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Abstract: We describe an extension of the fixed-b approach introduced by Kiefer

and Vogelsang (2005) to the empirical likelihood estimation framework. Under

fixed-b asymptotics, the empirical likelihood ratio statistic evaluated at the true

parameter converges to a nonstandard yet pivotal limiting distribution that can

be approximated numerically. The impact of the bandwidth parameter and kernel

choice is reflected in the fixed-b limiting distribution. Compared to the χ2-based in-

ference procedure used by Kitamura (1997) and Smith (2011), the fixed-b approach

provides a better approximation to the finite sample distribution of the empirical

likelihood ratio statistic. Correspondingly, as shown in our simulation studies, the

confidence region based on the fixed-b approach has more accurate coverage than

its traditional counterpart.
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1. Introduction

Empirical likelihood (EL) (Owen (1988, 1990)) is a nonparametric technique

for conducting inference for parameters in nonparametric settings. EL has been

studied extensively in the statistics and econometrics literature (see Owen (2001),

Kitamura (2006), and Chen and Van Keilegom (2009) for comprehensive re-

views). One striking property of EL is the nonparametric version of Wilks’

theorem that states that the EL ratio statistic evaluated at the true parameter

converges to a χ2 liming distribution. This property was first demonstrated for

the mean parameter by Owen (1990) and was further extended to the estimating

equation framework by Qin and Lawless (1994). However, Wilks’ phenomenon

fails to hold for stationary time series because the dependence within the ob-

servations is not taken into account in EL. Kitamura (1997) proposed blockwise

empirical likelihood (BEL), which is able to accommodate the dependence of

the data, and Wilks’ theorem continues to hold for the BEL ratio statistic under

suitable weak dependence assumptions. The BEL can be viewed as a special case

of the generalized empirical likelihood (GEL) with smoothed moment conditions

(Smith (2011)).
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The performance of BEL and its variations (Nordman (2009) and Smith

(2011)) can depend crucially on the choice of the bandwidth parameter for which

no sound guidance is available. Kiefer and Vogelsang (2005) proposed the so-

called fixed-b asymptotic theory in the heteroscedasticity-autocorrelation robust

(HAR) testing context. It was found that the asymptotic distribution obtained

by treating the bandwidth as a fixed proportion (say b) of the sample size pro-

vides a better approximation to the sampling distribution of the studentized test

statistic than the traditional χ2-based approximation. See Jansson (2004), Sun,

Phillips, and Jin (2008), and Zhang and Shao (2013) for rigorous theoretical jus-

tifications. The fixed-b approach has the advantage of accounting for the effect

of the bandwidth and the kernel, as different bandwidth parameters and kernels

correspond to different limiting (null) distributions (also see Shao and Politis

(2013) for a recent extension to the subsampling and block bootstrap context).

The main thrust of the present paper is the development of a new asymptotic

theory in the BEL estimation framework made possible by the fixed-b approach.

We consider the problem in the moment condition model (Qin and Lawless (1994)

and Smith (2011)) that is a fairly general framework used by both statisticians

and econometricians. Under the fixed-b asymptotic framework, we show that the

asymptotic null distribution of the EL ratio statistic evaluated at the true pa-

rameter is nonstandard yet pivotal, and that it can be approximated numerically.

It is interesting to note that the fixed-b limiting distribution coincides with the

χ2 distribution as b gets close to zero. We also illustrate the idea in the GEL

estimation framework and demonstrate the usefulness of the fixed-b approach

through simulation studies.

For notation, let D[0, 1] be the space of functions on [0, 1] which are right-

continuous and have left limits, endowed with the Skorokhod topology (see

Billingsley (1999)). Weak convergence in D[0, 1], or more generally in the Rm-

valued function space Dm[0, 1], is denoted by “ ⇒ ”, where m ∈ N. Convergence
in probability and convergence in distribution are denoted by “ →p ” and “

d→ ”

respectively. Let C[0, 1] be the space of continuous functions on [0, 1]. Denote

by ⌊a⌋ the integer part of a ∈ R.

2. Methodology

2.1. Empirical likelihood

Suppose we are interested in the inference of a p-dimensional parameter

vector θ that is identified by a set of moment conditions. Denote by θ0 the

true parameter of θ, an interior point of a compact parameter space Θ ⊆ Rp. Let

{yt}nt=1 be a sequence of Rl-valued stationary time series and assume the moment

conditions

E[f(yt, θ0)] = 0, t = 1, 2, . . . , n, (2.1)
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where f(y, θ) : Rl+p → Rk is a map that is differentiable with respect to θ
and rank(E[∂f(yt, θ0)/∂θ

′]) = p with k ≥ p. To deal with time series data, we
consider the smoothed moment conditions introduced by Smith (2011),

ftn(θ) =
1

Sn

t−1∑
s=t−n

K
(

s

Sn

)
f(yt−s, θ), (2.2)

where K(·) is a kernel function and Sn = bn with b ∈ (0, 1) is the bandwidth
parameter. Smoothing of the moment conditions induces a heteroskedasticity and
autocorrelation consistent (HAC) covariance estimator of the long run variance
matrix of {f(yt, θ)}nt=1. Let ft(θ) = f(yt, θ) and f̃n(θ) =

∑n
t=1 ftn(θ)/n, where

ftn(θ) is defined in (2.2).
Consider the profile empirical log-likelihood function based on the smoothed

moment restrictions,

Ln(θ) = sup
{ n∑

t=1

log(pt) : pt ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptftn(θ) = 0
}
. (2.3)

Standard Lagrange multiplier arguments imply that the maximum is attained
when

pt =
1

n{1 + λ′ftn(θ)}
, with

n∑
t=1

ftn(θ)

1 + λ′ftn(θ)
= 0.

The maximum empirical likelihood estimate (MELE) is then given by θ̂el =
argmaxθ∈ΘLn(θ). Following Kitamura (2006), the empirical log-likelihood func-
tion can also be derived by considering the dual problem (see e.g., Borwein and
Lewis (1991)),

Ln(θ) = min
λ∈Rk

−
n∑

t=1

log(1 + λ′ftn(θ))− n log n, (2.4)

where log(x) = −∞ for x < 0. Here (2.4) has a natural connection with the gen-
eralized empirical likelihood (GEL), and it facilitates our theoretical derivation
under the fixed-b asymptotics. To introduce the fixed-b approach, we define the
empirical log-likelihood ratio function

elr(θ) = 2max
λ∈Rk

n∑
t=1

log(1 + λ′ftn(θ))

Sn
, (2.5)

for θ ∈ Θ and Sn = bn. Under the traditional small-b asymptotics, nb2+1/(nb) →
0 as n → ∞, and suitable weak dependence assumptions (see e.g., Smith (2011)),
it can be shown that

elr(θ0) = nf̃n(θ0)
′
(
b

n∑
t=1

ftn(θ0)ftn(θ0)
′
)−1

f̃n(θ0) + op(1)
d→ κ21
κ2

χ2
k,
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where κ1 =
∫ +∞
−∞ K(x)dx and κ2 =

∫ +∞
−∞ K2(x)dx (assuming that κ1, κ2 < ∞).

However, the χ2-based approximation can be poor, especially when the depen-

dence is strong and the bandwidth parameter is large (see Section 3). To derive

the fixed-b limiting distribution, we make an assumption that is standard in

moment condition models.

Assumption 1.
∑⌊nr⌋

t=1 ft(θ0)/
√
n ⇒ ΛWk(r) for r ∈ [0, 1], where ΛΛ′ = Ω =∑+∞

j=−∞ Γj with Γj = Eft+j(θ0)ft(θ0)
′, and Wk(r) is a k-dimensional vector of

independent standard Brownian motions.

Assumption 1 can be verified under suitable moment and weak dependence

assumptions on ft(θ0) (see e.g., Phillips (1987)). For the kernel function, we

assume the following.

Assumption 2. The kernel K : R → [−c0, c0] for some 0 < c0 < ∞, is piecewise

continuously differentiable.

Fix b ∈ (0, 1), where b = Sn/n. Using summation by parts, the Continuous

Mapping Theorem and Itô’s formula, it is not hard to show that, for t = ⌊nr⌋
with r ∈ [0, 1],

√
nftn(θ0) =

√
n

Sn

t−1∑
s=t−n

K
( s

Sn

)
ft−s(θ0) ⇒

ΛDk(r; b)

b
, (2.6)

where Dk(r; b) =
∫ 1
0 K((r − s)/b)dWk(s). Let C⊗k[0, 1] = {(f1, f2, . . . , fk) : fi ∈

C[0, 1]}. For any g ∈ C⊗k[0, 1], take Gel(g) = maxλ∈Rk

∫ 1
0 log(1 + λ′g(t))dt. We

show in the Appendix that the functional Gel(·) is continuous under the sup

norm. Therefore, by the Continuous Mapping Theorem, we can characterize the

asymptotic behavior of elr(θ0).

Theorem 1. Suppose Assumptions 1−2 hold. For n → +∞ and b fixed,

elr(θ0)
d→Uel,k(b;K) :=

2

b
max
λ∈Rk

∫ 1

0
log

(
1 + λ′

∫ 1

0
K
(r − s

b

)
dWk(s)

)
dr. (2.7)

The proof of Theorem 1 is given in the supplementary material. Theorem

1 shows that the fixed-b limiting distribution of elr(θ0) is nonstandard yet piv-

otal for a given bandwidth and kernel, and its critical values can be obtained

via simulation or iid bootstrap (because the bootstrapped sample satisfies the

Functional Central Limit Theorem). Let uel,k(b;K; 1 − α) be the 100(1 − α)%

quantile of Uel,k(b;K)/(1− b). Given b ∈ (0, 1), a 100(1− α)% confidence region

for the parameter θ0 is then given by

CI(1− α; b) =

{
θ ∈ Rp :

elr(θ)

1− b
≤ uel,k(b;K; 1− α)

}
. (2.8)
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When K(x) = I(x ≥ 0), we have Dk(r; b) = Wk(r) and A := {λ ∈ Rk :

minr∈[0,1](1 + λ′Dk(r; b)) ≥ 0} = {λ ∈ Rk : minr∈[0,1](1 + λ′Wk(r)) ≥ 0}. By

Lemma 1 of Nordman, Bunzel, and Lahiri (2013), we know that A is bounded

with probability one, which implies that P (Uel,k(b;K) = ∞) = 0. We conjecture

that P (Uel,k(b;K) = ∞) can be positive for particular K(·) and b ∈ (0, 1). In our

simulations, critical values are calculated based on the cases where Uel,k(b;K) <

∞ (when b is close to zero, P (Uel,k(b;K) = ∞) is rather small, as seen from

our unreported simulation results). The nonstandard limiting distribution also

provides some insights on how likely the origin is not contained in the convex

hull of {ftn(θ0)}nt=1 when the sample size n is large.

Remark 1. To capture the dependence within the observations, one can em-

ploy the commonly used blocking technique first applied to the EL by Kitamura

(1997). To illustrate, we consider the fully overlapping smoothed moment con-

dition given by ftn(θ) = (1/m)
∑t+m−1

j=t f(yj , θ) with t = 1, 2, . . . , n−m+ 1 and

m = ⌊nb⌋ for b ∈ (0, 1). Under suitable weak dependence assumptions, we have√
nftn(θ0) ⇒ Λ{Wk(r + b)−Wk(r)}/b for t = ⌊nr⌋. Using similar arguments to

those in Theorem 1, we can show that

elr(θ0)
d→Uel,k(b) :=

2

b
max
λ∈Rk

∫ 1−b

0
log(1 + λ′{Wk(r + b)−Wk(r)})dr.

We generate the critical values of Uel,k(b)/(1− b) (conditioning on Uel,k(b) < ∞)

for b from 0.01 to 0.3 with spacing 0.01, and further approximate the critical

values by a cubic function of b following the practice of Kiefer and Vogelsang

(2005). The estimates of the coefficients of the corresponding cubic functions are

given in Table 1. Similarly, we summarize the critical values of Uel,k(b;K)/(1−b)

(conditioning on Uel,k(b;K) < ∞) with K(x) = (5π/8)1/2 (1/x)J1 (6πx/5) for b

from 0.01 to 0.2 in Table 2, where J1(·) denotes the Bessel function of the first

kind.

Remark 2. A natural question to ask is whether the fixed-b asymptotics is

consistent with the traditional small-b asymptotics when b is close to zero. We

provide an affirmative answer by showing that Uel,k(b,K) converges to a scaled

χ2
k distribution as b → 0. We assume K satisfies certain regularity conditions (see

Assumption 2.2 in Smith (2011)). Using the Taylor expansion and some standard

arguments for EL, it is not hard to show that

Uel,k(b;K) =
1

b

∫ 1

0
Dk(r, b)

′dr

(∫ 1

0
Dk(r; b)Dk(r; b)

′dr

)−1 ∫ 1

0
Dk(r, b)dr+ op(1).
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Table 1. Critical value function coefficients.

a0 a1 a2 a3 R2

uel,1(b; 0.90) 2.661 6.547 12.819 -8.329 0.9984
uel,1(b; 0.95) 3.917 5.819 34.483 -14.192 0.9976
uel,1(b; 0.99) 6.593 4.631 231.740 -484.131 0.9855
uel,2(b; 0.90) 4.827 -1.521 212.177 -477.642 0.9983
uel,2(b; 0.95) 6.586 -18.806 469.034 -1076.779 0.9945
uel,2(b; 0.99) 9.928 -36.918 1028.429 -2530.245 0.9906
uel,3(b; 0.90) 6.424 -1.099 405.193 -1072.778 0.9962
uel,3(b; 0.95) 7.783 3.125 560.737 -1552.979 0.9909
uel,3(b; 0.99) 10.138 22.209 1080.359 -3330.819 0.9565

The critical value uel,k(b; 1− α) is approximated by a cubic
function a0 + a1b + a2b

2 + a3b
3 of b. The estimated coeffi-

cients and multiple R2 are reported. The Brownian mo-
tion is approximated by a normalized partial sum of 1,000
i.i.d. standard normal random variables and the number
of Monte Carlo replication is 5,000.

Table 2. Critical value function coefficients.

a0 a1 a2 a3 R2

uel,1(b;K; 0.90) 3.324 8.243 112.149 -155.159 0.9992
uel,1(b;K; 0.95) 5.116 -9.585 533.935 -1459.216 0.9989
uel,1(b;K; 0.99) 9.612 -85.001 2237.407 -6595.415 0.9955
uel,2(b;K; 0.90) 5.650 8.652 799.757 -2928.350 0.9930
uel,2(b;K; 0.95) 7.709 -23.367 1833.534 -6752.999 0.9868
uel,2(b;K; 0.99) 11.708 -54.068 4501.733 -17748.759 0.9802
uel,3(b;K; 0.90) 6.860 48.990 1373.570 -6288.066 0.9804
uel,3(b;K; 0.95) 7.656 105.088 1714.933 -8718.140 0.9731
uel,3(b;K; 0.99) 4.963 505.832 346.210 -9711.193 0.9502

The critical value uel,k(b;K; 1 − α) is approximated by a cubic
function a0 + a1b+ a2b

2 + a3b
3 of b. The estimated coefficients

and multiple R2 are reported. The Brownian motion is ap-
proximated by a normalized partial sum of 1,000 iid standard
normal random variables and the number of Monte Carlo
replication is 5,000.

Under Assumption 2, we derive that

1

b

∫ 1

0
Dk(r, b)dr =

∫ 1

0

∫ 1

0
K
(r − s

b

)
drd

Wk(s)

b

=

∫ 1

0

∫ (1−s)/b

−s/b
K(t)dtdWk(s)

d→κ1Wk(1).

Define the semi-positive definite kernelK∗
b(r, s)=

∫ 1
0 K((t−r)/b)K((t−s)/b)dt/(bκ2).
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Then Vk(b) = (1/b)
∫ 1
0 Dk(r; b)Dk(r; b)

′dr = κ2
∫ 1
0

∫ 1
0 K∗

b(r, s)dWk(r)dWk(s)
d
=

κ2
∑+∞

j=1 λj,bηjη
′
j , where {ηj}+∞

j=1 is an independent sequence of Nk(0, Ik) random

vectors and the λj,b are the eigenvalues associated with K∗
b(r, s). Note that

E{Vk(b)}
κ2

= Ik

∫ 1

0
K∗

b(r, r)dr =
Ik
κ2b

∫ 1

0

∫ 1

0
K2

( t− r

b

)
dtdr → Ik.

Let ηj = (ηj1, . . . , ηjk) and denote by V
(l,m)
k (b) the (l,m)th element of Vk(b) with

1 ≤ l,m ≤ k. Since
∑+∞

j=1 λ
2
j,b =

∫ 1
0

∫ 1
0 {K

∗
b(r, s)}2drds → 0 as b → 0 (see e.g.,

Sun (2010)), we get

E
{V

(l,m)
k (b)

κ2

}2
=

+∞∑
j=1

+∞∑
j′=1

λj,bλj′,bEηjlηjmηj′lηj′m

=


∑+∞

j=1 λ
2
j,b → 0, l ̸= m;(∑+∞

j=1 λj,b

)2
+ 2

∑+∞
j=1 λ

2
j,b → 1, l = m,

which implies that Vk(b) →p κ2Ik. Therefore ,we have Uel,k(b,K)
d→ (κ21/κ2)χ

2
k as

b → 0. Compared to the χ2-approximation, the fixed-b limiting distribution that

captures the choice of the kernel and the bandwidth is expected to provide better

approximation to the finite sample distribution of the BEL ratio statistic at the

true parameter when b is relatively large.

2.2. Generalized empirical likelihood

We extend the fixed-b approach to the Generalized empirical likelihood (GEL)

estimation framework (Newey and Smith (2004)). To describe GEL, we let ρ

be a concave function defined on an open set I that contains the origin. Set

ρ(x) = −∞ for x /∈ I, and let ρj(x) = ∂jρ(x)/∂xj and ρj = ρj(0) for j = 0, 1, 2.

We normalize ρ so that ρ1 = ρ2 = −1. Consider the set Πn(θ) = {λ : λ′ftn(θ) ∈
I, t = 1, 2, . . . , n}. The GEL estimator is the solution to a saddle point problem,

θ̂gel = argmin
θ∈Θ

sup
λ∈Rk

P̂ (θ, λ) = argmin
θ∈Θ

sup
λ∈Πn(θ)

P̂ (θ, λ),

where P̂ (θ, λ) = 1
Sn

∑n
t=1{ρ(λ′ftn(θ))− ρ0}. The GEL ratio function is given by

gelr(θ) = 2 sup
λ∈Rk

P̂ (θ, λ). (2.9)

The GEL estimator includes a number of special cases that have been well

studied in the statistics and econometrics literature. The EL, exponential tilt-

ing (ET), and continuous updating (CUE) are special cases of the GEL. Thus
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ρ(x) = log(1 − x) and I = (−∞, 1) for EL, ρ(x) = −ex and I = R for ET, and
ρ(x) = −(1+x)2/2 and I = R for CUE. More generally, members of the Cressie-
Read power divergence family of discrepancies discussed by Imbens, Spady, and
Johnson (1998) are included in the GEL class with ρ(x) = −(1+γx)(γ+1)γ/(γ+1)
(see Newey and Smith (2004)).

Let Ggel(f) = maxλ∈Rk

∫ 1
0 {ρ(λ

′g(t)) − ρ0}dt for g ∈ C⊗k[0, 1]. If ρ(·) is
strictly concave and twice continuously differentiable, under suitable assumptions
it can be shown that Ggel(·) is a continuous functional under the sup norm.
Since the argument follows from that presented in the appendix with a minor
modification, we skip the details (see Remark 1.1 in the supplementary material).
Therefore, we have

gelr(θ0)
d→Uρ,k(b;K) :=

2

b
max
λ∈Rk

∫ 1

0

{
ρ

(
λ′

∫ 1

0
K((r − s)/b)dWk(s)

)
− ρ0

}
dr.

The GEL-based confidence region for the parameter θ0 is

C̃I(1− α; b) =

{
θ ∈ Rp :

gelr(θ)

1− b
≤ uρ,k(b;K; 1− α)

}
, (2.10)

where uρ,k(b;K; 1 − α) is the 100(1 − α)% quantile of Uρ,k(b;K)/(1 − b), which
can again be obtained via simulation or iid bootstrap.

3. Numerical Studies

We conducted two sets of simulation studies to compare and contrast the
finite sample performance of the inference procedure based on the fixed-b ap-
proximation and the BEL of Kitamura (1997) and Smith (2011). The simulation
results presented below are based on the simulation runs where the origin is
contained in the convex hull of {ftn(θ0)}.

3.1. Mean and quantiles

Consider the time series models AR(1), Yt = ρYt−1 + ϵt with ρ = −0.5, 0.2,
0.5, 0.8, and AR(2), Yt = (5/6)Yt−1−(1/6)Yt−2+ϵt. The latter was used in Chen
and Wong (2009) where the focus was to compare the finite sample coverages of
the quantile delivered by BEL. In both models, {ϵt} is a sequence of iid standard
normal random variables. We focus on the inference for the mean, the median
and the 5% quantile. For the mean, f(yt, θ) = yt − θ. For the q-th quantile, we

consider the moment condition fq(yt, θ) =
∫ (θ−yt)/h
−∞ K(x)dx − q, where K(·) is

an r-th order window that satisfies

∫
ujK(u)du =


1, j = 0;

0, 1 ≤ j ≤ r − 1;

κ0, j = r,
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for some integer r ≥ 2, and h is a bandwidth such that h → 0 as n → +∞.

When h = 0, we have fq(yt, θ) = I(yt ≤ θ) − q. To accommodate depen-

dence, we consider the BEL with fully overlapping moment conditions ftn(θ) =

(1/m)
∑t+m−1

j=t f(yt, θ) for t = 1, 2, . . . , n − m + 1 and m = ⌊nb⌋ with b ∈
(0, 1). For comparisons, we consider smoothed EL with the kernel K(x) =

(5π/8)1/2 (1/x)J1 (6πx/5), where J1(·) is the Bessel function of the first kind.

The HAC covariance estimator induced by using K(·) is essentially the same as

the nonparametric long run variance estimator with the Quadratic spectral ker-

nel (see Example 2.3 of Smith (2011)). The sample sizes considered were n = 100

and 400, and b was chosen from 0.02 to 0.2. To draw inference for the quantiles,

we employed the second order Epanechnikov window with bandwidth h = cn−1/4

for c = 0, 1, following Chen and Wong (2009). The coverage probabilities and

corresponding interval widths for the mean and quantiles delivered by the fixed-b

approximation and the χ2-based approximation are depicted in Figures 1−4.

For the mean, undercoverage occurs for both the fixed-b calibration and the

χ2-based approximation when the dependence is positive, and becomes more

severe as the dependence strengthens. Inference based on the fixed-b calibra-

tion provided uniformly better coverage probabilities in all cases, and was quite

robust to the choice of b. The improvement was significant, especially for large

bandwidth. On the other hand, the fixed-b based interval was slightly wider than

the χ2-based interval. For negative dependence with ρ = −0.5, the fixed-b cali-

bration tended to provide overcoverage, but the improvement over the χ2-based

approximation could be seen for relatively large b. These findings are consistent

with the intuition that the larger b is, the more accurate the fixed-b based ap-

proximation is relative to the χ2-based approximation used by Kitamura (1997)

and Smith (2011). The results for the median and 5% quantile were qualitatively

similar to those in the mean case. The choice of h = 1 tended to provide slightly

shorter interval widths as compared to the unsmoothed counterpart, h = 0 in

some cases (see Chen and Wong (2009)). A comparison of Figure 1 with Figure

3 (Figure 2 with Figure 4) has the coverage probabilities for the EL based on the

kernel K(x) generally closer to the nominal level than the BEL counterpart with

the corresponding interval widths wider. This phenomenon is consistent with

the finding that QS kernel provides better coverage, but wider interval widths,

compared to the Bartlett kernel in Kiefer and Vogelsang (2005) under the GMM

framework. Our unreported simulation results also demonstrate the usefulness

of fixed-b calibration under the GEL estimation framework. The results for ET

are available upon request.



1188 XIANYANG ZHANG AND XIAOFENG SHAO

Figure 1. Coverage probabilities for the mean delivered by the BEL based
on the fixed-b approximation and the χ2-based approximation. The nominal
level is 95% and the number of Monte Carlo replications is 1,000.
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Figure 2. Coverage probabilities for the median and 5% quantile delivered by
the BEL based on the fixed-b approximation and the χ2-based approxima-
tion. The nominal level is 95% and the number of Monte Carlo replications
is 1,000.
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Figure 3. Coverage probabilities for the mean delivered by the smoothed EL
based on the fixed-b approximation and the χ2-based approximation. The

corresponding kernel is K(x) = (5π/8)
1/2

(1/x)J1 (6πx/5). The nominal
level is 95% and the number of Monte Carlo replications is 1,000.
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Figure 4. Coverage probabilities for the median and 5% quantile delivered by
the smoothed EL based on the fixed-b approximation and the χ2-based ap-

proximation. The corresponding kernel isK(x) = (5π/8)
1/2

(1/x)J1 (6πx/5).
The nominal level is 95% and the number of Monte Carlo replications is
1,000.
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Figure 5. Coverage probabilities delivered by the BEL (left panels) and
the smoothed EL (right panels) based on the fixed-b approximation and the
χ2-based approximation. The corresponding kernel for the smoothed EL

is K(x) = (5π/8)
1/2

(1/x)J1 (6πx/5). The nominal level is 95% and the
number of Monte Carlo replications is 1,000.

3.2. Time series regression

We consider the stylized linear regression model with an intercept and a

regressor xt: yt = β1 + β2xt + ut for 1 ≤ t ≤ n, where {xt} and {ut} are

generated independently from an AR(1) model with common coefficient ρ̃. We

set the true parameter β0 = (β10, β20) = (0, 0) and chose ρ̃ ∈ {0.2, 0.5, 0.8}. We

are interested in constructing confidence contour for β0. Consider the moment

conditions ft(β) = (ut(β), xtut(β), xt−1ut(β), xt−2ut(β)) with ut(β) = yt − β1 −
β2xt and 3 ≤ t ≤ n. We report the coverage probabilities for the BEL and the
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smoothed EL with kernel K(x) based on the fixed-b approximation and the χ2-

based approximation in Figure 5. As the dependence strengthens, the fixed-b

and χ2-based approximations deteriorate. The coverage probabilities obtained

from the fixed-b calibration are consistently closer to the nominal level, and

the improvement is significant for large bandwidths. In contrast, the coverage

probabilities based on the χ2 approximation are severely downward biased for

relatively large b.

To sum up, the fixed-b approximation provides a uniformly better approxi-

mation to the sampling distribution of the EL ratio statistic for a wide range of b,

and it tends to deliver more accurate coverage probability in confidence interval

construction and size in testing. From a practical viewpoint, the choice of the

bandwidth parameter has a great impact on the finite sample performance of the

EL ratio statistic; it is of interest to consider the optimal bandwidth under the

fixed-b paradigm.
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