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Abstract: We examine a test of a nonparametric regression function based on pe-
nalized spline smoothing. We show that, similarly to a penalized spline estimator,
the asymptotic power of the penalized spline test falls into a small-K or a large-K
scenarios characterized by the number of knots K and the smoothing parameter.
However, the optimal rate of K and the smoothing parameter maximizing power
for testing is different from the optimal rate minimizing the mean squared error for
estimation. Our investigation reveals that compared to estimation, some under-
smoothing may be desirable for the testing problems. Furthermore, we compare
the proposed test with the likelihood ratio test (LRT). We show that when the true
function is more complicated, containing multiple modes, the test proposed here
may have greater power than LRT. Finally, we investigate the properties of the test
through simulations and apply it to two data examples.
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1. Introduction

Penalized splines have become a popular nonparametric smoothing technique

(Eilers and Marx (1996); Ruppert, Wand, and Carroll (2009)). In contrast, test-

ing nonparametric functions through penalized splines is less explored, especially

the cases that do not rely on a linear mixed effects model (LME). In this work,

we consider testing a nonparametric function relating a covariate ui ∈ [a, b] to

an outcome yi,

yi = f(ui) + εi, E(εi) = 0, var(εi) = σ2, i = 1, . . . , n, (1.1)

where f(·) is an unspecified smooth function (extension to a partial linear model

is discussed in Section 2.4). A first problem is to test for the significance of the

regression function,

H0 : f(u) = 0, for all u ∈ [a, b]. (1.2)

A second problem is to test the nonparametric deviation of f(·) from a polynomial

model, or goodness-of-fit of a polynomial model, where the null hypothesis is

H0 : f(·)∈Mp[a, b]={θ0+θ1u+· · ·+θpu
p : (θ0, θ1, . . . , θp)∈Rp+1, u∈ [a, b]}.(1.3)
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To accommodate a flexible class of functions, a number of works have con-

structed test statistics through the smoothing spline estimator of f(·). These in-
clude Cox et al. (1988), Cox and Koh (1989), Eubank and Spiegelman (1990), Raz

(1990), Chen (1994), Jayasuriya (1996), Ramil-Novo and GonzKalez-Manteiga

(2000), Cantoni and Hastie (2002), and Liu and Wang (2004). Cantoni and

Hastie (2002) considered a test statistic based on a mixed-effects model with

a fixed smoothing parameter. Liu and Wang (2004) compared such smoothing

spline-based tests as the locally most powerful test in Cox et al. (1988), the gen-

eralized maximum likelihood ratio test, and the generalized cross validation test

(GCV test, Wahba (1990)). Another line of work on testing the mean function

in a nonparametric regression has used local polynomial smoothing under the

alternative. For example, Cai, Fan, and Li (2000) proposed a likelihood ratio

test for the coefficient functions in varying-coefficient models. Fan, Zhang, and

Zhang (2001) introduced generalized likelihood ratio statistics for testing non-

parametric functions. Li and Nie (2008) proposed various generalized likelihood

ratio tests and generalized F tests. Zhang (2004) assessed the equivalence of non-

parametric tests based on smoothing splines and local polynomials, and reported

their equivalent asymptotic distributions under the null and the equivalent rate

of smoothing parameters under the alternative.

The hypothesis (1.2) can also be examined by a likelihood ratio test (LRT)

through the use of penalized splines and a linear mixed effects model representa-

tion (Wand (2003)). Specifically, under the alternative, one uses a mixed effects

model to represent f(·) and tests for several fixed effects and a variance compo-

nent in an LME. Crainiceanu and Ruppert (2004) and Crainiceanu et al. (2005)

reported that the asymptotic distribution of the LRT or restricted likelihood ra-

tio test (RLRT) involving a variance component in an LME does not have the

typical chi-square mixture distribution. These tests are based on the likelihood

assuming normality of the random effects and the residual errors. The smooth-

ing parameter is taken as the ratio of two variance components and estimated

through a restricted maximum likelihood (REML). There is no literature on the

optimal rate of the smoothing parameter or the optimal number of knots K to

maximize power in a testing setting.

We present a test of a nonparametric function and a test of a higher order

nonparametric deviation from a polynomial model based on penalized splines.

Our proposed test differs from others that have been advanced. Unlike the test in

Cantoni and Hastie (2002), we do not assume a fixed smoothing parameter under

the alternative hypothesis, since a reasonable smoothing parameter may not be

available in practice. The proposed test is different from the tests in Crainiceanu

and Ruppert (2004) and Crainiceanu et al. (2005) in that it does not rely on

mixed-effects model representation, and thus relaxes the normality assumption.
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Most of the test statistics in the literature are based on either smoothing spline

or local polynomial smoothing, while our proposed test is based on penalized

splines.

We examine the asymptotic properties of the proposed test under the null

and the alternative. We show that the asymptotic distribution of the penal-

ized spline test falls into two categories characterized by the number of knots

K and the smoothing parameter: a small-K scenario and a large-K scenario.

Unlike penalized spline estimation, the optimal rate for a testing problem to

maximize power is different from an estimation problem to minimize the aver-

age mean squared error. Our investigation reveals that, compared to estimation

some under-smoothing may be desirable for testing problems. We compare the

proposed test with LRT and RLRT and provide heuristics on why the latter

may have better power to detect simpler functions and worse power for more

complicated functions. We investigate numerical properties of the proposed test

through simulations and apply it to two studies: the Framingham Heart Study

data (Cupples et al. (2003)) which examines the association between cholesterol

level and BMI; the Complicated Grief Study (Shear et al. (2005)) to examine the

association between a subject’s work and social functioning impairment, and the

severity of complicated grief disorder.

2. Test Statistic and Its Asymptotic Distribution

2.1. Testing an unspecified function

Denote by N(u) a vector of pth order B-spline basis functions with K knots,

τ1, . . . , τK , and by N = (N(u1), . . . ,N(un))
T the matrix of basis functions. The

penalized spline estimator of f(u) is f̂n(u) = NT(u)β̂, where β̂ minimizes

(Y −Nβ)T(Y −Nβ) + λβTDqβ, (2.1)

λ a smoothing parameter, andDq =
∫ b
a N (q)(x)TN (q)(x)dx a qth order derivative-

based penalty matrix (Wand and Ormerod (2008); Claeskens, Kivobokova, and

Opsomer (2009)). As β̂ = (NTN + λDq)
−1NTY ,

f̂n(u) = NT(u)(NTN + λDq)
−1NTY .

Let f̂n = (f̂n(u1), . . . , f̂n(un))
T and Y = (y1, . . . , yn)

T. To test the null hypoth-

esis (1.2) in model (1.1), we propose a simple test statistic based on the sum of

squared distances of the fitted values,

Tn = f̂n
T
f̂n = Y TN(NTN + λDq)

−1NTN(NTN + λDq)
−1NTY . (2.2)

A similar test based on the smoothing spline estimator was proposed in Eubank

and Spiegelman (1990), Chen (1994), and Jayasuriya (1996).
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It is useful to introduce a singular value decomposition used in Claeskens,

Kivobokova, and Opsomer (2009),

(NTN)−1/2Dq(N
TN)−1/2 = USUT,

where U is the matrix of eigenvectors, and S = diag(s1, . . . , sK+p+1) is the

diagonal matrix of the eigenvalues. LetA = N(NTN)−1/2U , soATA = IK+p+1

and AAT = N(NTN)−1NT. It is easy to show that

f̂n = N(NTN + λDq)
−1NTY = A(In + λS)−1ATY .

If we take Hn = A(IK+p+1 + λS)−1AT, the test statistic is

Tn = Y TH2
nY .

Under the null hypothesis (1.2) and the assumption ϵi
i.i.d.∼ N(0, σ2), we have

Tn =d σ2
K+p+1∑
i=1

ω2
i

(1 + λsi)2
,

where ωi are i.i.d. N(0, 1). Under the alternative hypothesis and the assumption

ϵi
i.i.d.∼ N(0, σ2),

Tn = (ATY )T (IK+p+1 + λS)−2ATY ,

where ATY ∼ N(ATfn, σ
2IK+p+1), and fn = EY = (f(u1), . . . , f(un))

T.

Then Tn is noncentral mixture χ2

Tn =d σ2
K+p+1∑
i=1

(ωi + δi)
2

(1 + λsi)2
,

where δi is the ith component of ATfn.

2.2. Asymptotic null distribution

We look to the asymptotic null distribution of Tn, first considering the pth

order B-spline basis with K knots. Similar results with a truncated polynomial

basis can be obtained by a suitable transformation.

Theorem 1. If assumptions A1−A3 in the Appendix hold, εi
i.i.d.∼ N(0, σ2), K →

∞, and λ/n → 0, then the null distribution of Tn as n → ∞ is

Tn − σ2trace(H2
n)

σ2{2trace(H4
n)}1/2

→ N(0, 1).
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Chen (1994) and Jayasuriya (1996) proved a similar theorem using a smooth-

ing spline based estimator. In practice, σ2 is unknown and is estimated from data.

Substituting a suitable consistent estimator σ̂2
n for σ2 has ignorable impact on

the asymptotic null distribution of Tn (Eubank and LaRiccia (1993); Jayasuriya

(1996)).

The normality assumption on the εi’s is related in the following theorem.

Theorem 2. Suppose assumptions A1−A3 in the Appendix hold. If the εi are

i.i.d. with E(ϵ1) = 0, var(ϵ1) = σ2, 0 < E(ϵ41) < ∞, K → ∞, K3 = o(n), and

λ/n → 0, then the null distribution of Tn as n → ∞ is

Tn − σ2trace(H2
n)

σ2{2trace(H4
n)}1/2

→ N(0, 1).

2.3. Power considerations and two asymptotic scenarios

To study the asymptotic distribution of Tn under the alternative, let Kq =

(λ/n)1/2qK, where q is the order of the derivative-based penalty matrix Dq, and

let Cp+1[a, b] be the set of all p+1 times continuously differentiable functions on

[a, b].

Theorem 3. The assumptions A1−A3 in the Appendix hold, εi
i.i.d.∼ N(0, σ2), and

0 ≤ c < E[f2(u1)] = ∥f∥2u, then the following hold.

(i) If Kq = o(1) and f(·) ∈ Cp+1[a, b], then

Tn − σ2trace(H2
n)

σ2{2trace(H4
n)}1/2

→d N
(
c1∥f∥2unK−1/2, 1

)
,

where c1 is a constant, and Tn can detect alternatives of order {nK−1/2}−1/2

or slower from the null model. As n → ∞,

P

[
Tn − σ2trace(H2

n)

σ2{2trace(H4
n)}1/2

≥ zα

]
→ 1, (2.3)

where zα is the 100(1− α)th percentile of the standard normal.

(ii) If Kq = O(1) and f(·) ∈ Cp+1[a, b], then

Tn − σ2trace(H2
n)

σ2{2trace(H4
n)}1/2

→d N
(
c2∥f∥2un

(λ
n

)1/4q
, 1
)
,

where c2 is a constant, and Tn can detect alternatives of order {n(λ/n)1/4q}−1/2

or slower from the null model. The power of Tn is asymptotically one as

n → ∞.
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Remark 1. For an optimal testing procedure, a local alternative can converge

to the null at the fastest rate at which the test still maintains consistency. For

Kq = o(1), the optimal rates of the number of knots and the smoothing parameter

for testing are K = O(n2/(4p+5)) and λ = O(nν), where ν ≤ (2p−2q+3)/(4p+5).

For Kq = O(1), the optimal rates are λ = O(n1/(4q+1)) and K = O(nν) with

ν ≥ 2q/(4q + 1)(p+ 1).

Remark 2. Case (i) in Theorem 2 corresponds to the small-K scenario: the

optimal rates are determined by the number of knots as long as the smoothing

parameter is sufficiently small. Case (ii) in Theorem 2 corresponds to the large-K

scenario: the optimal rates are determined by the smoothing parameter and the

order of the penalty as long as the number of knots is sufficiently large.

Remark 3. The optimal rates of λ and K obtained here for testing are different

from the optimal rates for estimation in Claeskens, Kivobokova, and Opsomer

(2009). Under the small-K scenario, the optimal rate is O(n−(2p+2)/(2p+3)) for

estimation and is O(n−(2p+2)/(4p+5)) for testing; under the large-K scenario, the

optimal rate is O(n−2q/(2q+1)) for estimation and is O(n−2q/(4q+1)) for testing.

Remark 4. For consistency of the large-K scenario with similar results using

smoothing splines, note that the smoothing parameter λ∗ in Zhang (2004) and

the smoothing parameter here have the relationship λ∗ = λ/n. Under technical

conditions, the detectable rate of a local alternative obtained in Zhang (2004) is

{nλ1/4q}−1/2 for testing based on smoothing splines; the rate in our case (ii) is

the same as in Theorem 2 of Zhang (2004).

Remark 5. In conjunction with Theorem 1, it is possible to relax the normality

condition in Theorem 3 with additional assumptions. Specifically, the condition

εi
i.i.d.∼ N(0, σ2) is replaced by var(εi) = σ2 and 0 < E(ε4i ) < ∞, and we require

K3 = o(n).

Minimizing mean squared error and maximizing power do not necessarily

lead to the same optimal rates for the number of knots and the smoothing param-

eter. Under the small-K scenario, the optimal rate for testing isK = O(n2/(4p+5))

when λ/n converges to zero sufficiently fast, which is faster than the optimal rate

for estimation, K = O(n1/(2p+3)) (Claeskens, Kivobokova, and Opsomer (2009)).

This suggests that using a larger number of knots for testing as compared to

estimation may be desirable. Under the large-K scenario, the optimal rate for

testing is λ = O(n1/(4q+1)) for a sufficiently large number of knots, which is slower

than the optimal rate for estimation, λ = O(n1/(2q+1)). This suggests that using

a smaller smoothing parameter for testing might be desirable.
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2.4. Extension to a partial linear model

When there are other covariates xi predicting the outcome, we consider

testing the association with the covariate of interest, ui, through a partial linear

model. Thus, we test (1.2) in the model

yi = xT
i β + f(ui) + εi, E(εi) = 0, var(εi) = σ2, i = 1, . . . , n, (2.4)

where f(·) is an unspecified smooth function. When xi = (1, ui, . . . , u
p
i )

T, test-

ing (1.2) in this model is equivalent to testing goodness-of-fit of a pth order

polynomial model.

To construct a test statistic for a partial linear model, we use an orthogonal

contrast that transforms the model into one without covariates. Let X denote

the stacked matrix of xi and let Q be an orthogonal contrast such that

QTX = 0, QTQ = In−p, and QQT = In −X(XTX)−1XT.

One way to construct such a Q is in the Appendix of Wang and Chen (2012).

Applying the transformation Q to (2.4), we arrive at

Ỹ = f̃ + ε̃, var(ε̃) = σ2In−p,

where Ỹ = QTY , f̃ = QTf , and ε̃ = QTε. A test statistic similar to (2.2) is

obtained as

Zn = Ỹ TÑ(ÑTÑ + λD̃q)
−1ÑTÑ(ÑTÑ + λD̃q)

−1ÑTỸ , (2.5)

where Ñ = QTN , and D̃q = QTDqQ. Since testing the goodness-of-fit of a

polynomial model is a special case of testing H0 : f(u) = 0 in a partial linear

model, Zn can be used to examine (1.3).

To derive the null and alternative distributions of the test statistic with a

truncated polynomial basis, note that Dq = diag(0p+1, IK) and

Zn = Y TPXN(NTPXN + λDq)
−1NTPXN(NTPXN + λDq)

−1NTPXY ,

where PX = In − X(XTX)−1XT, and QTY is N(0, σ2In−p) under H0 and

N(QTfn, σ
2In−p) under Ha. Thus, under H0,

Zn =d σ2
n−p∑

i=p+2

µ2
iω

2
i

(λ+ µi)2
+ σ2

p+1∑
i=1

ω2
i ,

where µi is the ith eigenvalue of NTPXN . Under the alternative,

Zn =d σ2
n−p∑

i=p+2

µ2
i (ωi + δ′i)

2

(λ+ µi)2
+ σ2

p+1∑
i=1

(ωi + δ′i)
2, (2.6)
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where δ′i is the ith component of QTfn, and fn = {f(u1), . . . , f(un)}T .

2.5. Connection with the RLRT

As well, LRT or RLRT based on an LME can be used to test (1.2) or (1.3).

Under the alternative, represent f(u) using a truncated polynomial basis by an

LME,

yi = xi
Tβ + zi

Tb+ εi, b ∼ N(0, σ2
bIK), εi ∼ N(0, σ2),

where xi = (1, ui, . . . , u
p
i )

T, zi = ((ui − τ1)
p
+, . . . , (ui − τK)p+)

T, and τ1, . . . , τK is

a sequence of knots. Under this model, hypothesis (1.2) can be tested as

H0 : β = 0, σ2
b = 0

through an LRT; the hypothesis (1.3) can be tested as

H0 : σ
2
b = 0

through an RLRT. The smoothing parameter λ in (2.1) corresponds to σ2
ε/σ

2
b .

Theorem 1 in Crainiceanu et al. (2005) has that at local alternatives, in

distribution,

RLRT = sup
d≥0

{
K∑
s=1

dµs(1 + d0µs)

1 + dµs
w2
s −

K∑
s=1

log(1 + dµs)

}
, (2.7)

where µs is the limit of the sth eigenvalue of Gn = Σ1/2ZTPXZΣ1/2, n−ad0 is

the true variance ratio σ2
b/σ

2 (a is a positive constant), and the ws are indepen-

dent standard normal random variables. The test statistic in (2.5) with pth order

truncated polynomial basis satisfies (2.6) under the alternative. The µs are the

same as in the expressions (2.7) and (2.6), and λ = 1/d.

We explore the connection between the RLRT and the proposed test. Un-

der the alternative, d0, d and λ range from small to large, depending on the

complexity of the underlying function. When the underlying function is com-

plex, such as a sine function, λ is small while d0 and d are large. The weights

dµs(1 + d0µs)/(1 + dµs) in (2.7) are then approximately d0µs, which are pro-

portional to the eigenvalues µs. In this case, RLRT places larger weights along

directions of the first few eigenvectors of Gn. However, Gn is solely determined

by the design matrices of the basis functions, X and Z, which are not related to

the true function f(·) (also noted in Liu and Wang (2004)). Weighting the test

statistic by the directions of eigenvectors of Gn may not improve the power of the

test. In contrast, the proposed test statistic Zn with a small λ is approximately

distributed as σ2
∑n−p

s=1 (ωs + δ′s)
2. Since δ′s is the sth eigenvalue of QTfn, with

fn = {f(u1), . . . , f(un)}T , Zn contains information on the true function f(·).
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This comparison offers heuristics on a phenomenon observed in our simulation

studies (Section 3): for more complicated functions with multiple modes, LRT is

less powerful than the proposed test.

3. Simulation Studies

In the simulations, we generated the outcome from the model

yi = d · µ(ui) + εi, i = 1, . . . , n,

where the ui were independently generated from an uniform distribution with

support (0,1), the underlying mean function was f(u) = d · µ(u), and µ(u) was

sin(2πu), u3, or exp(u). To obtain the power curves, we varied the scalar d

to control the deviation of the true function from the null. Specifically, type

I error was computed under d = 0 (the null hypothesis), and the power was

computed under d > 0 (the alternative hypothesis). The residual errors εi were

i.i.d. N(0, 1), U(−1, 1), or Laplace(a = 0, b = 1). Eubank and Spiegelman (1990)

and Jayasuriya (1996) observed in their simulation studies that for smoothing

spline-based tests, directly applying the normal to approximate the finite sample

distribution of Tn at the tail area may not be satisfactory and the type I error rate

may slightly deviate from the nominal level. They used various transformations

to improve accuracy of the asymptotic approximation. Here, we applied a square

root transformation to the test statistic Tn in all simulation settings. The type I

error rate of normal approximation to the square root transformed test statistic

is satisfactory and close to both the nominal level and those based on the exact

distribution obtained through permutation.

We compared the proposed test with the LRT. The exact null distribution of

LRT was computed using the methods in Crainiceanu and Ruppert (2004) and

Scheipl, Greven, and Küchenhoff (2008). Since the LRT selects the smoothing

parameter by REML, for a fair comparison we also used a REML-based smooth-

ing parameter to compute Tn in the normal random error scenario. Since the

methods used to compute the null distribution of LRT is an exact approach, in

addition to computing the power of Tn based on critical values obtained from the

asymptotic distribution, we also computed power using critical values obtained

from the exact null distribution of Tn through permutation. We considered two

sample sizes, n = 100 and n = 500. For all the scenarios, we carried out 5,000

simulation runs.

Table 1 summarizes the simulation results for the normal residual error case.

Both the proposed test and LRT maintain the nominal type I error rate. In terms

of power, when the underlying function is more complex, such as sin(2πu), the

proposed tests (both the exact and asymptotic) are more powerful than LRT for

both sample sizes. This is also seen in the plot of the power functions of the two
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Table 1. Proportion of rejections in 5,000 repetitions in a nonparametric
model with normal measurement error.

f(u) = d · sin(2πu) n=100 n=500
d 0 0.3 0.5 0.8 0 0.1 0.2 0.3
Exact 0.050 0.335 0.799 0.995 0.050 0.179 0.644 0.958
Asymptotic 0.055 0.354 0.809 0.998 0.051 0.189 0.658 0.961
LRT 0.052 0.252 0.628 0.952 0.046 0.166 0.483 0.846
f(u) = d · u3 n=100 n=500
d 0 0.5 0.8 1 0 0.1 0.3 0.5
Exact 0.050 0.231 0.837 0.898 0.050 0.085 0.512 0.952
Asymptotic 0.054 0.2415 0.845 0.901 0.052 0.089 0.529 0.955
LRT 0.049 0.231 0.833 0.902 0.053 0.089 0.548 0.962
f(u) = d · exp(u) n=100 n=500
d 0 0.1 0.15 0.3 0 0.05 0.08 0.1
Exact 0.050 0.290 0.561 0.995 0.050 0.340 0.775 0.922
Asymptotic 0.054 0.304 0.574 0.996 0.053 0.3555 0.783 0.929
LRT 0.050 0.305 0.570 0.995 0.051 0.377 0.790 0.933

Figure 1. Proportion of rejections based on 5,000 simulations with f(u) =
d · sin(2πu) and normal measurement error, n = 100 (left panel), n = 500
(right panel).

tests in Figure 1. At various effect sizes, the proposed test is more powerful than

LRT. From the second and third panels of Table 1, when the underlying function

is relatively simple, such as µ(u) = u3 and µ(u) = exp(u), the powers of the

proposed test and LRT are similar. Figure 2 presents the power of the two tests

as a function of d when µ(u) = exp(u) and the εi are normal. The two power

curves are very close. The differences based on the asymptotic null distribution

and exact null distribution are ignorable.

Table 2 summarizes the simulation results when the residual errors are non-
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Figure 2. Proportion of rejections based on 5,000 simulations with f(u) =
d · exp(u) and normal measurement error, n = 100 (left panel), n = 500
(right panel).

Table 2. Proportion of rejections in 5,000 repetitions with f(u) = d·sin(2πu)
and uniform or Laplace measurement error.

U(-1,1) n=100 n=500
d 0 0.2 0.3 0.4 0 0.05 0.1 0.2
Asymptotic 0.059 0.445 0.791 0.975 0.050 0.148 0.536 0.995
Laplace n=100 n=500
d 0 0.5 0.8 1 0 0.2 0.3 0.5
Asymptotic 0.057 0.439 0.846 0.989 0.049 0.346 0.747 0.993

normal. For these cases, we used generalized cross-validation (GCV) to select

the smoothing parameter. The proposed test maintained the correct type I error

rate. We also computed the power under different d and report results in Table

2. To reach similar power, the required effect size d is greater for the Laplace

residual errors than for the uniform residual errors.

To assess sensitivity of the test to the choice of the smoothing parameter,

we computed the size and power of Tn under different d with λ ranging from

10−4 to 105. From Table 3, the size of the test was not sensitive to the values

of λ, especially when the sample size was large. In terms of power, in all the

cases it increases with increasing λ before reaching its highest value and then

starts to decrease or becomes flat. When λ is large enough, for example greater

than or equal to 100, there is no difference among the different choices of λ. As

expected, these analyses suggest that a good choice of λ may increase power of

a test. Theorem 3 and its remarks justify these observations from a theoretical

point of view.
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Table 3. Sensitivity of type I error and power to choice of λ in a nonpara-
metric model with normal measurement error and 5,000 repetitions.

Type I error rate
λ 10−4 10−3 0.01 0.1 1 10 100 103 104 105

n = 100 0.054 0.054 0.051 0.045 0.043 0.043 0.043 0.043 0.043 0.043
n = 500 0.047 0.044 0.044 0.048 0.046 0.044 0.044 0.044 0.044 0.044

Power, f(u) = d · sin(2πu), n=100
λ 10−4 10−3 0.01 0.1 1 10 100 103 104 105

d =0.3 0.298 0.334 0.356 0.330 0.289 0.289 0.289 0.289 0.289 0.289
d =0.5 0.669 0.719 0.737 0.694 0.564 0.559 0.559 0.559 0.559 0.559
d =0.8 0.989 0.992 0.993 0.991 0.965 0.962 0.962 0.962 0.962 0.962

Power, f(u) = d · sin(2πu), n=500
λ 10−4 10−3 0.01 0.1 1 10 100 103 104 105

d =0.1 0.159 0.185 0.202 0.210 0.187 0.174 0.174 0.174 0.174 0.174
d =0.2 0.588 0.643 0.673 0.692 0.591 0.530 0.528 0.528 0.528 0.528
d =0.3 0.940 0.96 0.973 0.977 0.944 0.873 0.871 0.871 0.871 0.871

Power, f(u) = d · exp(u), n=100
λ 10−4 10−3 0.01 0.1 1 10 100 103 104 105

d =0.1 0.219 0.229 0.248 0.282 0.286 0.286 0.286 0.286 0.286 0.286
d =0.15 0.392 0.448 0.491 0.541 0.550 0.552 0.552 0.552 0.552 0.552
d =0.2 0.738 0.789 0.819 0.847 0.858 0.858 0.858 0.858 0.858 0.858

Power, f(u) = d · exp(u), n=500
λ 10−4 10−3 0.01 0.1 1 10 100 103 104 105

d =0.05 0.235 0.265 0.284 0.306 0.331 0.335 0.336 0.336 0.336 0.336
d =0.08 0.552 0.600 0.668 0.704 0.732 0.730 0.730 0.730 0.730 0.730
d =0.1 0.772 0.817 0.851 0.873 0.897 0.894 0.894 0.894 0.894 0.894

For a partial linear model, we conducted several simulation studies to inves-

tigate performance of test statistic Zn under different scenarios. The simulation

model was

Yi = βxi + d · µ(ui) + ϵi, i = 1, . . . , n,

where the covariate xi were U(0, 1), β = 1, and the random errors were standard

normal. Table 4 summarizes the simulation results. As before, we computed the

critical value of LRT using the methods in Crainiceanu and Ruppert (2004), and

computed the critical value of Zn based both on the exact distribution through

permutation and the asymptotic approximation. We used REML to choose the

smoothing parameter for both tests. The proposed asymptotic approximation

had a type I error rate close to the nominal level. The power comparison of

Zn with the LRT in a partial linear model revealed a similar trend to Tn in

a nonparametric model: for more complicated functions, Zn has greater power

than LRT, for simpler functions, Zn has power similar to LRT.
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Table 4. Proportion of rejections in 5,000 repetitions in a partial linear
model with normal measurement error.

f(u) = d · sin(2πu) n=100 n=500
d 0 0.8 1.2 2 0 0.3 0.5 0.8
Exact 0.050 0.285 0.549 0.955 0.050 0.166 0.525 0.923
Asymptotic 0.054 0.301 0.564 0.957 0.052 0.174 0.541 0.933
LRT 0.047 0.215 0.410 0.823 0.053 0.121 0.380 0.766
f(u) = d · u3 n=100 n=500
d 0 2 3 4 0 0.8 1.5 2
Exact 0.050 0.308 0.716 0.927 0.050 0.297 0.807 0.947
Asymptotic 0.052 0.312 0.724 0.934 0.051 0.314 0.816 0.951
LRT 0.049 0.332 0.721 0.931 0.048 0.332 0.824 0.958
f(u) = d · exp(u) n=100 n=500
d 0 0.6 1 1.3 0 0.3 0.4 0.6
Exact 0.050 0.282 0.816 0.953 0.050 0.423 0.696 0.951
Asymptotic 0.053 0.302 0.822 0.959 0.051 0.434 0.712 0.952
LRT 0.048 0.302 0.823 0.963 0.053 0.436 0.729 0.962

4. Two Data Examples

4.1. The Framingham heart study

Our first data example addresses a research question encountered in the

Framingham Heart Study (Cupples et al. (2003)). High cholesterol level is known

to be one of the risk factors for cardiovascular disease (Boden (2000)). The func-

tional relationship between obesity and cholesterol level is of interest in cardio-

vascular research. Here we examine the relationship between cholesterol level

and body mass index (BMI) in the Framingham Heart Study baseline data. The

Framingham Heart Study is a large population-based study of risk factors for

cardiovascular disease. Subjects’ demographic and clinical information, such as

cholesterol and blood sugar level, were collected. We tested the hypothesis that

BMI is associated with cholesterol level after adjusting for other predictors of

cholesterol, and its linearity.

There were 777 subjects included in the analyses. We tested the significance

of association between cholesterol and BMI through model (2.4), where yi is the

ith subject’s cholesterol level, ui is BMI, and xi is a vector of predictors including

baseline age, sex, and smoking status. We found that the test was significant with

a p value less than 0.001. We next tested the significance of departure from a

linear association. This test also emerged as significant with a p value of 0.007.

We show the estimated association f̂(u) superimposed on a scatter plot in Figure

3. We see a non-linear trend in Figure 3, which suggests that adjusting for other

factors, the relationship between cholesterol level and BMI among obese and

extremely obese subjects can be different from the relationship in the normal
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Figure 3. Scatter plot of cholesterol level versus BMI and estimated associa-
tion adjusting for baseline age, sex and smoking status. The solid line is the
estimated association and the dashed lines are the 95% pointwise confidence
band.

weight to overweight subjects. There is a clear positive association between

cholesterol level and BMI for both normal weight and overweight subjects (BMI

between 18 and 30). The association trajectory is flat for obese subjects (BMI

between 30 and 40) and extremely obese subjects (BMI greater than 40). This

analysis suggests a potentially different pattern for the overweight, obese, and

extremely obese subjects which is worth further investigation.

4.2. The complicated grief study

Complicated grief (CG) is a disorder characterized by significant functional

impairment lasting more than a month following six months of bereavement

(Shear et al. (2005)). Patients’ CG symptoms and functioning impairment at-

tributable to CG were measured using several instruments, including the Inven-

tory of Complicated Grief (ICG) scale and the Work and Social Adjustment Scale

(WSAS). ICG, a 19-item self-report, provides a continuous measure of severity

of CG. WSAS, a 5-item instrument, provides a continuous measure of a subject’s

degree of interference of work and social activity due to CG. We included 175

subjects (mean age = 47 years), 28 males and 147 females, at the baseline for

the analysis. We tested whether there is an association between WSAS and ICG,

and its linearity.

We tested the significance of association between WSAS and ICG adjusting

for age and gender by model (2.4). The p-value of the test was less than 0.001.

Next, we tested deviation of the association from a linear model and the result was
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Figure 4. Scatter plot of WSAS versus ICG and estimated association ad-
justing for baseline age and sex. The solid line is the estimated association
and the dashed lines are the 95% pointwise confidence band.

significant (p = 0.0012). The two tests suggest a significant non-linear association

between WSAS and ICG measured at baseline. Moreover, the association cannot

be modeled adequately by a simple linear model. We present the scatter plot

of WSAS versus ICG and the estimated association adjusting for baseline age

and sex in Figure 4. The solid line is the estimated association and the dashed

lines are the 95% confidence bands. From Figure 4, we see that when WSAS

is less than 20, interference on work and social activities is mild or moderate,

the CG symptoms only increase slightly with the increase in WSAS. When the

interference of work and social activity is marked or severe (WSAS between 20

and 40), we observed a considerable positive association between WSAS and

ICG. For instance, as WSAS increases from 20 to 40, the ICG changes from 42.3

(95% CI: [35.8, 48.8]) to 56.8 (95% CI: [50.3, 63.2]) and the Pearson correlation

between them is 0.466 (p < 0.001). However, as WSAS increases from 0 to 20,

the ICG only varies from 38.1 (95% CI: [30.8, 45.4]) to 42.3 (95% CI: [35.8,

48.8]), and the Pearson correlation is 0.163 (p = 0.161). Therefore, only those

with marked or severe interference in work and social activities show a positive

association between WSAS and CG symptoms.

In summary, the association between WSAS and ICG is more complicated

than a simple linear relationship. A flexible nonparametric approach is desirable

for modeling the nonlinear association.
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5. Discussions

We considered several testing problems of a nonlinear function using penal-

ized splines. Our theoretical investigations revealed that, compared to estimation

through penalized splines, improving power for testing problems may require un-

dersmoothing the data. In the literature, how to choose the smoothing parameter

in the estimation setting has been well-studied. For example, Reiss and Ogden

(2009) and Krivobokova and Kauermann (2007) suggest better performance of

the REML-based smoothing parameter compared to other methods, including

GCV. In the testing setting, to the best of our knowledge, no work has discussed

how to choose the smoothing parameter to maximize power. Based on our results

and data analyses, choosing a smoothing parameter slightly smaller than the one

chosen by REML may increase power. Additionally, we find that the LRT based

on a linear mixed effects model has good power for simpler functions and that

the proposed test has good power for more complicated functions with a larger

number of modes. Overall, how to choose an optimal smoothing parameter to

maximize power in practice is still an open research question.
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Appendix

We state our assumptions (see also Zhou, Shen, andWolfe (1998) and Claeskens,

Kivobokova, and Opsomer (2009)).

Assumption 1. Let δj = τj+1 − τj and δ = max0≤j≤K δj , where τ1, . . . , τK are

the K knots. There exists a constant M > 0, such that δ/(min0≤j≤K δj) ≤ M

and δ ∼ K−1.

Assumption 2. For design points ui ∈ [a, b], i = 1, . . . , n, there exists a distri-

bution function Q with corresponding positive continuous design density ρ such

that, with Qn the empirical distribution of u1, . . . , un, supu∈[a,b] |Qn(u)−Q(u)| =
o(K−1).

Assumption 3. The number of knots K = o(n).

The assumption A1 is a weak restriction on the knot distribution, and assures

that M−1 < Kδ < M , which is required for stable numerical computations.
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The proofs of all theorems are in the online supplementary material.

References

Andrews, D. W. K. (1984). Non-strong mixing autoregressive processes. J. Appl. Probab. 21,

930-934.

Boden, W. (2000). High-density lipoprotein cholesterol as an independent risk factor in cardio-

vascular disease: assessing the data from framingham to the veterans affairs high-density

lipoprotein intervention trial. Amer. J. Cardiology 86, 19-22.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient

models. J. Amer. Statist. Assoc. 95, 888-902.

Cantoni, E. and Hastie, T. (2002). Degrees-of-freedom tests for smoothing splines. Biometrika

89, 251-263.

Chen, J. (1994). Testing goodness of fit of polynomial models via spline smoothing techniques.

Statist. Probab. Lett. 19, 65-76.

Chen, H. and Wang, Y. (2011). A penalized spline approach to functional mixed effects model

analysis. Biometrics 67, 861-870.

Claeskens, G., Kivobokova, T. and Opsomer, J. D. (2009). Asymptotic properties of penalized

spline estimators. Biometrika 96, 529-544.

Cox, D. and Koh, E. (1989). A smoothing spline based test of model adequacy in polynomial

regression. Ann. Inst. Statist. Math. 41, 383-400.

Cox, D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model

hypothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16,

113-119.

Crainiceanu, C. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one

variance component. J. Roy. Statist. Soc. B 65, 165-185.

Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, P. (2005). Exact likelihood ratio tests

for penalised splines. Biometrika 92, 91-103.

Cupples, L. A., Yang, Q., Demissie, S., Copenhafer, D. and Levy, D. (2003). Description of the

Framingham Heart Study data for Genetic Analysis Workshop 13. BMC genetics, 4(Suppl

1), S2.

De Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory

Rel. Fields 25, 261-277.

Eilers, P. and Marx, B. (1996). Flexible smoothing with B-splines. Statist. Sci. 11, 89-121.

Eubank, R. L. and LaRiccia, V. N. (1993). Testing for no effect in non-parametric regression.

J. Statist. Plann. Inference 36, 1-14.

Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear model via

nonparametric regression techniques. J. Amer. Statist. Assoc. 85, 387-392.

Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks

Phenomenon. Ann. Statist. 29, 153-193.

Jayasuriya, B. R. (1996). Testing for polynomial regression using nonparametric regression

techniques. J. Amer. Statist. Assoc. 91, 1626-1630.

Kauermann, G., Krivobokova, T. and Fahrmeir, L. (2009). Some asymptotic results on gener-

alized penalized spline smoothing. J. Roy. Statist. Soc. Ser. B 71, 487-503.

Krivobokova, T. and Kauermann, G. (2007). A note on penalized splines with correlated errors.

J. Amer. Statist. Assoc. 102, 1328-1337.



1160 HUAIHOU CHEN, YUANJIA WANG, RUNZE LI AND KATHERINE SHEAR

Li, R. and Nie, L. (2008). Efficient statistical inference procedures for partially nonlinear models
and their applications. Biometrics 64, 904-911.

Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436.

Liu, A. and Wang, Y. (2004). Hypothesis testing in smoothing spline models. J. Statist. Comput.
Simulation 74, 581-597.

Ramil-Novo, L. A. and GonzKalez-Manteiga, W.(2000). F-tests and regression ANOVA based
on smoothing spline estimators. Statist. Sinica 10, 819-837.

Raz, J. (1990). Testing for no effect when estimating a smooth function by nonparametric
regression: a randomization approach. J. Amer. Statist. Assoc. 85, 132-138.

Reiss, P. T. and Ogden, T. R. (2009). Smoothing parameter selection for a class of semipara-
metric linear models. J. Roy. Statist. Soc. Ser. B, 71, 505-523.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2009). Semiparametric regression during 2003-
2007. Electronic J. Statist. 3, 1193-1256.
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