section 2.2.2 and our motivating application and

associated sensitivity analysis in Sections 3 and the online supplement, respec-

tively).

The functional image covariates are also measured at locations {r1, . . . , rnr},
and we denote them by the nu-vectors, x̃(ri) for i = 1, . . . , nr, which is an nu-

dimensional vectorization of the nd × nω observed image. We then denote the

nr × nu data matrix X̃j , with each row given by x̃(ri) for i = 1, . . . , nr, and let

the corresponding latent true image be denoted by the ns × nu matrix Xj . We

then consider the data model

X̃j = K(xj)Xj +Em,xj = K(xj)WFjΦ+Et,xj +Em,xj = K(xj)WFjΦ+Ex̃j ,

where K(xj) is an nr × ns observation matrix, Φ is an nkj × nu matrix of basis

functions for the image covariates, Em,xj is an nr × nu measurement error ma-

trix, Et,xj is an nr × nu truncation error matrix, and W and Fj were defined in

Section 2.1. The crucial portion of the covariates, Fj , are given prior distribu-

tions at the next level of the hierarchy. As with the response, we consider the

Ex̃j error matrix as the sum of the truncation and measurement error matrices

and assume this follows a matrix normal, Ex̃j ∼ Nnr,nu(0,Σxj ,nr ,Σxj ,nu), with

specific choices depending on the application (e.g., see Section 2.2.2, Section 3,

and the online supplement).

Consider then the spatial covariates associated with z(s), which are also

observed at spatial locations {r1, . . . , rnr}. In particular, consider observations

as a nr×np matrix Z̃, where the ith row is given by z′(ri), a np-vector associated

with the p covariates at site ri. Given the ns×np true covariate matrix of interest,

Z, we have the data model

Z̃ = K(z)Z+Em,z = K(z)WQ+Et,z +Em,z = K(z)WQ+Ez̃,

where K(z) is an nr × ns observation matrix as above, Q and W were defined

previously, and Em,z and Et,z are the measurement and truncation error matrices,

respectively. As before, Ez̃ corresponds to the sum of these two matrices and

is assigned the matrix normal distribution Ez̃ ∼ Nnr,np(0,Σz,nr ,Σz,np), with
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specific choices depending on the application (e.g., see Section 2.2.2, Section 3,

and the online supplement).

2.2.2. Prior distributions

We specify prior distributions that provide a tradeoff between computational

convenience (given the “big data” nature of the applications of this methodology)

and model flexibility. However, as in any complex Bayesian hierarchical model,

the choice of prior distributions is subjective and can typically be modified if

suggested by a particular application. Specific choices for our application and

sensitivity analyses are discussed in the online supplement.

Consider the data model error covariances given in Eỹ ∼ Nnr,nd
(0,Σy,nr ,

Σy,nd
),Ex̃j

∼ Nnr,nu(0,Σxj ,nr ,Σxj ,nu), and Ez̃ ∼ Nnr,np(0,Σz,nr ,Σz,np). As

mentioned previously, in hierarchical spatial and spatio-temporal models, it is

typically difficult to identify such general covariance structures in data mod-

els given fairly complex dependence structures in the process model. Thus, it

is common in Bayesian hierarchical spatial and spatio-temporal analyses to as-

sume that the data model error covariance matrices are diagonal (e.g., Cressie

and Wikle (2011)). This is generally a reasonable assumption and is important

for computational tractability in “big data” applications. We assume Σy,nr =

diag(τ y,nr), Σy,nd
= diag(τ y,nd

), Σxj ,nr = diag(τ xj ,nr), Σxj ,nu = diag(τ xj ,nu),

Σz,nr = diag(τ z,nr) and Σz,np = diag(τ z,np). We could then specify conjugate

(inverse gamma) priors for these variance components. However, this still gener-

ally requires fairly strong prior information in order to identify these components.

As described in the online supplement, we do have prior information available

and, thus, further simplify these prior distributions accordingly.

Recall that the process model was given by (2.8). In the Bayesian paradigm,

the finite expansion coefficient matrices Fj and Q are random matrices and we

assume that they follow matrix normal distributions given by Fj ∼ Nnℓ,nkj
(µFj

,

ΣFj ,nℓ
,ΣFj ,nkj

) andQ ∼ Nnℓ,np(µQ,ΣQ,nℓ
,ΣQ,np), respectively. The matrix nor-

mal prior distributions are selected based on computational convenience in the

sense that they facilitate conjugate sampling and the inherent separability ac-

commodates high-dimensional data applications. Further, to facilitate conjugate

sampling and to increase model flexibility, the inverse covariance (precision) ma-

trices associated with ΣFj ,nℓ
, ΣFj ,nkj

, ΣQ,nℓ
, and ΣQ,np are assigned Wishart

distributions, Σ−1
Fj ,nℓ

∼ Wnℓ
(VFj ,nℓ

, vFj ,nℓ
), Σ−1

Fj ,nkj
∼ Wnkj

(VFj ,nkj
, vFj ,nkj

),

Σ−1
Q,nℓ

∼Wnℓ
(VQ,nℓ

, vQ,nℓ
), and finally Σ−1

Q,np
∼Wnp(VQ,np , vQ,np), respectively.

The matrices VFj ,nℓ
, VFj ,nkj

, VQ,nℓ
and VQ,np are specified scale matrices and

vFj ,nℓ
, vFj ,nkj

, vQ,nℓ
, and vQ,np are specified degrees of freedom, with the specific

choices depending on the particular application (e.g., see the online supplement).
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In the process model (2.8), Bj is the matrix of truncated expansion coeffi-

cients associated with the jth functional (image) covariates. To facilitate con-

jugate computation and accommodate high-dimensional data, we specify matrix

normal prior distributions Bj ∼ NP,ni(0,ΣB,Σni). The row components of Bj

are associated with the column components of Fj and Q. These covariance ma-

trices can be specified as warranted by specific applications. It is fairly common

in high-dimensional Bayesian applications to specify diagonal priors for these co-

variance matrices, e.g., ΣB = diag(τB,1, . . . , τB,P ), where τB,p, p = 1, . . . , P , are

hyperparameters. Alternatively, if there is no a prior scientific preference of spe-

cific parameters, to facilitate computation we might consider the simpler form,

ΣB = τBIP , with hyperparameter τB. In both cases, one typically specifies fairly

large values (relative to the scale of the data) for the hyperparameters to make

the priors less informative (e.g., see Section 3). We note also that one could fairly

easily perform stochastic search variable selection (see George (2000) for detailed

overview) for the elements of Bj . Such variable selection methods have recently

shown promise in other Bayesian functional/image covariate applications (e.g.,

see Holan et al. (2010); Wikle and Holan (2011); Holan et al. (2012)).

Finally, to facilitate model flexibility and conjugate computation, we specify

Wishart priors for Σ−1
nℓ

∼Wnℓ
(VG,nℓ

, vG,nℓ
) and Σ−1

ni
∼Wni(VG,ni , vG,ni), where

VG,nℓ
and VG,ni are specified scale matrices and vG,nℓ

and vG,ni are specified

values of degree of freedom. Specific choices for these hyperparameters depend

on the particular application (e.g., see the online supplement).

3. Soil Science Application: Spatial Prediction of Electrical Conduc-

tivity Profiles

We present our motivating problem and data, followed by Bayesian estima-

tion, and the results. Discussion surrounding the specific model choices used for

implementation and sensitivity analysis is provided in the online supplement.

3.1. Motivating problem

Scientific understanding of soil properties and processes is important for

many purposes, including crop and hydrologic modeling, the improvement of

sustainable agricultural production systems, and possible remediation of atmo-

spheric carbon dioxide through carbon sequestration. Measurement of important

soil properties traditionally requires significant and laborious field work to collect

samples as well as significant laboratory time and often expensive methodologies

to analyze the physical, chemical and biological properties of those samples.

Increasingly, proximal soil sensing technologies (Viscarra Rossel et al. (2012))

are being used to obtain high-resolution soil information for applications such

as precision agriculture and digital soil mapping. A key proximal soil sensing
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Figure 1. Left Panel: Elevation surface of the study area (measured in me-
ters). Spatial prediction grid (stars) and observation locations (dots). Right
Panel: The elevation surface (measured in meters) of the study area. Num-
bers correspond to the 26 observation locations considered in the analysis
and stars are locations with missing image covariate information. The spa-
tial convolution kernel knot locations are given by circles, as selected by a
space-filling design.

technology is optical diffuse reflectance spectroscopy (DRS) in the visible and

near-infrared (VNIR) wavelength ranges (∼400-2,500mm), which can be used to

obtain a great deal of information quickly in the laboratory (Sudduth and Hum-

mel (1996); Sudduth et al. (2010)) or in-situ with mobile sensors (Christy (2008)).

In particular, VNIR-DRS can provide information about subsurface soil variation

through wavelength by depth maps (or images). It is of increasing interest to be

able to use such information as covariates in spatial and spatio-temporal models

because it is relatively inexpensive to obtain and mitigates the need for expensive

and time-consuming laboratory analyses. The purpose of the analysis presented

here is to use functional/image covariates obtained from the VNIR soil spectra

depth profiles to predict functional (in depth) response curves in space via the

methodology described in Section 2.

3.2. Greenly research center data

We consider soil data collected at 28 sites as shown in Figure 1. In general,

we are interested in the spatial prediction of profile soil electrical conductivity

measured with a soil penetrometer (ECp) as a function of depth in terms of

images corresponding to the VNIR soil spectra depth profiles. At each location,

ECp is measured at up to 48 depth segments and the VNIR spectra are measured

at wavelengths from 500 to 2,500 nanometers (nm) for each depth segment as
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Figure 2. Left Panel: The VNIR covariate wavelength by depth image from
a randomly selected data location. Wavelength is measured in nanometers,
whereas each depth increment represents 2.5 cm. The color scale here repre-
sents decimal reflectance. Right Panel: ECp (measured in milliSiemens per
meter) as a function of depth (where each increment represents 2.5 cm) as
measured at the 26 locations shown in Figure 1.

shown in Figure 2. We note that some locations have missing information at

the deeper depth segments. To retain as many locations as possible for model

building, we thus only consider the first 37 depth segments. Consequently, we

have 26 locations with complete covariate and response information and these

are used to fit the model in our analysis. The two discarded locations are missing

most of the VNIR spectra information. The elevation at each spatial location in

the domain is also shown in Figure 1; this variable is used as a spatial covariate

in the analysis to help predict the ECp depth responses. The ECp response data

at the 26 locations considered here are shown in Figure 2.

Specifically, the soil profile measurements we consider were collected at the

University of Missouri Greenly Research Center near Novelty Missouri, USA

(Lat. 40.03◦, Lon. -92.19◦) (see Myers et al. (2011) for a comprehensive descrip-

tion). The exact locations sampled within the study site are shown in Figure 1.

Soil cores (4.5 cm × 1.2 m) were obtained from each location for ex-situ mea-

surements. Diffuse reflectance spectra (500× 2, 500 nm, FieldSpec Pro FR, ASD

Inc., Boulder, CO) were measured at 2.54 cm intervals along the core length. Soil

profile electrical conductivity (ECp) was measured in-situ using a Veris Profiler

3,000 with an insulated shaft (Veris Technologies, Salina, KS, USA) and interpo-

lated to 2.54 cm intervals. Both in-situ and ex-situ measurements were made in

the late spring of 2007 (see Myers et al. (2010, 2011) for data collection details).
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Figure 3. The leave-one-out prediction of ECp depth profile for each of the
26 observation locations. Panel (a) shows the posterior mean profile, (b)
shows the posterior standard deviation, (c) shows the truth depth profile
observations, and (d) shows the residuals between the posterior means and
the observed depth profiles.

3.3. Results

We first evaluated the ability to predict the ECp depth profiles through a

leave-one-out cross validation experiment. Figure 3 shows the out-of-sample pos-

terior predictions of the ECp depth profiles given the VNIR image predictors.

Specifically, Panel (a) shows the posterior predicted mean ECp depth profile

for each of the 26 observation locations, Panel (b) shows the associated poste-

rior standard deviation, Panel (c) gives the observed ECp depth profiles, and

Panel (d) shows the associated residuals (posterior mean minus the observed).

In general, from visual inspection, the functional spatial model is able to do a

reasonable job in predicting the ECp depth profiles across the various locations,

and the residual variation is relatively small compared to the magnitude of the
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Figure 4. Predicted ECp at depth segment 16 on the prediction grid shown
in Figure 1. (a) Posterior mean (negative values are truncated at 0), (b) Pos-
terior standard deviation (note: stars correspond to observation locations).

responses. However, there are a few depth regions in some of the residual profiles

that show coherent model error/bias across depth. In some cases (e.g., locations 8

and 9), the predicted standard deviation suggests this uncertainty. In other loca-

tions (e.g., 14 and 15) the model predictive standard deviation does not indicate

the issues shown in the residuals. This could be due to the extreme variability

in the ECp profiles (see Figure 2) at lower depths, and the possibility that the

image covariates are not always helpful in predicting at those depths. These

results also suggest that there should be spatially coherent prediction errors in

our spatial field predictions.

We are primarily interested in predicting spatial fields of the response vari-

able at various depths. Figure 1 shows a prediction grid over the spatial domain

of interest, along with the observation locations. As an illustration, the poste-

rior predicted mean and standard deviation on this grid for ECp at depth level

16 are shown in Figure 4. The spatial field is relatively smooth, as expected,

based on the low-rank discrete kernel convolution basis representation. Spatial

variation in ECp is driven mainly by spatial variation in clay content and soil

density. Examination of predicted ECp at depth level 16 matches the known
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trends at this study location (Myers et al. (2010, 2011)). The key trends affect-

ing ECp are due to systematic variation in the depth to clay layers and dense

glacial deposits. Each of these soil features has a relatively large ECp response.

Further, the depth to these layers is related to spatial variation in elevation and

geomorphology. Elevation decreases generally from southwest to northeast, with

a ridge surrounding the area on the east and west edges. As expected, the north-

east region of the plot indicates material with small ECp (< 30 mS/m) at depth

level 16. This region corresponds to areas of coarse sediment deposition. These

deposits have low electrical conductivity and bury the more conductive materi-

als. The eastern and western edges of the study area are connected ridgelines

that contain the study area. These areas have a relatively shallow depth to large

clay concentrations. This is reflected in the predicted ECp values in the 40 to 50

mS/m range.

4. Discussion and Conclusion

Scientists are increasingly faced with very large data signals from new tech-

nologies and they are interested in relating these “big data” signals to various

types of responses. We consider here a particular case where we have functional

responses and so-called “image” predictors. In this case, we use the term image

loosely, and consider it to be any two-dimensional continuous process, such as

a time-frequency representation of a time signal or a depth-wavelength repre-

sentation of a spectroscopic profile. We take into account here the additional

complication that both the functional response and the image covariates can be

spatially-dependent. This brings together several areas of research in functional

data analysis, spatial statistics, and non-stationary time series analysis.

We develop a flexible, yet fairly easy to implement, methodology for the

aforementioned problem by considering several layers of basis expansions. In

practice, these expansions are truncated, leading effectively to a complex Bayesian

mixed-effects multivariate multiple regression model. The major complication

with implementation is the potentially large number of covariates (even in the

basis expansion context), which is not an issue in our motivating application, but

may be mitigated by the use of stochastic search variable selection priors on the

parameters.

We demonstrate via an illustrative example that this methodology is useful

in the context of complex soil profile data. In particular, we consider a ECp depth

profile response variable as predicted by depth/wavelength images of VNIR mea-

surements. The leave-one-out predictions of these profiles were quite promising,

and spatial field prediction at a specific depth gave results that matched quite

nicely with scientific insight.
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Future extensions of this work include the consideration of additional covari-

ates that are spatially dependent, including those that lack depth information.

A real strength of this methodology will come from helping to suggest to practi-

tioners where they should take additional (image) observations in order to most

improve the predictions of the spatial distribution of the functional response.

We will consider such optimal adaptive spatial sampling design problems as an

extension to the work presented here.
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