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Abstract: We investigate the connections between local polynomial regression,

mixed models, and penalized trigonometric series regression. Expressing local poly-

nomial regression in a projection framework, we derive equivalent kernels for both

interior and boundary points. For interior points, it is shown that the asymptotic

bias decreases as the order of polynomial increases. Then we show that, under some

conditions, the local polynomial projection approach admits an equivalent mixed

model formulation where the fixed effects part includes the polynomial functions.

The random effects part in the representation is shown to be the trigonometric

series, asymptotically. The connections are extended to partial linear models and

additive models. These results suggest a new smoothing approach using a com-

bination of unpenalized polynomials and penalized trigonometric functions. We

illustrate the potential usefulness of the new approach through several examples.

Key words and phrases: Additive model, ANOVA decomposition, equivalent kernel,

mixed model, partial linear model, projection, varying coefficient model.

1. Introduction

The method of local polynomial regression (LPR) (Fan and Gijbels (1996))

has enjoyed wide popularity due to its attractive theoretical properties. For

estimating an unknown regression function, it was suggested by Fan and Gijbels

(1996) that choosing an odd degree polynomial, e.g. p = 1, is better than the next

lower even order, e.g. p = 0, since the asymptotic bias of p = 1 is simpler than

that of p = 0 without cost in the asymptotic variance. In this paper, we extend

the investigation in Huang and Chen (2008) to form a projection framework

for LPR and establish two key results. For interior points, the asymptotic bias

of local p-th polynomial projection estimates is of order h2(p+1) for 0 ≤ p ≤ 3,

where h is the bandwidth. This result is more intuitive and offers a different view

than Fan and Gijbels (1996). Further, local polynomial projection has interesting

connections to mixed models (Fitzmaurice, Laird, and Ware (2004)), that suggest

a new smoothing approach of taking a combination of unpenalized polynomials

and penalized trigonometric functions for curve fitting. They also imply that

using mixed model software as smoothing tools is not only for penalized splines
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(Ruppert, Wand, and Carroll (2003)), but also for more general penalized series

methods.

In Section 2, we review local linear projection, first considered in Huang and

Chen (2008). Section 3 presents an extension to local polynomial projection.

Theorem 1 derives equivalent kernels for local quadratic and cubic polynomial

projection estimates and establishes the asymptotic bias results. Theorem 2 in-

vestigates equivalent kernels for a general class of two-step projection-type kernel

estimators and includes results for estimation at the boundary region. Theorem

3 in Section 4 shows that the local polynomial projection approach admits an

equivalent mixed effects model formulation in which the fixed effects part in-

cludes the polynomial functions. The trigonometric series is shown in Theorem

4 to form a penalized basis, asymptotically, for the random effects. In addition,

when 0 ≤ p ≤ 3, each trigonometric function receives different penalty weight:

the higher the frequency, the larger the penalty weight. The mixed model con-

nection is further extended to partial linear models and additive models, with

the latter linked to backfitting estimation.

These results renew using the trigonometric functions as a regression tool

(Graybill (1976); Eubank (1988); Dette and Melas (2003)) and suggest a dif-

ferent smoothing approach by taking a combination of unpenalized polynomials

and penalized trigonometric functions for curve fitting. In the literature, Graybill

(1976) and Eubank and Speckman (1990) considered polynomial-trigonometric

regression with both parts unpenalized, while the trigonometric spline approach

(Wang (2011)) does not include polynomials except for an intercept. The orthog-

onality of the trigonometric functions allows one to avoid problems of collinearity

so the proposed approach is a practical alternative to the use of such smoothing

methods as penalized splines. In Section 5, we illustrate the potential usefulness

of the new approach for several models, univariate nonparametric regression, par-

tial linear models, and additive models, and heuristically explore extensions to

varying coefficient models and semiparametric mixed models. A simulated exam-

ple demonstrates using AICc (Hurvich, Simonoff, and Tsai (1998)) to choose the

penalty and the number of basis functions, and the results suggest that the choice

of penalty may be more important than the choice of the number of basis func-

tions. With trigonometric functions widely applied in many fields, it is expected

that smoothing with penalized trigonometric series will bring up many interest-

ing problems and applications. A summary of our results and some concluding

remarks are given in Section 6.

2. Local Linear Projection

Assume data pairs (Xi, Yi), i = 1, . . . , n, are independently drawn as

Y = m(X) + ε, (2.1)
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where both X and Y are 1-dimensional, X and ε are independent, and ε has zero

mean and unknown variance σ2. For estimating the conditional mean m(x) =

E(Y |X = x) in (2.1), fitting a p-th order LPR (Fan and Gijbels (1996)) involves

solving the weighted least squares problem

min
β

n−1
n∑

i=1

(
Yi −

p∑
j=0

βj(Xi − x)j
)2

Kh (Xi − x) , (2.2)

where β = (β0, . . . , βp)
T , Kh(·) = K(·/h)/h, and the dependence of β on x and

h is suppressed. The function K(·) is a nonnegative weight function, typically

a symmetric probability density function, and h is the smoothing parameter

determining the neighborhood size for local fitting. Let β̂j , j = 0, . . . , p, denote

the solution to (2.2). It is clear that β̂0 estimates the regression function m(x)

of interest and β̂j , j = 1, . . . , p, may be used to estimate derivatives βj(x) ≡
m(j)(x)/j!. The conventional LPR focuses on the intercept β̂0(x) for estimating

m(x), while the information from β̂j(x), j ≥ 1, is generally ignored unless there

is a need for estimating derivatives.

2.1. Local polynomial ANOVA

In an attempt to develop an analysis of variance (ANOVA) framework for

LPR, Huang and Chen (2008) proposed quantities based on integrated sums of

squares:

SSEp(h) = n−1

∫ n∑
i=1

(
Yi −

p∑
j=0

β̂j(x)(Xi − x)j
)2

Kh

(
Xi − x

)
dx,

SSRp(h) = n−1

∫ n∑
i=1

( p∑
j=0

β̂j(x)(Xi − x)j − Ȳ
)2

Kh

(
Xi − x

)
dx, (2.3)

and show that the ANOVA decomposition

SSEp(h) + SSRp(h) = SST ≡ n−1
n∑

i=1

(Yi − Ȳ )2 (2.4)

holds under some conditions. In a matrix form, (2.3) is written as

SSEp(h) = n−1yT (I −H∗
p )y, SSRp(h) = n−1yT (H∗

p − J)y,(2.5)

and SST = n−1yT (I − J)y, where y = (Y1, . . . , Yn)
T , J is an n× n matrix with

entries 1/n, and H∗
p is a symmetric matrix depending only on Xi’s, bandwidth

h, and the kernel function K(·). More explicitly,

H∗
p =

∫
WXp(X

T
p WXp)

−1XT
p Wdx, (2.6)
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where W is an n-dimensional diagonal matrix with Kh(Xi − x) as its diagonal

elements, and Xp is the n × (p + 1) design matrix in (2.2) with the (j + 1)-th

column ((X1 − x)j , . . . , (Xn − x)j)T , j = 0, . . . , p. The dependence of W and Xp

on x is suppressed and the integration in (2.6) is performed element by element

in the resulting matrix product.

The ANOVA investigation by Huang and Chen (2008) gives rise to a new

smoother (projection) matrix H∗
p as well as a projection estimate H∗

py, that

differ from the conventional smoother matrix (Hastie and Tibshirani (1990))

Sp and Spy with Spy = (β̂0(X1), . . . , β̂0(Xn))
T . We call H∗

py a local polynomial

projection estimate. Some properties of H∗
p are given in Huang and Chen (2008).

(i) Based on a symmetric K(·), H∗
p is symmetric (see (2.6)), while Sp is generally

non-symmetric. (ii) H∗
px

j = xj , where xj denotes (Xj
1 , . . . , X

j
n)T , j = 0, . . . , p.

Hence elements of H∗
py are weighted averages of y. We note that Sp also satisfies

Spx
j = xj , j = 0, . . . , p. (iii) The projection estimate H∗

py has clearer geometric

interpretations in projecting y into the neighborhood space spanned by local

polynomials (column space of Xp) and then combining all local projections by a

weighted integral as

H∗
py =



∫ ( p∑
j=0

β̂j(x)(X1 − x)j
)
Kh(X1 − x)dx

...∫ ( p∑
j=0

β̂j(x)(Xn − x)j
)
Kh(Xn − x)dx


. (2.7)

2.2. Smaller bias, larger boundary

In the case of local linear regression (p = 1), Huang and Chen (2008) showed

that, as h → 0 and nh → ∞ as n → ∞, “interior” elements in H∗
1y have

an asymptotic bias of order h4, smaller than the order h2 of β̂0(Xi), and an

asymptotic variance of the same order O(n−1h−1) as that of β̂0(Xi), though

with a larger constant factor. Under Conditions (A1) and (A2) in the Ap-

pendix, the “interior” region is [2h, 1 − 2h], not the conventional [h, 1 − h], as

will be explained. To better understand (2.7) in the local linear case, Huang

and Davidson (2010) derived its “equivalent kernel” (see Fan and Gijbels (1996)

for definition). Let H∗
1y = (Y ∗

1 , . . . , Y
∗
n )

T and write Y ∗
i as a weighted esti-

mator, Y ∗
i =

∑n
k=1Wh(Xk − Xi)Yk with Wh(·) = W (·/h)/h. Then Y ∗

i =

[(1 + oP (1))/(nf(Xi))]
∑n

k=1W
∗
h (Xk − Xi)Yk and the equivalent kernel W ∗(·)

when p = 1 is (
K∗

0 (·)− µ−1
2 K∗

1 (·)
)
, (2.8)
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where K∗
0 (·) is the convolution of the kernel function K(·) and itself, K∗

1 (·) the

convolution of uK(u) and itself, and µj denotes the j-th moment of K(·). The

equivalent kernel (2.8) is of order (0, 4) (see Gasser, Müller, and Mammitzsch

(1985) for definition), which yields an asymptotic bias of order h4 in Huang and

Chen (2008).

In case p = 1, He and Huang (2009) explained why the boundary range for

H∗
1y is [0, 2h)

∪
(1− 2h, 1], since local linear estimates β̂0 and β̂1 suffer boundary

effects when x ∈ [0, h)
∪
(1 − h, 1]. When Xi ∈ [h, 2h), part of β̂j(x), j = 0, 1,

falls in [0, h) (see (2.7)) and hence the boundary region is [0, 2h) (similarly for

Xi ∈ (1 − 2h, 1 − h].) He and Huang (2009) showed that the boundary bias for

Xi ∈ [h, 2h) is of order h2 but with a smaller constant multiplier than that of

the local linear estimator. For Xi ∈ [0, h), the boundary bias is to the constant

order and some corrections are suggested, e.g. using a one-sided kernel.

3. Equivalent Kernels for Local Polynomial Projection

We extend the asymptotic results of local linear projection in Section 2 to

local polynomial projection in this section by deriving equivalent kernels for H∗
py

((2.7)). First, we discuss some properties of H∗
p due to its symmetry.

a. H∗
p is a shrinking matrix (see Lemma 1 in the Appendix), similar to the

smoother matrix for smoothing splines. Since Sp for LPR is generally non-

symmetric, its eigenvalues may be complex and therefore we conjecture that

Sp for LPR may not be a shrinking smoother. Buja, Hastie, and Tibshirani

(1989) showed that the smoother for local linear fits with nearest neighbors is

not a shrinking matrix. Being symmetric and shrinking is a desirable property

for the application of backfitting algorithms in estimation of additive models

(Hastie and Tibshirani (1990)).

b. As indicated in Linton and Jacho-Chávez (2010), an estimator with a symmet-

ric smoother matrix, such as H∗
py, is admissible with respect to trace mean

squared error (Cohen (1966)), whereas the local polynomial class β̂0(x) with

asymmetric Sp is inadmissible under the same criteria.

c. When theXi’s are equally spaced and ordered monotonically, under Condition

(A2) in the Appendix, the H∗
p matrix is asymptotically a banded Toeplitz ma-

trix, i.e., a banded centrosymmetric matrix. This property may be convenient

for developing methodology using H∗
p for discrete time series data.

3.1. It is not an odd world

Expanding the results in Section 2, we show that a projection estimate by

local quadratic regression (p = 2) has an asymptotic bias of order h6, while that

for a local cubic regression (p = 3) has a bias of order h8.
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Theorem 1. Under Conditions (A) in the Appendix, the following results hold

for interior points:

(a) The equivalent kernel for elements in H∗
0y is asymptotically K∗

0 (·). For p =

2, 3, the equivalent kernels for H∗
py are asymptotically

1

µ4 − µ2
2

{
µ4K

∗
0 (·)− 2µ2K

∗
0,2(·) +K∗

2 (·)
}
− 1

µ2
K∗

1 (·), (3.1)

1

µ4 − µ2
2

{
µ4K

∗
0 (·)− 2µ2K

∗
0,2(·) +K∗

2 (·)
}

− 1

µ2µ6 − µ2
4

{
µ6K

∗
1 (·)− 2µ4K

∗
1,3(·) + µ2K

∗
3 (·)

}
, (3.2)

respectively, where K∗
0,2(·) denotes the convolution of K(u) and u2K(u),

K∗
1,3(·) denotes the convolution of uK(u) and u3K(u), and K∗

3 (·) denotes

the convolution of u3K(u) and itself.

(b) Local polynomial projection estimates H∗
py have an asymptotic bias of order

h2(p+1) for p = 0, 1, 2, 3.

(c) The asymptotic variance of H∗
py, p = 0, 1, 2, 3, is of order O(n−1h−1) with the

constant multiplier
∫
W ∗2

p (u)du, where W ∗
p (·) is the corresponding equivalent

kernel.

See the Appendix for an outline of the proof of Theorem 1. The results in

Theorem 1 and (2.8) offer a different view from conventional LPR that an odd

p is better than an even p (“it is an odd world”, as described in Fan and Gijbels

(1996)). For interior points of H∗
py, the higher the order of local polynomials fits,

the smaller the asymptotic bias, which is consistent with common knowledge in

classical global polynomial models. These results also offer a way to construct

higher order (0, 4), (0, 6), and (0, 8) kernels by using a symmetric kernel K(u) of

order (0,2) and its associated functions uK(u), u2K(u), and u3K(u).

When K is the Gaussian kernel, it is easy to check that the resulting equiv-

alent kernels (2.8), (3.1) and (3.2) are the Gaussian-based kernels in Wand and

Schucany (1990). When K is the Epanechnikov kernel, the resulting equivalent

kernels are polynomial kernels of order 7, 9, and 11, respectively, and have sup-

port [−2, 2] due to convolution. After rescaling them to [−1, 1], the resulting

functions do not correspond to optimal kernels as given in Table 5.7 of Müller

(1988), nor do those in Berlinet (1993).

3.2. Two-step smoothing

The local polynomial projection estimator (2.7) may be interpreted as a

two-step estimator: local p-th degree polynomial with K(·) and h is fitted to
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obtain β̂j ’s; all fitted polynomials are combined by a locally weighted integral
with weight K(·) and bandwidth h. It is clear that K(·) and h in the second step
do not need to be the same as those in the first step, yielding a general class of
projection estimators at a target point t as∫ ( p∑

j=0

β̂j(x)(t− x)j
)
Lg(t− x)dx, (3.3)

where L and g denote the kernel function and bandwidth, respectively, in the
second step. He and Huang (2009) investigated (3.3) when p = 1 and g = h.
They showed that the bias for t ∈ [h, 2h) is of order h3 if L = K+ (K+(u) =
2K(u), u ∈ [0, 1] is a one-sided kernel), and for t ∈ [0, h), bias is of order h2 if
L = K+. In Theorem 2 below, we discuss the asymptotic properties of (3.3) for a
general p in two scenarios: (a) When g = h, expressions of the equivalent kernels
are given for both interior and boundary points, and the order of the asymptotic
bias can be derived accordingly based on moments of L and K. (b) When g ̸= h,
the first order term of the asymptotic bias is given for interior points, which,
in contrast with Theorem 1, does not offer more advantages than the case with
g = h.

Theorem 2. Assume that L is supported on a compact interval. Under Condi-
tions (A) in the Appendix, the following results hold for (3.3).

(a) g = h.
(i) For interior points t ∈ [2h, 1− 2h], the equivalent kernel is

p∑
j=0

ujL(·) ∗Ke
j (·), (3.4)

where ∗ denotes convolution and Ke
j (·) is the equivalent kernel for β̂j,

j = 0, . . . , p.

(ii) For points t = (1 + c)h ∈ [h, 2h) with 0 < c < 1, the equivalent kernel is

p∑
j=0

{∫ c

−1
ujL(u)Ke

j (u− v)du+

∫ 1

c
ujL(u)Ke

j,(1+c−u)(u− v)du

}
, (3.5)

where Ke
j,d(·) is the equivalent kernel for β̂j(dh), j = 0, . . . , p with 0 <

d < 1. The range of v is the convolution range of K and L.

(iii)For points t = ch ∈ [0, h] with 0 < c < 1, the equivalent kernel is

p∑
j=0

{∫ c−1

−1
ujL(u)Ke

j (u− v)du+

∫ 1

0
ujL(u)Ke

j,(c−u)(u− v)du

}
. (3.6)

The range of v is the convolution range of K and L.
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(b) When g ̸= h with g → 0 and ng → ∞ as n → ∞, and L is symmetric, the

first order term of the asymptotic bias of (3.3) for interior points is

(i) for p = 1,

β2(t)(h
2µ2 − g2µ2,L), (3.7)

where µj,L denotes the j-th moment of L;

(ii) for p = 2,

h4
{
β3(t)

f ′(t)

f(t)
+ β4(t)

}
c1 + h2g2

{
−β3(t)

f ′(t)

f(t)

c1µ2,L

µ2

+β4(t)

(
4
µ4µ2,L

µ2
+ c2µ2,L

)}
− g45β4(t)µ4,L, (3.8)

where c1 = (µ2
4 − µ2µ6)/(µ4 − µ2

2) and c2 = (µ6 − µ2µ4)/(µ4 − µ2
2);

(iii) for p = 3,

β4(t){h4c1 + h2g2c2µ2,L − g4µ4,L}. (3.9)

See Fan and Gijbels (1996) for a partial listing of expressions for Ke
j (u) and

Ke
j,d(u) in Theorem 2(a). Theorem 2(a)(i) extends Theorem 1 by providing a

general form of equivalent kernels. The results in Theorem 2(a)(ii) and (iii) can

be used to obtain similar results for boundary points in [1− 2h, 1] by symmetry.

Theorem 2(b) shows that (3.3) does not generally enjoy bias reduction effects

when g ̸= h for interior points. When p = 1, choosing g = h(µ2/µ2,L)
1/2 reduces

the bias to o(h2 + g2). In (3.8) and (3.9), the bias order depends on the orders

of g and h. For example, when g = o(h), taking c1 = 0 reduces the bias to o(h4).

Thus the general form (3.3) does not seem to be more beneficial than the case of

g = h, and hence the case of g ̸= h for boundary points is not considered further.

4. Local Polynomial Projection and Penalized Trigonometric Series

4.1. Local polynomial projection as mixed models

For a linear mixed model (see, e.g., Fitzmaurice, Laird, and Ware (2004)),

y = Xb+ Zu+ ε,

(
u

ε

)
∼ N

([
0

0

]
,

[
G 0

0 σ2
εI

])
,

where b contains fixed effects coefficients for predictors in X, u the random

effects coefficients with corresponding matrix Z, and G may be taken as σ2
uI for

simplicity. The fitting criterion of a mixed model can be written as

min
b,u

1

σ2
ε

||y−Xb− Zu||2 + uTDu, (4.1)
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where D = G−1. Minimization in (4.1) involves least squares with a penalty

term on the random effects. Penalized splines, e.g. linear splines, correspond to

(4.1) with X consisting of lines (1, x), Z piecewise linear functions with knots

κk, (x− κk)+, where x+ is x if x is positive and 0 otherwise, and D = (λ2/σ2
ε)I,

where λ2 is the smoothing parameter. A larger value of λ2 leads to a smoother

fit, and as λ2 → ∞, it forces the coefficients corresponding to all (x−κk)+ to be 0

and results in a least squares line. Ruppert, Wand, and Carroll (2003) discussed

REML estimation of σ2
u and σ2

ε to obtain an estimate of λ2.

The connections of H∗
py to mixed model estimators is based on the eigen-

decomposition of H∗
p and a fact mentioned in Huang and Davidson (2010) that

H∗
py is the solution to the penalized least squares problem,

min
f

(y− f)T (y− f) + fT (H∗−1

p − I)f, (4.2)

whereH∗−1

p denotes the inverse ofH∗
p , and f denotes some estimate of (m(X1), . . . ,

m(Xn))
T under the constraint that f lies in the space spanned by H∗

p .

Theorem 3. Under Conditions (A1)−(A4), the penalized least squares form

(4.2) for fitting local polynomial projection can be expressed in a form of a mixed

model criterion (4.1): the corresponding X consists of eigenvectors of H∗
p with

eigenvalue 1, the corresponding Z consists of eigenvectors of H∗
p with eigenvalue

λk such that 0 < λk < 1, and the corresponding D matrix is a diagonal matrix

with entries (1/λk − 1).

Theorem 3 is based on the eigen-decomposition of H∗
p since H∗

p is sym-

metric; this approach is similar to Demmler and Reinsch (1975) on the eigen-

decomposition for linear smoothing splines. In addition, the Demmler-Reinsch

basis functions are closely related to sines and cosines; see Eubank (1999, Sec. 5.2).

The proof of Theorem 3 is quite straightforward and is given in the Appendix.

SinceH∗
px

j = xj , j = 0, . . . , p, the unit eigenvalue is at least of multiplicity (p+1)

and the space spanned by X includes p-th order polynomials (we conjecture that

it is possible that the rank of X > (p + 1)). We note that smoothing splines

and penalized splines involve polynomials too. The penalty term in Theorem

3 involves non-uniform weights (1/λk − 1), while penalized splines often adopt

uniform weights for convenience. Note that Theorem 3 holds in finite-sample

cases. We next explore “asymptotically” the form of the eigenvectors of H∗
p

corresponding to 0 < λk < 1 and the order of penalty weights in D.

4.2. Penalizing trigonometric series

Theorem 4. Conditioned on x, under Conditions (A), the following hold.
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(a) The eigenvectors of H∗
p are asymptotically the trigonometric polynomials

cos(2kπx) and sin(2kπx) in the sense that

H∗
p cos(2kπx) = cos(2kπx)(1 +O(k2(p+1)h2(p+1))) (4.3)

(similarly for sin(2kπx)), where k = 1, 2, . . . , such that k satisfies kh → 0.

(b) When p = 0, 1, 2, the constant multiplier for the term O(k2(p+1)h2(p+1)) in

(4.3) is negative, which implies that the corresponding penalty weights (entries

of the D matrix in (4.1)) are larger for higher-frequency trigonometric series.

The last statement for p = 3 holds when the kernel function satisfies (µ8 −
µ2
4)(µ4−µ2

2) > (µ6−µ4µ2)
2, which is true for the Gaussian and Epanechnikov

kernels.

(c) For those k such that kh → constant or kh → ∞, the elements in H∗
p cos(2kπx)

and H∗
p sin(2kπx) are asymptotically 0.

See the Appendix for the proof of Theorem 4. The trigonometric polynomials

cos(2kπx) and sin(2kπx) form an orthogonal basis for functions defined on [0, 1]

(Condition (A1)). For regression functions defined on an interval, say [a, a+ τ ],

the corresponding orthogonal basis is cos(2kπx/τ) and sin(2kπx/τ).

From Theorem 4(a), the number of trigonometric eigenvectors has an upper

bound of O(h−1). Hence, the number of basis functions tends to infinity as

n → ∞. Since the optimal rate of h is O(n−1/5) when p = 1 (Fan and Gijbels

(1996)), we conjecture that the corresponding optimal rate of K is O(n1/(5+δ))

with 0 < δ < 1. It was shown in Eubank (1988, Sec. 3.4.2) that the optimal

rate of K is O(n1/(5+δ)) for the optimal convergence rate n−4/5 of unpenalized

Fourier series estimators. From (4.3) and Theorem 4(c), the eigenvalues of H∗
p

converge to 1 for those k with kh → 0, or 0 for those k with kh → constant or

kh → ∞. Thus the penalty weights for trigonometric eigenvectors with kh → 0

converge to 0 asymptotically. In other words, as n → ∞, the local projection

estimates tend to polynomial-trigonometric regression (Graybill (1976); Eubank

and Speckman (1990)) with no penalty and the number of trigonometric terms

smaller than O(h−1). Comparing with penalized splines, Claeskens, Krivobokova,

and Opsomer (2009), Kauermann, Krivobokova, and Fahrmeir (2009), and Li and

Ruppert (2008) provided asymptotic results when the number of knots as well

as the penalty weight go to infinity as n → ∞. Results in Theorem 4(a)(b)

imply an adaptive penalty for the trigonometric eigenvectors, which appears to

be analogous to Demmler and Reinsch (1975) for the smoothing splines on the

oscillation property of eigenvectors and the decreasing trend of the eigenvalues

with increasing order.

Theorem 4 raises a practical question: is regularization by selecting the

number of trigonometric seriesK or the penalty term a better way for polynomial-

trigonometric regression, though asymptotics leads to selection of K? In the
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context of Fourier series regression, Droge (1998), suggested that regularizing by

K or penalty depends on the magnitude of coefficients (u in (18)). For large

coefficients, selection is superior to penalty, and the opposite holds for small and

moderate coefficients. This seems to imply that including both terms is a more

adaptive approach for finite-sample cases.

4.3. Extension

Theorems 3 and 4 are extended to the partial linear models

Y = tTα+m(X) + ε, (4.4)

where t is a q-dimensional covariate vector, and X is a one-dimensional pre-

dictor. Assume that data (ti, Xi, Yi), i = 1, . . . , n, are drawn independently

from (4.4), and let Tn×q be the centered data matrix for the ti’s and m =

(m(X1), . . . ,m(Xn))
⊤. Huang and Davidson (2010) showed that estimators α̂ =

(T ⊤(I −H∗
p )T )−1T ⊤(I −H∗

p )y and m̂ = (m̂(X1), . . . , m̂(Xn))
⊤ = H∗

p (y− T α̂),

are the solutions to the penalized least squares equation

min
α,f

(y− T α− f)⊤(y− T α− f) + f⊤(H∗−1

p − I)f. (4.5)

Hence the equivalence of (4.5) to mixed models holds for partial linear models

as well.

Similarly, we extend our results to the bivariate additive models

Y = α+m1(X1) +m2(X2) + ε, (4.6)

with constraints E(m1(X1)) = 0 and E(m2(X2)) = 0. Smoother matrices H∗
p1

and H∗
p2 can be constructed for X1 and X2 with bandwidths, h1 and h2, re-

spectively. To satisfy the constraints, centered smoothers H̃∗
p1 = (H∗

p1 − J) and

H̃∗
p2 = (H∗

p2−J) are used. Following arguments in Hastie and Tibshirani (1990),

it is clear that the solutions to the penalized least squares equation

min
α,f1f2

(y−α− f1 − f2)
⊤(y−α− f1 − f2)+ f⊤1 (H̃

∗−1

p1 − I)f1 + f⊤2 (H̃
∗−1

p2 − I)f2 (4.7)

correspond to the solutions by backfitting with smoother matrices H̃∗
p1 and H̃∗

p2.

The eigenvectors of centered smoothers are the same as the un-centered ver-

sion except that the intercept vector is not included. As H̃∗
p1 and H̃∗

p2 are one-

dimensional smoothers, (4.7) can be written in the form of mixed models and the

results in Theorems 3 and 4 continue to apply to H̃∗
p1 and H̃∗

p2. The bivariate

case is easily extended to general multiple-component additive models. Hence for

additive models, Theorems 3 and 4 not only provide a penalized framework but
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also connect to backfitting estimators using one-dimensional centered smoothers.

This last interpretation appears to be new and has not been discussed in penal-

ized splines for additive models. Numerical performance of backfitting estimators

with H̃∗
p will be pursued in a future paper.

Theorems 3 and 4 may be applicable to time series data. Consider the trend-

plus-noise model: Yti = m(ti)+ ϵti , i = 1, . . . , n where the ti’s are equally spaced,

m(·) is a smooth function, and {ϵti , i = 1, . . . , n} is a correlated process of zero

mean and covariance matrix Σ(θ) parametrized by θ. Since H∗
p is asymptotically

Toeplitz, its (j, k)-th element is asymptotically some deterministic function of

|j − k|, say c|j−k|. (Consequently, the sequence {cj , j = 0, 1, 2, . . . } is implic-

itly defined.) Let γ(x) = c0 + 2
∑n

k=1 ck cos(kx), −π ≤ x ≤ π. It follows from

Grenander and Rosenblatt (1957, pp.103-105) that, under some regularity condi-

tions, the distribution of the eigenvalues of H∗
p is approximately equal to that of

γ(U) where U has a uniform distribution over the interval (−π, π). Theorems 3

and 4 then allow us to treat the above trend-plus-noise model as a mixed effects

model with two random effects, one given by trigonometric basis functions with

known asymptotic variance and the other implied by the covariance structure

of the error process. See Proietti (2007) for a review of signal extraction with

time series data via the mixed effects framework. This approach will be further

investigated elsewhere.

Theorem 4 shows that the Fourier basis is “asymptotically” the penalizing

basis for local polynomial projection. The Fourier basis has a long history in

applied mathematics, and in the smoothing literature, there are estimators and

hypothesis tests based on Fourier series, e.g., Eubank (1988), but only in the

fixed effects part.

Figure 1 illustrates Theorem 4. We simulated 1,000 samples of n = 100 data

points from the Uniform(0, 1). Using the Epanechnikov kernel and h = 0.2, the

H∗
1 matrix based on local linear regression was obtained for each sample and

the eigenvalues and eigenvectors of H∗
1 were examined. Among the 1,000 H∗

1 ’s,

all had a unit eigenvalue of multiplicity 2, 941 samples had 7, and 59 samples

had 6 eigenvalues in the range [0.05, 1). Ordering the eigenvalues and excluding

the unit eigenvalue, the mean (standard deviation) of the third to ninth eigen-

values were 0.9913 (0.0012), 0.9400 (0.0063), 0.8067 (0.0194), 0.5978 (0.0300),

0.3665 (0.0312), 0.1797 (0.0216), and 0.0665 (0.0101). The averages of the first

nine eigenvectors (including those two corresponding to the unit eigenvalue) are

plotted in Figure 1, where the average was calculated element by element for

each eigenvector. The first two eigenvectors look like lines, and the rest look like

cosine and sine functions.

Though Theorem 3 holds in finite-sample cases and Theorem 4 holds asymp-

totically, these results may be combined to develop a new smoothing approach



LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION 1227

Figure 1. Plot of the averages of the first 9 eigenvectors of H∗
1 ’s using the

Epanechnikov kernel and h = 0.2 based on 1,000 samples of n = 100 data
points from Uniform(0, 1).

based on combinations of unpenalized polynomials and penalized trigonometric

basis. This approach is analogous to pseudosplines (Hastie (1996)) in which the

original high-rank smoother matrix from smoothing splines is replaced by a low-

rank approximation. In other words, the high-rank H∗
p matrix may be replaced

by a low-rank polynomials and trigonometric basis approximation, as will be

illustrated in Section 5.

5. Examples Using Penalized Trigonometric Series

In this section, some numerical examples illustrate smoothing with a penal-

ized trigonometric basis and unpenalized lines (1, x), abbreviated as penalized

trigonometric series. Examples 1 through 3 demonstrate penalized trigonometric

series on data sets for univariate smoothing, partial linear models, and general-

ized additive models, respectively. Example 4 concerns a small simulation study

to confirm the results in Theorem 4 numerically and for comparison with penal-

ized splines as implemented by Wood (2006). Examples 5 and 6 explore using

penalized trigonometric series for more sophisticated data applications in vary-

ing coefficient models (Hastie and Tibshirani (1993)) and semiparametric mixed

models, respectively, while their theoretical connections will be studied in future

research.

For data examples, we used available mixed model software for penalized

trigonometric series as described in Ruppert, Wand, and Carroll (2003) for pe-

nalized linear splines except that spline functions were replaced by up to K cosine
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and K sine functions in the Z matrix, and the penalty was constrained so that

cos(2kπx) and sin(2kπx) shared the same penalty parameter at the same k, but

with different penalty at different k. For multiple smoothed functions such as

additive models with x1 and x2, the penalty was allowed to be different between

Fourier functions of x1 and x2. The REML method from fitting mixed models

was used to obtain the penalty term. For exploration purpose only, the AICc

(equation (2.5) of Hurvich, Simonoff, and Tsai (1998)) criterion was adopted for

selecting K, K = 1, . . . ,Kmax, where Kmax was set arbitrarily as 15 except

in Example 3, Kmax = 9 due to its small sample size. For model parsimony,

we chose the smallest K such that the corresponding AICc differed from the

minimum of AICc by less than 1% of the minimum value.

In Examples 1−4, we also took a penalty form αk2 at frequency k for compu-

tational convenience since it does not require nonlinear optimizations in REML.

The quadratic penalty form αk2 appears in the representation of linear smooth-

ing splines by the Demmler-Reinsch basis, which is a damped (weighted) cosine

series estimator (Eubank (1988, p.234)). Again, the AICc criterion was used for

selecting α and K. First, α was determined by where the minimum of AICc

occurred, and then the smallest K such that the corresponding AICc differed

from the minimum of AICc by less than 1% of the minimum value was chosen.

A detailed investigation on the choice of K and penalty will be pursued in the

future.

1. Univariate Smoothing. For model (2.1), the intercept column and the X

variable are included in the fixed effects covariate matrix X. The first example

is based on the LIDAR (light detection and ranging) data from Ruppert, Wand,

and Carroll (2003). The independent variable, range, is the distance traveled

before the light is reflected back to its source. The dependent variable, logratio,

is the logarithm of ratio of received light from two laser sources. The data is

of size 221. The trigonometric basis is re-scaled as cos(2kπ × range/330) and

sin(2kπ × range/330) since the range variable takes on integer values from 390

to 720.

For eachK = 1, . . . 15, the REML criterion in mixed model software was used

to automatically select the penalty parameters, and the AICc was calculated with

the degrees of freedom (d.f.) 2 (for the linear term) plus the sum of 1/(1+penalty)

based on Theorem 3. We observe that the AICc decreased when K ≤ 5 and

then slightly increased in the 4th decimal place. In this example, when K ≥ 5,

REML selected large penalty parameters for high-frequency functions and the

d.f. stayed around 2.885 for K = 5 to 14. K = 3 was selected with d.f. 2.864

and the resulting estimate is shown in Figure 2(a) (solid line), while the penalty

parameter at k in log 10 scale is plotted in Figure 2(b). We see that the penalty

is monotonically increasing as k increases.
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Figure 2. (a) and (b) LIDAR data: (a) Smoothing fit using K = 3 penalized
trigonometric functions with automatic REML selection of penalty (solid
line), fit by penalty=1.389 × k2 with K = 3 (dashed line). (b) The values
of the penalty in logarithm scale by REML when K = 3. (c)−(f) Great
Barrier Reef data: (c) fit by a partial linear model with nonlinear functions
of longitude estimated by using K = 11 penalized trigonometric functions
with penalty by REML (solid line) and by specifying penalty as 0.720× k2

with K = 11 (dashed line). (d) the values of the penalty by REML in
logarithm scale. (e) fit by an additive model with nonlinear functions of
latitude estimated by using K = 7 penalized trigonometric functions with
penalty by REML (solid line) and K = 9 with both penalty 0.518 × k2

(dashed line). The penalty by REML in logarithm scale is shown in (f) for
latitude.
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For the second penalty form αk2, the AICc was calculated based on a grid of

α that consisted of 50 logarithmically equally-spaced points in the interval [0.01,

105] with K = 1, . . . , 15. The smallest AICc occurred when α = 1.389 and with

this α, K = 3 was selected with d.f. 3.290. The resulting fit is given in Figure

2(a) (dashed line). The two curves are visually indistinguishable.

2. Partial Linear Models. In fitting (4.4), the only difference from fitting (2.1)

using mixed model software is that in the fixed effects matrix X, in addition to

the intercept column and the X variable, the parametric covariates t are also

included. We use the Great Barrier Reef data from Bowman and Azzalini (1997)

to illustrate fitting (4.4) with penalized trigonometric series. The data is derived

from a survey of the fauna on the sea bed lying between the coast of northern

Queensland and the Great Barrier Reef. The response variable is a score, which

combines information across species, and the explanatory variables are latitude

and longitude. Bowman and Azzalini (1997) suggested a partial linear model for

the data, with a linear effect of latitude and a nonparametric term of longitude.

The data is of size 42 if restricted to year 1992 and closed zones (where commercial

fishing is not allowed).

For smoothing on longitude with automatic selection of the penalty by

REML, the AICc was calculated at K = 1, . . . 15, and K = 11 was selected

with d.f. 4.022. Figures 2(c) shows the marginal partial residual plot of the

nonlinear estimate in longitude plus the estimated intercept (solid line), and the

amount of penalty by REML is given in Figure 2(d). It is evident that the curve

connecting fitted values is a bit jagged and the penalty terms at k = 3, 8, 9, and

10 are quite large. We also tried specifying the penalty as αk2 and the minimum

AICc occurred at α = 0.720. With this α, K = 11 was selected with d.f. 6.032

(dashed line in Figure 2(c)). At some places, the dashed curve is a bit smoother

than the solid curve. Though both fits chose K = 11, the d.f. differs due to the

different penalty forms.

3. Additive Models. The Great Barrier Reef data was used again to illustrate

fitting a bivariate additive model (4.6). Assuming the same K for m1(X1) and

m2(X2), the AICc with REML selected K = 7 with a total d.f. 4.240. The

estimate for longitude was similar to the curves by partial linear models and

hence is omitted. The curve for latitude is shown in Figure 2(e) (solid line)

with its corresponding penalty in Figure 2(f). There is some oscillating trend in

latitude and the curve is not smooth. We then tried penalty αk2 and AICc chose

α = 0.518 and K = 9 with a total d.f. 8.927 (dashed line in Figure 2(e)).

In the literature, REML tends to undersmooth for smoothing splines (Wahba

(1985)) and oversmooth for penalized splines (Ruppert, Wand, and Carroll (2003)).

From Examples 1-3, REML for penalty with AICc for K seems to undersmooth
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in Examples 2 and 3, while providing a satisfactory fit in Example 1. We con-

jecture that the behavior in Examples 2 and 3 could be due to the small sample

size of n = 42. Some further work is needed to investigate the performance of

REML and AICc in both theory and practice.

4. A Simulated Example. Data of size n = 100 were simulated from

Y = X + 2 exp(−16X2) + ε,

withX ∼ Uniform [−2, 2], ε ∼ N(0, .42), andX and ε independent. This example

is taken from Fan and Gijbels (1996) and the number of replications is 500. Each

set of data was smoothed by local linear regression using the Epanechnikov kernel

and a fixed bandwidth 0.35, and then by penalized trigonometric series with

penalty αk2 based on a choice of K = 1, . . . , 15 and a grid of α as in Example

1. To confirm Theorem 4 numerically, α was chosen so that with this α, one of

the d.f.’s at K = 1, . . . , 15, was the closest to that of local linear regression, and

then the smallest K was selected that had a difference < 0.1 in d.f. from local

linear regression. The d.f.’s were quite close between the two approaches, and

the sum of the squared differences of the two fitted values at the 100 data points

was calculated. Based on 500 simulations, the mean (sd) on the d.f.’s was 12.552

(0.173) and 12.572 (0.184) for local linear and penalized trigonometric series

respectively, and the sum of squared differences had a mean of 0.414 and sd

0.205. On average, the difference
√

0.414/100 = 0.0643 was quite small relative

to the mean of Y , which had a range of [−2, 2.007]. The results provide numerical

evidence in support of Theorem 4 in finite-sample cases.

Based on the same 500 sets of simulated data, we investigated how the choice

of α and K affect the d.f. and AICc. Figure 3 plots α vs. the average d.f. at

different K. As expected, when α is small, the d.f. generally increases as K

increases and when α is large, the d.f. stays about the same no matter what

K is. Figure 4 shows α vs. the average AICc at different K. It appears that,

for a fixed K, there is an α that minimizes AICc, and the minimum among

K = 1, . . . , 15, occurs at α = 0.139 and K = 7. When α is large, AICc stays

about the same no matter what K is. Figure 5 plots K vs. the average AICc at

4 values of α. We observe that there is a value of K that minimizes AICc when α

is not too large. From Figures 3−5, we conclude that for the penalty form αk2,

the choice of K is not sensitive while the choice of α is more important.

Using the same data sets, we compared the performance of penalized trigono-

metric series to penalized splines, with the latter based on Wood (2006). The

default setting of penalized splines includes GCV smoothness selection (Wahba

(1990)). For penalized trigonometric series, the penalty αk2 was adopted and

the choice of α and K was based on the same approach as in Examples 1−3.
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Figure 3. Plot of α vs. the average d.f. in Example 4: for K=1, 5, 9, and
13 (solid line); 2, 6, 10, and 14 (dashed line); 3, 7, 11, and 15 (dotted line);
4, 8, and 12 (dash-dotted line).

Table 1. Example 4, comparison of penalized trigonometric series to penal-
ized splines.

penalized trigonometric series penalized splines
Q1 mean (sd) Q3 Q1 mean (sd) Q3

d.f. 8.368 9.310 (1.299) 10.070 9.234 9.353 (0.339) 9.571
SSE 1.790 2.408 (0.845) 2.891 3.425 4.097 (0.919) 4.612
AICc -1.716 -1.623 (0.143) -1.526 -1.547 -1.451 (0.151) -1.350
GCV 0.157 0.174 (0.0256) 0.190 0.185 0.207 (0.0313) 0.226

The mean (sd) of 500 selected K’s was 6.328 (1.571) with a minimum of 4 and

maximum 13, while that of 500 selected α’s was 0.163 (0.067) with a minimum

of 0.0373 and maximum 0.517. The results are summarized in Table 1. The

sum of squared errors (SSE) was calculated as
∑100

i=1(m̂(Xi)−m(Xi))
2, and Q1

and Q3 are the 25- and 75-percentiles among 500 values. The mean d.f. of the

two approaches were close, while the sd of penalized trigonometric series was

larger. Table 1 shows that the two approaches are comparable in terms of the

criteria SSE, AICc, and GCV, and the penalized trigonometric series approach

slightly outperforms the penalized spline approach, in terms of having smaller

mean values of the preceding three criteria.

Next we explore using penalized trigonometric series for more sophisticated
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Figure 4. Plot of α vs. the average AICc in Example 4: for K=1, 5, 9, and
13 (solid line); 2, 6, 10, and 14 (dashed line); 3, 7, 11, and 15 (dotted line);
4, 8, and 12 (dash-dotted line).

Figure 5. Plot of K vs. the average AICc in Example 4 at 4 values of α.
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applications in Examples 5 and 6, while their theoretical connections will be

explored in future research.

5. Varying Coefficient Models. The varying coefficient model is a regression

model which is additive in the regressors, but the relationship between each re-

gressor and the outcome is allowed to vary as a smooth function of an additional,

effect modifying variable Z (Hastie and Tibshirani (1993)):

Y = α(Z) +m(Z)×X + ε. (5.1)

Following Ruppert, Wand, and Carroll (2003), we use the ethanol data set for

illustration. The data were collected to analyze oxides of nitrogen in automobile

exhaust. An experiment was done on a one-cylinder engine fueled by ethanol.

Two engine factors were studied: the equivalence ratio, a measure of the richness

of the air and fuel mixture, and the compression ratio to which the engine is set.

Here we examine the relationship between the oxides of nitrogen and the com-

pression ratio with the equivalence ratio as a modifying variable. AICc chooses

K = 10 trigonometric functions with REML and the curves with a total d.f.

5.582 are shown in Figure 6(a)(b). The slope of the compression ratio varies at

different levels of the equivalence ratio, which hints at interactions between the

equivalence ratio and the compression ratio. The respective penalty weights are

given in Figure 6(c)(d).

6. Semiparametric Mixed Models. The FEV data from Fitzmaurice, Laird, and

Ware (2004) is used to illustrate fitting semiparametric mixed models. The data

is a subset of data from the Six Cities Study of Air Pollution and Health (Dockery

et al. (1983)) with 13,379 children. The study was a longitudinal study designed

to characterize lung growth as measured by changes in pulmonary function in

children and adolescents, and the factors that influence lung function growth

including age and height. The subset consists of 300 girls, with a minimum of

one and a maximum of twelve observations over time. The outcome FEV1 was

log-transformed. A semiparametric mixed model is

log(FEV 1ij) = β0 + Ui + β1heightij +m(ageij) + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ 300,

(5.2)

where Ui’s are i.i.d. random intercepts. The AICc chooses K = 1 trigonometric

function with REML and the curve estimate for age is shown in Figures 6(e).

The total d.f. is 4.478 and the penalty by REML is 20.323. The mean response

of age shows a slightly nonlinear shape.

6. Concluding Remarks

This paper presents asymptotic properties of local polynomial projection es-

timates and connections between local polynomial projection, mixed models, and
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Figure 6. (a)-(d): A varying coefficient model for the ethanol data. Esti-
mates are obtained by using K = 10 penalized trigonometric functions with
penalty by REML. (a) The nonlinear function of the equivalence ratio; (b)
slope function for the compression ratio which varies with the equivalence
ratio; (c) and (d) are the values of the penalty applied respectively to esti-
mates in (a) and (b) in logarithm scale. (e) A semiparametric mixed model
for the FEV data: the nonlinear function of age (solid line) estimated by
using K = 1 penalized trigonometric functions with penalty by REML.

smoothing by combinations of unpenalized polynomials and penalized trigono-

metric series. Results in Theorem 1 indicate that it is no longer an odd world

when the whole fitted local polynomials are utilized to form local projection es-

timates. With the Fourier series widely applied in many fields, it is expected
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that smoothing with a penalized Fourier basis will bring up many interesting

problems and applications. We are exploring if the connections hold in the set-

tings of varying coefficient models, mixed models, and generalized semiparametric

models, and if the projection framework of LPR continues to help establish the

equivalence. Results in Section 3 of this paper are based on a global bandwidth

and how to generalize the results for the case of varying h is a problem for future

research. We have explored using the AICc criterion to select K and/or α in this

paper, and further investigation is needed. Strictly speaking, local polynomial

projection is a special case of general penalized series estimators; Theorems 3

and 4 show the equivalence with specified X, Z, and penalty, not for any choices

of basis Z and penalty. Properties under a general mixed effects framework with

penalized series remain to be investigated. The extension to spatial smoothing

is the focus of ongoing research.
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