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Abstract: There is a growing literature on the large-scale multiple testing in which

the Benjamini-Hochberg (BH) procedure and its variants play a key role. Almost

all this work assumes that the underlying distribution is normal in calculating

the p-values. Here we study the effect of non-normality on false discovery control

in large-scale multiple testing. The normal approximation, bootstrap calibration

and the skewness-corrected normal approximation methods of approximating the

individual p-values used to rank the significance levels are investigated. As an

illustration, we compare these procedures with the BH method in terms of the

cutting threshold and the false discovery rate.
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1. Introduction

There has been an increasing interest in recent years in multiple testing

problems arising from genomic data analysis, neuroimaging, and technical trad-

ing performance in financial markets, see for example, Abbas et al. (2013), Liu

and Shao (2013), Barras, Acaillet, and Wermers (2010), and Bajgrowicz and

Scaillet (2012). In such areas, often tens of thousands of tests are performed

simultaneously. In this paper, we focus on the multiple testing rule with a com-

mon threshold for all p-values so that some kind of compound error rate is under

control. In the seminal work, Benjamini and Hochberg (1995) (BH) suggest us-

ing the false discovery rate (FDR) as the compound error rate, and a step-up

adaptive procedure is proposed and proved to control the FDR. Table lists the

result of a large-scale test. Mathematically, FDR = E(V/(R ∨ 1)) = E[FDP ].

If the p-value corresponding to the ith individual test is Pi, the BH adaptive

procedure aims to find

κ = max{i;P(i) ≤
i

m
α}, (1.1)

where α is the nominal FDR level, P(i)’s are sorted p-values in ascending order.

The rule is to reject all null hypotheses corresponding to P(i), i = 1, . . . , κ.

The BH adaptive procedure results in the control of FDR under level α.

A modified BH procedure is later developed to incorporate an estimate of the
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Table 1. Number of errors committed when testing m hypotheses.

Non-significant Significant Total
True null hypotheses U V m0

False null hypotheses T S m−m0

m−R R m

true null rate into consideration, see Benjamini and Hochberg (2000). Instead of

fixing a FDR level first and then finding the cut point, Storey (2002) proposes a

direct way that prescribes a cut threshold first and then estimates the FDR level.

A natural conservative estimate of FDR, for a prescribed cutting threshold t, is

F̂DR(t) =
mπ̂0(λ)t

R(t)
, (1.2)

where R(t) is the total number of rejections, R(t) = ♯{i; Pi ≤ t, i = 1, . . . ,m},
and π̂0(λ) = ♯{i;Pi > λ}/m(1− λ) is a conservative estimate of the true null rate

π0, where λ is a tuning parameter in [0, 1). To gain more power, the optimal

threshold is

tα(m) = sup{t : F̂DR(t) ≤ α}. (1.3)

The multiple testing rule is to reject all hypotheses with Pi ≤ tα(m).

When λ = 0 (or equivalently π̂0(λ) ≡ 1), the Storey procedure (1.3) is

equivalent to the BH procedure (1.1). Procedures (1.1) and/or (1.3) are later

developed and refined from either the perspective of FDR control or FDR es-

timation, see for example, Benjamini and Yekutieli (2001), Benjamini, Krieger,

and Yekutieli (2006), Genovese and Wasserman (2004), Wu (2008), Hu, Zhao,

and Zhou (2011), Nettleton et al. (2006), and Liang and Nettleton (2012).

All the work is based on the assumption that the p-values can be calculated

accurately, while in practice the calculation of p-values is not easy and the null

distribution of the individual test statistic has to be known. If the population

distribution is normal, the t-statistic can be used for testing means, But when

the population distribution departs from normality, one has to approximate the

distribution of t-statistics using the normal or the bootstrap-t distribution. The

problem here is that the sample size is typically small- in microarray studies, for

example, the sample size is usually in the tens, while the dimensionality is very

large. This results in the inaccuracy of individual p-values, and the effect of this

inaccuracy on the control of FDR is not well understood.

This problem fits into the small-n-large-p paradigm. In this paper, we give

expansions of tα(m) in terms of approximate cutting thresholds, and expansions

of the false discovery rate in terms of approximate p-values. While the heavy-

tailed phenomenon does not affect the approximate cutting thresholds and the
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false discovery rate much, the asymmetry (skewness) of the population distribu-

tion does. We focus on the BH procedure. Investigation into the effect of the

inaccurate individual p-values on the estimation of π0 and the choice of λ in

π̂0(λ) is left as a separate project.

As to the effect of the normal approximation (NA) on the p-values, we show

that the approximate cutting threshold deviates to the left/right side of the

oracle threshold depending on the sign of the skewness, resulting in too con-

servative/liberal control of false discovery rate. For the bootstrap-t calibration

method on the p-values, We show that the approximate cutting threshold has sec-

ond order accuracy to the oracle cutting threshold leading to much better control

of false discovery rate. We propose a skewness-corrected normal approximation

(SC) method when the sign of the skewness is consistent with the direction of the

test hypotheses in some sense. Instead of correcting for skewness using only the

data within genes as in the bootstrap method, our method corrects for skewness

using the data within and across genes leading to better efficiency. Numerical

examples confirm our findings.

Related to this work, Fan, Hall, and Yao (2007) study the effect of the

NA and bootstrap-t calibration on the individual p-value calculation and on the

control of the family wise error rate using Bonferroni’s approach. Delaigle, Hall,

and Jin (2011) reveal the robustness and accuracy of the bootstrap-t calibration

in the individual p-value calculation with applications to the higher criticism test

based on the bootstrap-t distribution for detecting sparse signals. To the best of

our knowledge, there is no literature investigating the effect of non-normality on

the control/estimation of false discovery rate.

The present paper is organized as follows. In Section 2, we study the effect

of the inaccuracy of p-values on the cut threshold and false discovery rate using

three approximation methods. Simulations are reported on in Section 3. Section

4 presents a data example. Section 5 concludes. All proofs are postponed to the

Appendix.

2. The Model and Approximate Threshold

2.1. Model

Consider the model

Xij = µi + ϵij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2.1)

where for fixed i, the Xij ’s are random variables with mean µi and error ϵij ’s.

In a gene micro-array study, Xij denotes the expression level of gene i of array

j, the µi’s and ϵij ’s represent random mean effects and measurement errors of

gene expressions, respectively. In finance, Xij models the excess return of the
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ith asset over the jth investing period, µi and ϵij represent the expected excess

return and the risk including the market risk and idiosyncratic risk, respectively.

We need a technical assumption.

Assumption 1.

1. The µi’s are i.i.d. continuous random variables with a mixture distribution of

a point mass δ0 at the origin and a distribution µ(x) with no point mass at

the origin.

2. The ϵij’s, i = 1, . . . ,m, j = 1, . . . , n, are i.i.d. centered continuous random

variables; jointly the (µi, ϵi1, . . . , ϵin), i = 1, . . . ,m, are i.i.d. continuous ran-

dom vectors.

In gene micro-array studies, it is of interest to find the over- and/or under-

expressed genes; in finance, one hopes to identify the well-handled and/or badly

managed mutual funds, c.f., Barras, Acaillet, and Wermers (2010) and Bajgrow-

icz and Scaillet (2012). This is formally equivalent to testing against Hi : µi = 0,

i = 1, . . . ,m. Then Hi serves as an index having Bernoulli distribution with

Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1, Hi = 0 representing the null is true. We

assume that the alternative hypotheses are that µi > 0, i = 1, . . . ,m, we are in-

terested in finding the over-expressed genes or well-managed mutual funds. Part

of our theory extends to two-sided tests and also to two-sample problems (for

example, testing for differently expressed genes in case control studies) without

much effort.

The t-statistic is widely used in testing means and known for its robustness

to outliers. Here we use the t-statistic in order to calculate p-values. Let Ti =√
nXi/Si, where

Xi =
1

n

n∑
j=1

Xij , and S2
i =

1

n− 1

n∑
j=1

(Xij −Xi)
2. (2.2)

If the ϵij ’s are normally distributed r.v.s, the p-values can be calculated exactly,

but when the ϵij ’s are skewed and/or heavy-tailed, we have to use approximate

distributions of the Ti’s to find them. The latter is common in many practical

applications. For example, in the leukemia gene expression data studied in Sec-

tion 4, the estimated skewness is as high as 1.86. Another example comes from

finance, where it is common that the risk measured by the fluctuation of the

return time series is skewed, yielding the mean-variance-skewness efficient port-

folio analysis in recent developments, c.f., Briec, Kerstens, and Jokung (2007)

and Sentana (2008).

Let G0(n, t), G1(n, t), and F (n, t) be, respectively the null, alternative,

marginal c.d.f. of Ti’s. Let f(n, t) be the marginal p.d.f. of the Ti’s with

F (n, t) = 1 − F (n, t). For simplicity we suppress the dependence on n, and



FDR UNDER NON-NORMALITY 1883

write the above notation as G0(t), G1(t), F (t), f(t) and F (t), while noting that

any condition on these quantities implicitly assumes that it holds uniformly in n.

Assumption 2. f(n, t) is Lipschitz continuous uniformly in all n.

To find individual p-values, we use the NA, bootstrap calibration, and SC to

derive G0(t), then study the effect of the approximation on the false discovery

control. Since we have to approximate the distributions of a large number of Ti’s,

we consider the asymptotic regime as n,m → ∞. We fix α, the nominal FDR

level, across n, the sample size. When condsidering the finite sample performance,

α is fixed at an appropriate location relative to the magnitude of n.

2.2. Normal approximation

Let PN
i be the approximate p-value using the NA and T̃i be the observed

t-statistic. PN
i = 1−Φ(T̃i) with p.d.f. denoted by wN (t). The normally approx-

imated threshold in testing m hypotheses simultaneously is

tNα (m) = sup{t; mt

♯{i; PN
i ≤ t}

≤ α}. (2.3)

Take the estimated FDR (unknown) by the BH procedure committed at tNα (m) be

F̂DR(tNα (m)) =
mtNα (m)

♯{i;Pi ≤ tNα (m)}
. (2.4)

Similarly, in the limiting sense, take the counterpart cutting thresholds

tNα = sup{t;HN (t) :=
t

Pr(PN
1 ≤ t)

≤ α}, tα = sup{t;H(t) :=
t

Pr(P1 ≤ t)
≤ α}.

(2.5)

The tα(m) as (1.3) is known if the Pi’s are known, we call it the oracle threshold.

Typically, the larger the cutting threshold, the more power the procedure has but

the larger the FDR level. Thus underestimation of the oracle threshold brings

a lower FDR but also less power, and overestimation implies more power but

the FDR might not be well controlled. This is made precise by the following

theorem.

Theorem 1. Under Assumptions 1 and 2, suppose Eϵ411 is bounded above by a

constant B, and Φ−1(1− tNα ) = o(n1/4) for a prescribed α > 0. Suppose H ′(t) is

bounded below for t ∈ (tα, t
N
α ) and that wN (tNα ) < α−1 < wN (0). Then

tα(m)− tNα (m)

= C1(α, t
N
α , G−1

0 (1− tNα ))(Φ−1(1− tNα )−G−1
0 (1− tNα ))(1 + on(1)) +Op(

1√
m
),
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where

C1(α, t, u) =
αf(Φ−1(1− t))g0(u)F (u)

g0(u)F (u)− tf(u)

and, if 0 ≤ Φ−1(v) ≤ Bn1/4,

Φ−1(v)−G−1
0 (v) =

1

3
γn−1/2(Φ−1(v))2 − C2(B){n−1/2 + (1 + Φ−1(v))3n−1},

where γ is the skewness of ϵ11 and C2(B) is a positive constant depending only

on B.

Remark 1. The condition wN (tNα ) < α−1 < wN (0) is used to guarantee that

tNα (m) = tNα + Op(1/
√
m) and tα(m) = tα + Op(1/

√
m), see Lemma A.1 in the

Appendix.

Remark 2. Since α is fixed, the condition 0 ≤ Φ−1(1 − tNα ) ≤ Bn1/4 is auto-

matically satisfied if n is large enough. If α is set such that tNα is small, then

Φ−1(1− tNα ) is typically large relative to the magnitude of O(n1/4) when we con-

sider the finite sample performance. In this case, the principal bias is caused by

the presence of skewness γ. If the c.d.f of PN
1 is concave, often assumed in the

literature, C1(α, t, u) is positive uniformly for all α, t and u. Thus one can find

that the normally approximated threshold underestimates the oracle threshold if

the population distribution is positively skewed. Similarly the negative skewness

leads to overestimation.

When using tNα (m), targeted as α, the actual estimated FDR satisfies the

following decomposition.

Theorem 2. Under the conditions of Theorem 1,

F̂DR(tNα (m)) = α−α/3γn−1/2C3(Φ
−1(1−tNα ))(1+on(1))+O(n−1/2)+Op(

1√
m
)

(2.6)

for any fixed α satisfying 0 ≤ Φ−1(1−tNα ) ≤ Bn1/4 , where C3(u) =
u2f(u)

F (G−1
0 (1−tα))

.

Remark 3. From Theorem 2, the actual estimated FDR biases downward if the

population distribution is positively skewed and upward if it is negatively skewed

consistent with the observation in Remark 2.

We next study the false discovery proportion that results from using the

PN
i ’s,

FDPN
m (t) =:

♯{Hi = 0, PN
i ≤ t}

♯{PN
i ≤ t}

=
♯{Hi = 0, 1− Φ(T̃i) ≤ t}

♯{1− Φ(T̃i) ≤ t}
. (2.7)
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The point limit, FDRN (t), is expected to be

FDRN (t) =:
π0(1−G0(Φ

−1(1− t)))

Pr(PN
1 ≤ t)

. (2.8)

Theorem 3. Under the conditions in Theorem 1,

FDPN
m (tNα (m)) = π0α+π0α[exp (−1/3n−1/2(Φ−1(1− tNα ))3γ)R− 1]+Op(

1√
m
),

where R = 1+θ(n, α)(1+Φ−1(1−tNα ))n−1/2+(1+Φ−1(1−tNα ))4n−1, and θ(n, α)
is a bounded constant for α satisfying 0 ≤ Φ−1(1− tNα ) ≤ Bn1/4.

Remark 4. Theorem 3 shows that, in the limiting sense, the NA is too conser-
vative while less powerful in detecting the signals when γ > 0. When γ < 0, the
NA can be too liberal and result in the uncontrolled false discovery proportion.
See the results in our simulation studies.

2.3. Bootstrap-t approximation

Let X∗
i1, . . . , X

∗
in be a bootstrap resample from Xi = {Xi1, . . . , Xin}. Put

T ∗
i = (1/

√
n)

∑n
j=1(X

∗
ij −Xi)/S

∗, where

S∗2 = (n− 1)−1
n∑

j=1

(X∗
ij −Xi)

2.

Denote the discrete distribution of T ∗
i given Xi by Gi

b. Let Gb := G1
b . We

have P b
i = 1 − Gi

b(T̃i), where P b
i is the bootstrap p-value related to gene i with

p.d.f. denoted by wb(t). If we substitute the P b
i ’s into the multiple testing

procedure (1.3), we end up with the bootstrap approximated threshold and the
actual estimated FDR level (unknown)

tbα(m) = sup{t; mt

♯{i; P b
i ≤ t}

≤ α}, F̂DR(tbα(m)) =
mtbα(m)

♯{i; Pi ≤ tbα(m)}
. (2.9)

Similarly, we define

tbα = sup{t;Hb(t) :=
t

Pr(P b
1 ≤ t)

≤ α}. (2.10)

Theorem 4. Under Assumptions 1−2, suppose Eϵ411 ≤ B, that H ′(t) is bounded
below for t ∈ (tα, t

b
α), and that wb(tbα) < α−1 < wb(0). Then

tα(m)− tbα(m) = C1(α, t
b
α,Φ

−1(1− tbα))D(1− tbα)(1 + on(1)) +Op(
1√
m
),

where

D(v) = −1

3
E(γ − γ̂n(1))n

−1/2(Φ−1(v))2 + C4(B){n−1/2 + (1 + Φ−1(v))3n−1},

and γ̂n(1) is the sample skewness based on observations for gene 1 with divisor n,
and C4(B) is a bounded positive constant for v satisfying 0 ≤ Φ−1(v) ≤ Bn1/4.
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Remark 5. The bias term due to skewness is of smaller order here than in

Theorem 1 since γ̂n(1)−γ = Op(
√

1/n). The bootstrap-t approximation corrects

the skewness automatically and is of higher order accuracy than the NA in the

individual p-value calculation.

The actual estimated FDR satisfies the following decomposition.

Theorem 5. Under the conditions in Theorem 4,

F̂DR(tbα(m))− α

= α/3E(γ − γ̂n(1))n
−1/2(Φ−1(1− tbα))

2C3(G
−1
0 (1− tbα))(1 + on(1))

+O(n−1/2) +Op(
1√
m
),

for all α satisfying 0 ≤ Φ−1(1− tbα) ≤ Bn1/4.

We next study the false discovery proportion that results from using the

P b
i ’s,

FDP b
m(t) =

♯{Hi = 0, P b
i ≤ t}

♯{P b
i ≤ t}

=
♯{Hi = 0, 1−Gi

b(T̃i) ≤ t}
♯{1−Gi

b(T̃i) ≤ t}
. (2.11)

Its limit, FDRb(t), is expected to be

FDRb(t) =
π0E(1−G0(G

−1
b (1− t)))

Pr(P b
1 ≤ t)

. (2.12)

Theorem 6. Under the conditions in Theorem 4, if Eϵ811 ≤ B (B > 1), then

FDP b
m(tbα(m)) = π0α

(
1 +O[(1 + Φ−1(1− tbα))n

−1/2 + (1 + Φ−1(1− tbα))
4n−1]

)
+O(n−1/2) +Op(

1√
m
),

for all α satisfying 0 ≤ Φ−1(1− tbα) ≤ Bn1/4.

Remark 6. Theorems 5−6 demonstrate that the bootstrap-t approximation is

more robust in control of false discovery rate/proportion than the NA. To guar-

antee the O(n−1/2) term, we need the eighth moment of ϵ11 in Theorem 6.

2.4. Skewness-corrected normal approximation

While the bootstrap calibration automatically corrects the skewness term,

under the model (2.1) the skewness of Xij ’s under the null hypotheses is almost

known since a very accurate estimate based on all m × n observations can be
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used, see (2.13). Bootstrap calibration uses n observations to correct the skew-
ness term, under (2.1), and loses efficiency in the estimation, resulting in less
robustness and accuracy in approximating the oracle threshold and false discov-
ery control. The computation is also time consuming when there are a lot of
tests. Our estimator of skewness is

γ̂m = −
∑m

i=1

∑[n/3]
j=1 (Xi(3j) +Xi(3j−1) − 2Xi(3j−2))

3/([n/3]6m)∑m
i=1

∑[n/2]
j=1 (Xi(2j) −Xi(2j−1))2/([n/2]2m)

. (2.13)

By applying the Central Limit Theorem, we have the following.

Lemma 1. Under Assumption 1, if Eϵ611 < ∞,

γ̂m = γ +Op(
1√
m
).

Let 1 − Φc(x) = (1 − Φ(x)) exp (−1/3n−1/2x3γ̂m). By Lemma 1, a slight
variation of Theorem 4 of Delaigle, Hall, and Jin (2011), or Theorem 2 of Wang
and Hall (2009), shows that under the null hypotheses,

G0(x)

1− Φc(x)
= 1+ θ(n, x){(1+ |x|)n−1/2+(1+ |x|)4n−1}+Op(m

−1/2n1/4) (2.14)

as n → ∞, where θ(n, x) is bounded by a finite positive constant C1(B) uniformly
for all distribution of X with E(|X/σ|4) ≤ B (B > 1), and uniformly for all x
satisfying 0 ≤ x ≤ Bn1/4. When x is fixed the OP term is of order m−1/2.

We can calculate the p-value for gene i as P c
i = 1 − Φc(T̃i) with p.d.f. de-

noted by wc(t), where T̃i is the observed t-statistic. Correspondingly, we define
the skewness-corrected normal approximated threshold and the actual estimated
FDR as

tcα(m) = sup{t; mt

♯{i;P c
i ≤ t}

≤ α}, F̂DR(tcα(m)) =
mtcα(m)

♯{i;Pi ≤ tcα(m)}
. (2.15)

Similarly, we take

tcα = sup{t;Hc(t) :=
t

Pr(P c
1 ≤ t)

≤ α}. (2.16)

Theorem 7. Under the conditions in Theorem 1, if wc(tcα) < α−1 < wc(0) and
γ > 0, then

tα(m)−tcα(m)

= C1(α, t
c
α,Φ

−1(1−tcα))C2(B){n−1/2+(1+Φ−1(1−tcα))
3n−1}(1+on(1))

+Op(
1√
m
),

for v satisfying 0 ≤ Φ−1(v) ≤ Bn1/4.
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Remark 7. We assume that γ > 0, otherwise Φc(x) is not well defined. In

practice, this condition can be well identified and verified easily. Actually, the

SC method works for negative skewness when we are testing for under-expressed

genes.

Remark 8. From Theorem 7, the effect of the skewness is almost completely

eliminated except for a term of order Op(1/
√
m) which is typically small for large

scale multiple testing. This renders a more robust and accurate approximation

approach to finding the approximate threshold, compared with the NA and the

bootstrap-t calibration.

The actual estimated FDR satisfies

Theorem 8. Under the conditions in Theorem 7,

F̂DR(tcα(m)) = α+O(n−1/2 + (1 + Φ−1(1− tcα))n
−1) +Op(

1√
m
) (2.17)

for α satisfying 0 ≤ Φ−1(1− tcα) ≤ Bn1/4.

We next study the false discovery proportion that results from using the P c
i ’s

defined as follows.

FDP c
m(t) =

♯{Hi = 0, P c
i ≤ t}

♯{P c
i ≤ t}

=
♯{Hi = 0, 1− Φc(T̃i) ≤ t}

♯{1− Φc(T̃i) ≤ t}
. (2.18)

Its limit, FDRc(t), is expected to be

FDRc(t) =
π0(1−G0(Φ

−1
c (1− t)))

Pr(P c
1 ≤ t)

. (2.19)

Theorem 9. Under the conditions in Theorem 7,

FDP (tcα(m)) = π0α
(
1 +O[(1 + Φ−1(1− tcα))n

−1/2 + (1 + Φ−1(1− tcα))
4n−1]

)
+Op(

1√
m
) (2.20)

for α satisfying 0 ≤ Φ−1(1− tcα) ≤ Bn1/4.

Remark 9. From Theorems 8−9, the SC is more robust and accurate in the false

discovery control than the two previous methods. This is seen in our numerical

analysis.

3. Simulation

In this section, we conduct extensive simulations to check our findings. We

generated data for m = 6, 000 genes. For each gene, we generated n = 30
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expression data. We set π0 = 0.9 and let µ(x) be the c.d.f of N(µ0, 0.05
2) with

µ0 = 0.05, 0.10, 0.15, and 0.20. To produce skewness, we generated measurement

errors from the following.

Model I Errors are (χ2
1 − 1) ∗

√
0.025/2, a right skewed centered r.v. with

standard deviation 0.05, and signal to noise ratio ranging from 0.71 to 2.83;

Model II Errors are Γ(3, 1/3)∗
√

0.025/2, a right skewed centered r.v. with

standard deviation equal to 0.193, and signal to noise ratio ranging from 0.26

to 1.

For each gene, we calculated the t-statistics and then used the NA, bootstrap-

t approximation and SC methods to find approximate p-values. For the boot-

strap method, 1,000 resamples were drawn for each gene. The simulations were

repeated 100 times, and the averaged approximate thresholds and false discovery

proportions were recorded. The standard errors are given in parentheses, see

Tables 2−3. We make the following remarks.

All FDP records are almost under the control of their nominal levels. But the

bootstrap and SC methods outperform the NA in their accuracy to the nominal

FDR levels. Across the board, the SC method works best. This is further

confirmed by the boxplots in the right panel of Figure 1.

The average threshold obtained by the NA method is always less than those

of the bootstrap and SC methods, consistent with Theorems 1, 4, and 7, see

also the left panel in Figure 1. Correspondingly, the average FDP levels by the

NA are always less than those of the bootstrap and SC methods, consistent with

Theorems 3, 6, and 9.

Almost all average FDP levels are biased downward. One source of the bias is

the fact that we conservatively estimate π0 in this paper by 1, as in Benjamini and

Hochberg (1995). The oracle upper bound of the false discovery rate according

to Theorems 3, 6, and 9 is nearly π0α, equal to 0.09 and 0.135 respectively.

As the signal to noise ratio increases, the standard errors of the FDP records

by all three methods decrease and the average thresholds have an increasing

trend, expected since it is easier to detect the signals when they grow stronger.

For γ < 0, we conducted a similar simulation, but for generating the mea-

surement error from (1 − χ2
1) ∗

√
0.025/2. The results are given in Table 4. We

make the following remarks based on Table 4.

The NA method is too aggressive, resulting in large upward biases to the

cutting threshold and the false discovery proportion. This is consistent with our

theoretical findings. The bootstrap calibration method reduces the bias though

it still leads to upward biases, due in part to the small sample size.

We also included the SC method although in Section 2.4 positive skewness

is required. It appears that the approximate threshold and the false discovery
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Table 2. The average approximate thresholds and false discovery propor-
tions as well as their standard errors in the parentheses (γ > 0) for Model
I. AT and FDP stand for the approximate threshold and false discovery
proportion respectively. NA, BA and SC are respectively the short abbrevi-
ations of the NA, bootstrap approximation and skewness-corrected normal
approximation.

µ 0.05 0.10 0.15 0.20
α = 0.10

NA 0.0033 (0.0003) 0.0074 (0.0004) 0.0096 (0.0004) 0.0101 (0.0004)
AT BA 0.0049 (0.0003) 0.0087 (0.0004) 0.0103 (0.0004) 0.0107 (0.0004)

SC 0.0051 (0.0004) 0.0090 (0.0005) 0.0105 (0.0004) 0.0110 (0.0004)
NA 0.0068 (0.0057) 0.0118 (0.0051) 0.0138 (0.0048) 0.0142 (0.0043)

FDP BA 0.0670 (0.0141) 0.0653 (0.0112) 0.0619 (0.0107) 0.0643 (0.0091)
SC 0.0991 (0.0166) 0.0915 (0.0134) 0.0859 (0.0124) 0.0888 (0.0115)

α = 0.15
NA 0.0054 (0.0005) 0.0117 (0.0006) 0.0147 (0.0006) 0.0154 (0.0006)

AT BA 0.0079 (0.0006) 0.0137 (0.0007) 0.0161 (0.0007) 0.0166 (0.0007)
SC 0.0084 (0.0006) 0.0143 (0.0007) 0.0167 (0.0007) 0.0171 (0.0007)
NA 0.0146 (0.0078) 0.0229 (0.0080) 0.0275 (0.0071) 0.0283 (0.0067)

FDP BA 0.0974 (0.0167) 0.0944 (0.0134) 0.0968 (0.0144) 0.0992 (0.0122)
SC 0.1374 (0.0186) 0.1272 (0.0143) 0.1283 (0.0146) 0.1280 (0.0132)

Figure 1. Boxplots of the approximated threshold (left panel) and FDP
(right panel) for NA, BA, and SC. Here α = 0.15, µ = 0.15, and the data
was generated from Model I.

proportion is biased downward severely across the board. The reason is that

when γ < 0 and we observe a large t-statistics (this is typical in the simulation),

1−Φc renders an unreasonably large p-value, see (2.14). This leaves a potential

signal undetected and hence a too-conservative procedure.

When γ < 0, the SC fails while the other two approaches are not satisfactory.

In this case we are expecting a better approximation to make the FDP well
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Table 3. The averaged approximate thresholds and false discovery propor-
tions as well as their standard errors in the parentheses (γ > 0) for Model
II. AT and FDP stand for the approximate threshold and false discovery
proportion, respectively. NA, BA and SC are respectively the short ab-
breviations of NA, bootstrap approximation and skewness-corrected normal
approximation.

µ 0.05 0.10 0.15 0.20
α = 0.10

NA 0.0070 (0.0004) 0.0098 (0.0004) 0.0105 (0.0004) 0.0106 (0.0004)
AT BA 0.0075 (0.0004) 0.0102 (0.0005) 0.0109 (0.0003) 0.0110 (0.0004)

SC 0.0078 (0.0004) 0.0105 (0.0004) 0.0112 (0.0004) 0.0113 (0.0005)
NA 0.0521 (0.0112) 0.0528 (0.0108) 0.0549 (0.0090) 0.0534 (0.0096)

FDP BA 0.0934 (0.0152) 0.0902 (0.0128) 0.0899 (0.0117) 0.0882 (0.0118)
SC 0.1168 (0.0158) 0.1088 (0.0132) 0.1096 (0.0142) 0.1094 (0.0132)

α = 0.15
NA 0.0110 (0.0006) 0.0153 (0.0008) 0.0164 (0.0006) 0.0165 (0.0007)

AT BA 0.0120 (0.0007) 0.0163 (0.0008) 0.0172 (0.0007) 0.0173 (0.0007)
SC 0.0125 (0.0007) 0.0168 (0.0008) 0.0177 (0.0007) 0.0178 (0.0008)
NA 0.0814 (0.0135) 0.0878 (0.0116) 0.0893 (0.0118) 0.0882 (0.0130)

FDP BA 0.1341 (0.0177) 0.1341 (0.0155) 0.1314 (0.0138) 0.1299 (0.0140)
SC 0.1620 (0.0176) 0.1607 (0.0157) 0.1563 (0.0153) 0.1540 (0.0143)

Table 4. The averaged approximate thresholds and false discovery propor-
tions, with their standard errors in parentheses (γ < 0).

µ 0.05 0.10 0.15 0.20
α = 0.10

NA 0.0109 (0.0005) 0.0146 (0.0005) 0.0166 (0.0005) 0.0175 (0.0006)
AT BA 0.0029 (0.0002) 0.0057 (0.0006) 0.0086 (0.0004) 0.0105 (0.0005)

SC 0.0004 (0.0001) 0.0011 (0.0001) 0.0023 (0.0002) 0.0038 (0.0003)
NA 0.5941 (0.0173) 0.4975 (0.0169) 0.4520 (0.0151) 0.4399 (0.0147)

FDP BA 0.3903 (0.0369) 0.2737 (0.0231) 0.2211 (0.0190) 0.2035 (0.0162)
SC 0.0983 (0.0558) 0.0330 (0.0202) 0.0157 (0.0125) 0.0103 (0.0058)

α = 0.15
NA 0.0189 (0.0008) 0.0247 (0.0010) 0.0278 (0.0009) 0.0175 (0.0006)

AT BA 0.0052 (0.0006) 0.0102 (0.0008) 0.0149 (0.0009) 0.0105 (0.0005)
SC 0.0006 (0.0001) 0.0016 (0.0002) 0.0035 (0.0003) 0.0038 (0.0003)
NA 0.6231 (0.0180) 0.5366 (0.0174) 0.5025 (0.0148) 0.4399 (0.0147)

FDP BA 0.4163 (0.0362) 0.3061 (0.0230) 0.2726 (0.0184) 0.2035 (0.0162)
SC 0.0943 (0.0653) 0.0316 (0.0226) 0.0157 (0.0098) 0.0103 (0.0058)

controlled yet the BH procedure powerful.

Similar observations are illustrated by the boxplots in Figure 2.
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Figure 2. Boxplots of the approximated threshold (left panel) and FDP
(right panel) for NA, BA, and SC. Here α = 0.15, µ = 0.15, and the mea-
surement error was generated from (1− χ2

1) ∗
√
0.025/2.

Table 5. The approximate thresholds using NA, BA, and SC under four nominal levels.

α 0.05 0.10 0.15 0.20
NA 0.0105 0.0247 0.0418 0.0600

AT BA 0.0107 0.0257 0.0442 0.0635
SC 0.0128 0.0289 0.0463 0.0669

4. An Example

We applied our methods to the leukemia data of the expression levels of 5,000
genes from 27 patients. The data set is from Broad Institute and downloadable
from http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. One
is interested in finding the over-expressed genes relative to the expression levels
of AML patients, and this can be answered via multiple testing techniques. The
raw data is adjusted by standardizing the expression levels of 27 observations
for each gene and transforming the corresponding center to that of the AML
expression levels. We then calculate the t-statistic for each gene. We deleted
those genes with too large t-statistics in absolute value (> 5). Our ultimate
data set consisted of 4,749 adjusted gene expression values and 4,749 t-statistics.
Figure 3 shows the histogram of the centered expression data, which depicts a
slight longer right tail than the left tail.

Our estimated skewness of the measurement error is 1.8625, far from the
normal. From the perspective of FDR control, we have to find a common thresh-
old to find interesting genes. Table 5 displays the estimated thresholds using the
NA, BA, and SC methods for nominal levels α = 0.05, 0.10, 0.15, and 0.20. Our
observations are as follows.

The estimated thresholds increase from the first to the third row for fixed α,
as expected when γ > 0. Our proposed SC method is the most powerful for all

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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Figure 3. The histogram of the centered adjusted expression data.

levels of FDR as the thresholds for SC are the largest. From Theorems 2, 5, 8,

and the simulation studies, we believe that the actual FDR resulting from using

the BA and SC methods are closer to the nominal level than the NA method,

and thus the SC method would be most reliable among all three procedures.

5. Discussion

We have investigated the effect of the non-normality on the cutting threshold

and FDR control/estimation in multiple testing. Although we conservatively set

π0 = 1 in our asymptotic theory, our results can be generalized to incorporate

other conservative estimates of π0, such as that proposed by Storey (2002). The

effect of inaccurate p-values on the estimation of π0 is itself an interesting topic

which is left as a future research project. As demonstrated in Theorems 1, 4, and

7, for the finite sample performance of the approximate FDR control methods,

α is usually restricted to be away from 0 with a lower bound related to n1/4.

What happens if α is very close to 0 as in the sparse signal detection? Is there

a more accurate approximation method that can relax the restriction on α? We

expect that the saddlepoint approximation to the t-statistics would be a good

alternative, and leave this problem to our future research.

We assumed independence structure in the data, but believe that our results

can be extended to the situation where some weak dependence structure is im-

posed, such as the conditional independence structure assumed in Wu (2008).

The fundamental fluctuation equation (A.1) and Lemma 1 are not much affected

under weak dependence. For the general dependent case, a possible way to deal

with the correlation among individual test statistics is via factor modeling so that

the individual t-test statistics can be constructed based on the factor-corrected
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data that are approximately independent, or at most weakly dependent, since the
factor-corrected data is nearly only related to the idiosyncratic or firm-specific
error in econometrics, see Fan, Han, and Gu (2012) and the references therein.
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Appendix: Proofs

Lemma A.1. Under the conditions in Theorem 1, tNα (m) = tNα + Op(m
−1/2);

Under the conditions in Theorem 4, tbα(m) = tbα + Op(m
−1/2); Under the con-

ditions in Theorem 7, tcα(m) = tcα + Op(m
−1/2). If w(tα) < α−1 < w(0), then

tα(m) = tα +Op(1/
√
m), where w(t) is the p.d.f. of P1.

Proof. We only prove the first of three since the others can be proved similarly.
Let WN (t) and WN

m (t) be the distribution and empirical distribution of the PN
i ’s,

respectively. By Theorem 2.11 of Stute (1982),

sup
|u|≤c/

√
m

∥∥WN
m (t+ u)−WN

m (t)− (WN (t+ u)−WN (t))
∥∥ = O(m−3/4 log (m))

(A.1)
almost surely. Now we prove Pr(tNα (m) < tNα + C/

√
m) → 1 for some constant

C. By the definition of tNα (m) and (A.1), it is equivalent to show that

Pr

(
tNα + C/

√
m

WN
m (tNα + C/

√
m)

> α

)
→ 1, (A.2)

for large enough m. By (A.1) and a Taylor expansion, it suffices to show that

Pr

(
tNα +

C√
m

> αWN
m (tNα ) + αwN (tNα )

C√
m

+O
(( C√

m

)2)) → 1. (A.3)

Since WN
m (tNα ) = WN (tNα ) + OP (1/

√
m) and αWN (tNα ) = tNα , (A.3) holds if

wN (tNα ) < 1/α. Similarly, we can prove that Pr(tNα (m) > tNα − C/
√
m) → 1.

Proof of Theorem 1. By Lemma A.1, we have tα(m) − tα = Op(1/
√
m) and

tNα (m)− tNα = Op(1/
√
m). Then it suffices to show that

tα− tNα = C1(α, t
N
α , G−1

0 (1− tNα ))(Φ−1(1− tNα )−G−1
0 (1− tNα ))(1+ on(1)). (A.4)
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By (A.5) of Delaigle, Hall, and Jin (2010), we have

G−1
0 (1− tNα )− Φ−1(1− tNα )

= −1

3
γn−1/2(Φ−1(1− tNα ))2 + θ(n, α){n−1/2 + (1 + Φ−1(1− tNα ))3n−1}, (A.5)

where θ(n, α) satisfies |θ(n, α)| ≤ C(B) (C(B) is a bounded positive constant)

uniformly for all α such that 0 ≤ Φ−1(1− tNα ) ≤ Bn1/4.

We next show that H(tNα ) and H(tα) are close enough, which implies that tNα
and tα are close enough. By the property of f(u) and the Mean Value Theorem,

we have

H(tNα )−H(tα)=H(tNα )− α = H(tNα )−HN (tNα )

=
tNα (F (Φ−1(1− tNα ))− F (G−1

0 (1− tNα )))

F (G−1
0 (1− tNα ))F (Φ−1(1− tNα ))

=
α

F (G−1
0 (1− tNα ))

(F (Φ−1(1− tNα ))− F (G−1
0 (1− tNα )))

=
α(1 + on(1))

F (G−1
0 (1−tNα ))

f(Φ−1(1−tNα ))
(
G−1

0 (1−tNα )−Φ−1(1−tNα )
)
.(A.6)

(A.5) and (A.6) imply that tNα − tα = on(1). Letting ξ ∈ (tα ∧ tNα , tNα ∨ tα), we

have by the Mean Value Theorem and the condition on H ′(t),

tα − tNα =
H(tα)−H(tNα )

H ′(ξ)
=

H(tα)−H(tNα )

H ′(tNα )
(1 + on(1))

=
(
H(tα)−H(tNα )

) (1 + on(1))F
2
(G−1

0 (1− tNα ))g0(G
−1
0 (1− tNα ))

g0(G
−1
0 (1− tNα ))F (G−1

0 (1−tNα ))−tNα f(G−1
0 (1−tNα ))

. (A.7)

Combining (A.5), (A.6), and (A.7) completes the proof of (A.4).

Proof of Theorem 2. By the definition of tα(m), we have

F̂DR(tNα (m)) = F̂DR(tNα (m))− F̂DR(tα(m)) + α

= α−
(
F̂DR(tα(m))− F̂DR(tα) + F̂DR(tα)− F̂DR(tNα )

+F̂DR(tNα )− F̂DR(tNα (m))
)
. (A.8)

We investigate the terms in (A.8) one by one. By (A.1),

F̂DR(tα(m))− F̂DR(tα) = α− mtα
R(tα)

=
αF (G−1

0 (1− tα))− tα

F (G−1
0 (1− tα))

+OP (
1√
m
)

= OP (
1√
m
). (A.9)
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By (A.1) and Lemma 2,

F̂DR(tNα )− F̂DR(tNα (m))

=
mtNα
R(tNα )

− mtNα (m)

R(tNα (m))

=
tNα

F (gα,N )
− tNα (m)

F (gα,N,m)
+OP (

1√
m
)

=
(tNα − tNα (m))F (gα,N,m) + tNα (m)(F (gα,N,m)− F (gα,N ))

F (gα,N )F (gα,N,m)

= Op(
1√
m
), (A.10)

where gα,N,m = G−1
0 (1 − tNα (m)), gα,N = G−1

0 (1 − tNα ). For the middle term in

(A.8), we have

F̂DR(tα)− F̂DR(tNα )

=
mtα
R(tα)

− mtNα
R(tNα )

+Op(
1√
m
)

=
(tα − tNα )F (gα,N ) + tNα (F (gα,N )− F (G−1

0 (1− tα)))

F (G−1
0 (1− tα))F (gα,N )

+Op(
1√
m
)

=
(tα − tNα )(g0(gα,N )F (gα,N )− tNα f(gα,N ))(1 + on(1))

g0(gα,N )F (gα,N )F (G−1
0 (1− tα))

+Op(
1√
m
). (A.11)

By (A.6) and (A.7),

F̂DR(tα)− F̂DR(tNα )

=
αf(Φ−1(1− tNα ))

F (G−1
0 (1− tα))

(−G−1
0 (1− tNα ) + Φ−1(1− tNα ))(1 + on(1)). (A.12)

By (A.8), (A.9), (A.12), (A.10), and (A.5) we have proved the theorem.

Proof of Theorem 3. By (A.1), Lemma A.1, and (A.1) of Delaigle, Hall, and

Jin (2010),

FDPN
m (tNα (m))

=

∑m
i=1 I(Hi = 0, PN

i < tNα (m))∑m
i=1 I(P

N
i < tNα (m))

=

∑m
i=1 I(Hi = 0, PN

i < tNα )∑m
i=1 I(P

N
i < tNα )

+OP (
1√
m
)

=
π0Pr

(
T̃i > Φ−1(1− tNα )

)
Pr

(
PN
1 < tNα

) +OP (
1√
m
)

= π0α exp (−1/3γn−1/2[Φ−1(1− tNα )]3)
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×
(
1 + θ(n, α)[(1 + Φ−1(1− tNα ))n−1/2 + (1 + Φ−1(1− tNα ))4n−1]

)
+OP (1/

√
m). (A.13)

Proof of Theorem 4. Let γ̂n(i) and γ̃n(i) be the sample skewness and kurtosis

based on the observations for gene i with the divisor equal to n, respectively. By

(A.8) of Delaigle, Hall, and Jin (2010), we have

G−1
0 (1− tbα)− (Gi

b)
−1(1− tbα)

= −1

3
(Φ−1(1− tbα))

2(γ − γ̂n(i))n
−1/2

−Θ(n, α){n−1/2 + (1 + Φ−1(1− tbα))
3n−1}, (A.14)

where Θ(n, α) satisfies |Θ(n, α)| ≤ C(B) for all Xi with Si > 1/2 and γ̃n(i) ≤ B,

uniformly for the distributions of X satisfying EX = 0, EX2 = 1, and EX4 ≤ B,

and for α such that 0 ≤ Φ−1(1− tbα) ≤ Bn1/4.

We investigate how close H(tα) is to H(tbα). Recall that Gb := G1
b . By some

calculations we have

H(tα)−H(tbα) =
α

F (G−1
0 (1− tbα))

(F (G−1
0 (1− tbα)−EF (G−1

b (1− tbα)))), (A.15)

with

F (G−1
0 (1− tbα)− EF (G−1

b (1− tbα)))

= E[F (G−1
0 (1− tbα))− F (G−1

b (1− tbα))](I(S1 >
1

2
) + I(S1 ≤

1

2
)). (A.16)

By Markov’s inequality,

Pr(S1 ≤
1

2
) ≤ Pr(|S2

1 − 1| ≥ 3

4
) ≤ C(B)

n
. (A.17)

By the Dominance Convergence Theorem, we have

Pr(γ̃n(1) ≤ B)− 1 = on(1). (A.18)

From (A.16), (A.17), and (A.18),

F (G−1
0 (1− tbα)− EF (G−1

b (1− tbα)))

= E[F (G−1
0 (1−tbα)−F (G−1

b (1−tbα)))]I(S1>
1

2
)I(γ̃n(1)≤B)(1+on(1)). (A.19)

Let ζ be some random variable taking values in (G−1
0 (1−tbα)∧G−1

b (1−tbα), G
−1
0 (1−

tbα) ∨G−1
b (1− tbα)). By (A.14),

F (G−1
0 (1− tbα)− EF (G−1

b (1− tbα)))
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= Ef(ζ)
(
G−1

0 (1− tbα)−G−1
b (1− tbα)

)
I(S1 >

1

2
)I(γ̃n(1) ≤ B)(1 + on(1))

= Ef(G−1
0 (1− tbα))

(
G−1

0 (1− tbα)−G−1
b (1− tbα)

)
×I(S1 > 1/2)I(γ̃n(1) ≤ B)(1 + on(1)). (A.20)

On the other hand,

tbα−tα =
H(tbα)−H(tα)

H ′(tbα)
(1 + on(1))

=
(H(tbα)−H(tα))F

2
(G−1

0 (1− tbα))g0(G
−1
0 (1− tbα))

F (G−1
0 (1−tbα))g0(G

−1
0 (1−tbα))−tbαf(G

−1
0 (1−tbα))

(1+on(1)). (A.21)

Substituting (A.20) and (A.14) into (A.15), and then substituting (A.15) into

(A.21) proves the theorem.

Proof of Theorem 5. The proof of Theorem 5 is similar to that of Theorem 2.

Proof of Theorem 6. The proof of Theorem 6 is similar to that of Theorem

3, if we use (A.2) instead of (A.1) of Delaigle, Hall, and Jin (2010).

Proof of Theorem 7. (2.14) implies that

Φ−1
c (v) = Φ−1(v)

(
1− 1

3
(γ̂m)n−1/2Φ−1(v)

+θ̃(n, α){(1 + Φ−1(v))−1n−1/2 + (1 + Φ−1(v))2n−1}
)
, (A.22)

where θ̃(n, α) ≤ C(B), a bounded constant for v satisfying 0 ≤ 1 − Φ−1(v) ≤
Bn1/4. The proof of the present theorem is the same as that of Theorem 1,

except for replacing tNα there by tcα, and G−1
0 (·)− Φ−1(·) by G−1

0 (·)− Φ−1
c (·).

Proof of Theorem 8. The proof of Theorem 8 is similar to that of Theorem 2.

Proof of Theorem 9. The proof of Theorem 9 is similar to that of Theorem 3.
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