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Abstract: This paper addresses the problem of variance estimation for a general

U-statistic. U-statistics form a class of unbiased estimators for those parameters of

interest that can be written as E {ϕ(X1, . . . , Xk)}, where ϕ is a symmetric kernel

function with k arguments. Although estimating the variance of a U-statistic is

clearly of interest, asymptotic results for a general U-statistic are not necessarily

reliable when the kernel size k is not negligible compared with the sample size n.

Such situations arise in cross-validation and other nonparametric risk estimation

problems. On the other hand, the exact closed form variance is complicated in

form, especially when both k and n are large. We have devised an unbiased vari-

ance estimator for a general U-statistic. It can be written as a quadratic form of

the kernel function ϕ and is applicable as long as k ≤ n/2. In addition, it can be

represented in a familiar analysis of variance form as a contrast of between-class and

within-class variation. As a further step to make the proposed variance estimator

more practical, we developed a partition resampling scheme that can be used to

realize the U-statistic and its variance estimator simultaneously with high compu-

tational efficiency. A data example in the context of model selection is provided.

To study our estimator, we construct a U-statistic cross-validation tool, akin to the

bic criterion for model selection. With our variance estimator we can test which

model has the smallest risk.

Key words and phrases: Best unbiased estimator, cross-validation, likelihood risk,

model selection, partition resampling, U-statistic, variance.

1. Introduction

Suppose we are considering a parameter of interest θ that can be written as

a functional of F with the form θ(F ) =
∫
· · ·

∫
ϕ(x1, . . . , xk)dF (x1) · · · dF (xk),

where F may be either univariate or multivariate, and ϕ is a symmetric func-

tion with k arguments. Here “symmetry” means that the value of ϕ does not

change by rearranging its k components. Given a random sample of size n,

Xn = (X1, . . . , Xn), statistic ϕ(X1, . . . , Xk) can be used as an unbiased estimator

for the parameter θ if n ≥ k. Hoeffding (1948) introduced a class of statistics,

called U-statistics, which average over all kernel functions with subsamples of

size k taken out of Xn. It is generally defined in the form
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Un =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

ϕ(Xi1 , . . . , Xik). (1.1)

Although the function ϕ is often scalar-valued in applications, most of the theory

can easily be transferred to the vector-valued case.

The main achievement of this paper is the identification and practical devel-

opment of an unbiased estimator of the variance of a U-statistic. This estimator

exists provided k ≤ n/2. We also develop fast subsampling method that leads

simultaneously to an efficient incomplete U-statistic along with its variance es-

timate. We think that this estimator and its spin-offs will be valuable in many

problems where the size of the U-statistic kernel is large.

We use our variance estimator to make new contributions to the model se-

lection literature. Standard cross-validation tools often lead to U-statistics with

large kernel sizes. Our concern with these methods is that many rely almost

entirely on point estimates of risk, even though these cross-validation risk esti-

mates can be highly variable. It seems to us that a conservative approach would

be to avoid selecting larger models when we are unsure whether they actually

improve risk. To do this, we need to measure the variability in the differences

between model risk estimates. We do so here by estimating their variance of

the differences between paired risk estimates and constructing t-type statistics.

We show our assessment is quite different from the “1-SE rule” (Breiman et al.

(1984)).

In these model selection settings standard nonparametric variance estimation

tools can be highly biased and computationally expensive. We think the unbiased

estimator, which we show is faster to compute, could play an important role. We

demonstrate its use here in two contexts. In one problem, a nonparametric

estimation of model power, we compare by simulation our method with a variety

of other nonparametric variance estimators. This is done in Section 5. In a second

problem, in Section 6, we devise a likelihood cross-validation (lcv) tool that is

akin to a bic estimator of risk (Schwarz (1978)), and apply it to the selection of a

logistic model. In this example we can show the close relationship of the lcv and

bic estimates, and use our variance estimation to develop a conservative method

of minimizing risk.

2. Unbiased Variance Estimation

In this section we present some background on U-statistics, then introduce

the unbiased variance estimator V̂u (2.3). We consider the estimation of variance

for incomplete U-statistics, as well as a partition representation of V̂u that leads

to a new subsampling scheme.
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2.1. Standard U-statistic results

The statistic Un found in (1.1) is clearly an unbiased estimator of parameter

θ. In addition, it can be written as a function of the order statistics. As the set

of order statistics is the complete sufficient statistic if the underlying distribution

family is large enough (Fraser (1954)), Un is the best unbiased estimator of θ in

the context of nonparametric inference.

Theoretical results concerning a general U-statistic include its asymptotic

normality under certain regularity conditions and its exact closed form variance.

These results first appeared in Hoeffding (1948). The asymptotic U-statistic

variance, k2σ21/n, is constructed according to Theorem 5.2 in Hoeffding (1948):

lim
n→∞

nVar (Un) = k2σ21,

where σ21 = Var [E{ϕ(X1, . . . , Xn) | X1}]. However, the asymptotic results are

based on the assumption that the sample size n goes to infinity with the kernel ϕ,

and hence k, fixed. Equivalently, the kernel size k is negligible compared with n.

In addition, Theorem 5.2 in Hoeffding (1948) reveals that by using the asymptotic

variance to estimate the U-statistic variance, we are always optimistic. The exact

form of the variance for a general U-statistic

Var (Un) =

(
n

k

)−1 k∑
c=1

(
k

c

)(
n− k

k − c

)
σ2c , (2.1)

where ϕc(x1, . . . , xc) = E{ϕ(X1, . . . , Xn) | X1 = x1, . . . , Xc = xc} and σ2c =

Var (ϕc) for 1 ≤ c ≤ k, is complicated in form and appears computationally

intensive, especially when both k and n are large. As a result, our first goal

is to derive a general estimator for the variance of a U-statistic that is of a

relatively simple form. Its realization does not depend on the computation of the

conditional variances σ2c ’s. In addition, the proposed variance estimator exists

as long as the kernel size k ≤ n/2.

2.2. The construction of the unbiased variance estimator V̂u

We demonstrate how one can construct an unbiased estimator of the vari-

ance of an arbitrary U-statistic, assuming that k ≤ n/2. Consider the com-

plete U-statistic denoted as Un = N−1
∑N

i=1 ϕ(Si), where N is the number of

distinct size-k samples, say Si, taken out of X1, . . . , Xn. Define the sample over-

lap O(S1, S2) as the number of elements in common between Si and Sj . Take

Pc = {(Si, Sj) | O(Si, Sj) ≤ c}, and let Nc be the number of pairs in Pc. Define

Q(c) = N−1
c

∑
Pc

ϕ(Si)ϕ(Sj) (0 ≤ c ≤ k). (2.2)
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Theorem 1. If Un is a U-statistic with a kernel ϕ of size k, k ≤ n/2, and

V̂u = Q(k)−Q(0), (2.3)

where Q(k) and Q(0) are defined in (2.2), then V̂u is an unbiased estimator of

Var (Un). Furthermore, it is a function of the order statistics and so is the best

unbiased estimator of Var (Un).

Proof. With a little algebra one can show that E {Q(0)} = {E(Un)}2, and

Q(k) = U2
n. Therefore, E {Q(k)−Q(0)} = E(U2

n)−{E(Un)}2 = Var (Un). That

is, Q(k) − Q(0) is an unbiased estimate of Var (Un). This yields the result in

Theorem 1.

The theory can be extended to the estimation of vector-valued ϕ(S) by defin-

ing matrix-valued versions of Q(c) =
∑

Pc
ϕ(Si)ϕ(Sj)

T /Nc (0 ≤ c ≤ k).

Example 1. Consider an independent and identically distributed sample X1, . . .,

Xn from some distribution with mean µ and finite variance σ2. Take the param-

eter of interest to be θ = µ. Let ϕ(x) = x be the kernel function, which results

in the U-statistic Un =
∑n

i=1Xi/n = X̄. Based on (2.3), we have

Q(k) = U2
n = X̄2, Q(0) =

(
n

2

)−1 ∑
1≤i<j≤n

XiXj .

It can be shown that V̂u = Q(k) − Q(0) =
∑n

i=1

(
Xi − X̄

)2
/ {n(n− 1)}, and

E(V̂u) = σ2/n = Var (Un).

Remark 1. To our knowledge, (2.3) is a new method for variance estimation.

Folsom has this result in a more complex form (Folsom (1984, p.79)), with the

estimator expressed as{
2

(
n

k

)(
n− k

k

)}−1 ∑
Sa∩Sb=∅

{ϕ(Sa)− ϕ(Sb)}2 −
(
n

k

)−1∑
a

{ϕ(Sa)− Un}2.

His result focuses on probability sample U-statistics in survey statistics, and

further results seem to be absent.

Remark 2. There is some related work in the area of variance estimation in

cross-validation. Nadeau and Bengio (2003) considered training samples of n/2 or

less, but their estimator was unbiased for the U-statistic with sample size n/2, not

n, and so it showed considerable positive bias. Markatou et al. (2005) considered

larger training samples, and corrected for bias by using moment approximations

based on Taylor series.
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Remark 3. As the proposed variance estimator V̂u is a function of the order

statistics, it can be represented as a complete U-statistic with a new kernel func-

tion ψ of size 2k (see Appendix for proof). This kernel depends on n, as is

reflective of the fact that the variance of Un depends on n. Hence, even if k

is fixed, further work is needed to establish the asymptotic properties of the

estimator.

Remark 4. Although we do not pursue it further here, it can be shown that

the unbiased estimator for σ21 has the form (N1/n1) {Q(1)−Q(0)}, where n1 is

the number of pairs of size-k subsamples that have exactly one common element.

From this it follows that the unbiased estimator for σ21 also has the form of a com-

plete U-statistic with kernel size 2k, making it no easier to estimate unbiasedly

than Var (Un).

2.3. Estimation of variance under subsampling

To reduce the expense in computing a complete U-statistic, Blom (1976)

proposed to consider an incomplete U-statistic. It is generally defined as U inc =

C−1
∑
ϕ(Si), where Si is a size-k subsample from Xn (1 ≤ i ≤ C,C ∈ N+).

A special version is a realization by random subsampling (Politis, Romano, and

Wolf (1999)). We denote the sampled incomplete U-statistic with C random

subsamples as ŨC . It can be written as ŨC = C−1
∑C

i=1 ϕ(S̃i), where each S̃i
is a random subsample of size k taken out of Xn. We show here how one can

estimate the variance of ŨC unbiasedly.

The variance of ŨC can be decomposed as

Var (ŨC) = Var
[
E
{
C−1

C∑
i=1

ϕ(S̃i)
∣∣∣Xn

}]
+ E

[
Var

{
C−1

C∑
i=1

ϕ(S̃i)
∣∣∣Xn

}]
.

Because ϕ(S̃1), . . . , ϕ(S̃C) are sampled independently given the data Xn, we then

have Var (ŨC) = Var (Un) + E[{C(C − 1)}−1
∑

i{ϕ(S̃i)− ŨC}2].
Denote the unbiased estimator for Var (ŨC) as

V̂ inc
u = V̂u + {C(C − 1)}−1

C∑
i=1

(
ϕ(S̃i)− ŨC

)2
.

As V̂u is the best unbiased estimate for Var (Un), V̂
inc
u is the best unbiased esti-

mate for Var (ŨC). The second term on the right represents the extra variance

due to using an incomplete statistic. This is a new formula for variance estima-

tion in the subsampling case. However, we see later that approximation of V̂u is

challenging under simple subsampling.
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2.4. The analysis of variance representation of V̂u

There is an alternative representation of V̂u that is quite useful for construct-

ing a better subsampling scheme for incomplete U-statistics. Equations (2.2)

and (2.3) show that the proposed unbiased variance estimator V̂u can be written

as a quadratic form involving the kernel function ϕ(S). This leads us to write the

statistic using matrix notation to better understand its structure. We show here

how it can be represented in a familiar analysis of variance form as a contrast of

between-class and within-class variation.

For any given kernel size k, we partition the sample space into a maximal

number of subsamples of size k, say S1, . . . , Sm, where mk ≤ n. The resulting

ϕ(S1), . . . , ϕ(Sm) are independent random variables. To simplify our notation,

assume n = mk. We let B be the number of different ways one can partition the

data set. For a = 1, . . . ,B, let the ath partition be a unique sequence of non-

overlapping size-k samples Sa,1, . . . , Sa,m. We represent the variance estimator

based on partitions and claim that it is equal to the best unbiased estimator.

Define the complete variance estimator based on partitions to be

V̂partition =
1

B

B∑
a=1

[
1

m

m∑
j=1

{
1

m− 1

(
ϕ(Sa,j)− ϕ̄a

)2 − (
ϕ̄a − ϕ̄

)2}]
, (2.4)

where ϕ̄a =
∑m

j=1 ϕ(Sa,j)/m, and ϕ̄ =
∑B

a=1 ϕ̄a/B = Un.

Proposition 1. The complete variance estimator based on partitions is equal to

the unbiased variance estimator, V̂partition = V̂u.

Note that V̂partition can be re-expressed as

V̂partition =
1

m
σ2WP − σ2BP, (2.5)

where σ2WP =
∑B

a=1

∑m
j=1

(
ϕ(Sa,j)− ϕ̄a

)2
/ {B(m− 1)} is the within-partition

variance, and σ2BP =
∑B

a=1

(
ϕ̄a − ϕ̄

)2
/B is the between-partition variance.

One interesting question here is how the formula in (2.4) relates to variance

estimation when one uses an incomplete U-statistic based on a single partition,

say S1, . . . , Sm. As ϕ(S1), . . . , ϕ(Sm) are independent, the true variance for the

corresponding incomplete U-statistic U inc is Var {ϕ(S)} /m. The best unbiased

estimator of Var (U inc) would be
∑m

j=1

(
ϕ(Sj)− ϕ̄

)2
/ {m(m− 1)}. This same

term is estimated in V̂partition by σ2WP/m. The term 1 − (mσ2BP/σ
2
WP) therefore

represents the relative decrease in variance arising from using the complete U-

statistic instead of a single partition.
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3. Negative Values of V̂u and Proposed Fix-ups

In this section we show V̂u has a weakness that has a simple repair. We start

by showing that it is numerically possible for V̂u = Q(k) − Q(0) to be negative

when k ≥ 2.

Example 2. Consider k = 2 and n = 4. Denote the original data set as x1, . . .,

x4, and let ϕ be a kernel function of order 2. Suppose that ϕ(x1, x2) = ϕ(x3, x4) =

1, and ϕ(x1, x3) = ϕ(x1, x4) = ϕ(x2, x3) = ϕ(x2, x4) = 0. Then,

V̂u = Q(k)−Q(0) = U2
n −Q(0) =

(
1

3

)2

− 1

3
= −2

9
.

The estimator corresponds to a quadratic form. But, the matrix has negative

eigenvalues, as is clear from (2.4). Negative estimates of Var (Un) by V̂u are

clearly undesirable. And, we propose an easy-to-compute adjustment based on

two lemmas.

Lemma 1. E {Q(k)−Q(c)}≤E {Q(k)−Q(c− 1)}≤Var (Un) for all 1≤c≤k.

Lemma 2. If S2
U = Q(k)−Q(k − 1),

S2
U =

1

N(N− 1)

N∑
i=1

{ϕ(Si)− Un}2 , N =

(
n

k

)
.

Thus S2
U , viewed as an estimator of Var (Un), is both biased downwards from

Lemma 1, and nonnegative from Lemma 2. Moreover, it is strictly positive unless

ϕ(Si) = Un for any size-k sample Si. Since V̂u−S2
U estimates a positive quantity

but can take negative values, there is a simple fix to the unbiased estimator V̂u,

denoted as V̂ +
u ,

V̂ +
u = max{V̂u, S2

U}. (3.1)

As S2
U is consistent for small values, using V̂ +

u guarantees that the adjusted

variance estimator is no smaller than S2
U . In addition, this proposed fix does not

have the discontinuity (as a function of the data) present in another intuitive

adjustment, Ṽ = V̂uI{V̂u > 0}+ S2
U I{V̂u ≤ 0}. In our simulation study it will be

seen that the proposed adjustment has similar performance as V̂u as to means,

standard deviations, and mean squared errors.

Example 3. Continuing with Example 2, we find that

V̂ +
u = max

[
1

6× 5

{
2×

(
1− 1

3

)2

+ 4×
(
0− 1

3

)2
}
,−2

9

]
=

2

45
.
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It is clear that V̂ +
u has a positive bias. We will examine the differences

between V̂ +
u and V̂u in our numerical study of Section 5.3.

4. Partition and Other Resampling Schemes

For problems with large n and k, the number of possible subsamples of size k

is enormous, and so it is challenging to compute Un. It is even more challenging

to compute V̂u, which requires summation over all the pairs of nonoverlapped

subsamples. We introduce a partition resampling scheme that can be used to

realize Un and its variance estimator V̂u (2.3) simultaneously with high statistical

and computational efficiency.

4.1. Partition resampling scheme

A single partition (S1, . . . , Sm) of the sample creates the most efficient in-

complete U-statistic possible using just m subsamples. Thus it seems a natural

building block for creating a sampling scheme to compute the incomplete U-

statistics.

For b = 1, . . . , B, let Pb = (S̃b,1, . . . , S̃b,m) be the bth random partition of

the size-n sample into m disjoint subsets of size k. Without loss of generality,

assume that n = mk. We propose to sample with replacement B times from

the set of all partitions. We call this the partition resampling scheme. Thus for

kernel size 2, we first sample a partition consisting m = n/2 subsets of size 2;

each such partition generates a term ϕ̄b =
∑m

j=1 ϕ(S̃b,j)/m. We then construct

B such partitions and average over partitions to get an incomplete U-statistic.

One can estimate Var (Un) by random partition resampling based on a for-

mula analogous to (2.5). Let W (Pb) =
∑m

j=1(ϕ(S̃b,j)− ϕ̄b)
2/(m− 1) be the sums

of squares within the bth partition, b = 1, . . . , B. We define the random partition

variance estimator as

V̂ inc
partition,B =

1

B

B∑
b=1

{W (Pb)

m
− (ϕ̄b − ϕ̄inc)2

}
:=

1

B

B∑
b=1

γb (4.1)

where ϕ̄inc =
∑B

b=1 ϕ̄b/B. It can also be represented as a contrast of between-

partition and within-partition variation as in (2.5). V̂ inc
partition,B = σ̃2WP/m− σ̃2BP,

where σ̃2WP =
∑B

b=1

∑m
j=1

{
ϕ(S̃b,j)− ϕ̄b

}2
/ {B(m− 1)} is the sampled within-

partition variance, and σ̃2BP =
∑B

b=1

(
ϕ̄b − ϕ̄inc

)2
/B is the sampled between-

partition variance. It can be shown that V̂ inc
partition,B is subsampling unbiased for

Var (U inc).
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Moreover,

V̂ inc
partition,B = (ϕ̄inc)2 −B−1

B∑
b=1

Q̃b(0), Q̃b(0) =

(
m

2

)−1 ∑
1≤i<j≤m

ϕ(S̃b,i)ϕ(S̃b,j).

That is, the random partition resampling only considers the nonoverlapped pairs
within each partition in the estimation of Q(0).

4.2. Determining the partition size B

The selection of the number of partitions B is important for the properties
of the estimated variance. The good news is that one can estimate adequacy of
B from the subsampling data. The first property we consider is the efficiency
of the incomplete estimator relative to the complete estimator. The variance
of the partition variance estimator (4.1) can be written as Var (V̂ inc

partition,B) =

Var {E(V̂ inc
partition,B | Xn)}+E{Var (V̂ inc

partition,B | Xn)}, so

Var (V̂ inc
partition,B) = Var (V̂u) + mean partition resampling variance. (4.2)

In practice, we want the mean partition resampling variance small so as to have
a more accurate estimator.

From the perspective of subsampling partitions Pb, the statistic V̂ inc
partition,B

can be written as a U-statistic of order 2:

V̂ inc
partition,B =

1(
B
2

) ∑
1≤i<j≤B

{W (Pbi) +W (Pbj )

2m
− B − 1

B

(ϕ̄bi − ϕ̄bj )
2

2

}
.

We can estimate its variance unbiasedly using the methods in this paper. But, as
a simpler method, (4.1) has V̂ inc

partition,B close to being an average over partitions
that are generated randomly. Thus, we can also evaluate the accuracy of the
incomplete realization by examining its standard error based on SD(γb)/

√
B,

and thereby ensure that the deviation from V̂u is minimal.
In a simulation study one can estimate Var (V̂ inc

partition,B) and the mean par-
tition subsamping variance, and so use (4.2) to estimate the complete estimator
variance, corresponding to B = ∞. In a data analysis, it is useful to interpret
the simulation error in terms of how much our inference could change if B were
infinite. Suppose that when we estimate V̂u with V̂ inc

partition,B, there is an esti-
mated resampling variance, say τ2B, due to B not being infinite. We could then
infer that V̂u would be very likely to be in the range V̂ inc

partition,B ± 2τB if B were
to increase without limit. Therefore, if we consider the change in the t-statistic
that would be due to letting B become infinite, we get the ratio

Un/
√
V̂ inc
partition,B

Un/
√
V̂u

=

√√√√ V̂u

V̂ inc
partition,B
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which is highly likely to lie in the range
√

1± 2τB/V̂ inc
partition,B. In our data exam-

ple, we will report these values as a measure of the adequacy of our subsampling

efforts.

4.3. Estimating Var (Un) with simple random sampling

The incomplete U-statistic based on partition resampling is statistically ef-

ficient compared with the randomly sampled incomplete U-statistic when both

use the same number of size-k subsamples in their constructions. Thus, if we

let U inc
simp and U inc

part be the incomplete U-statistics computed from simple random

subsampling and partition resampling respectively, Var (U inc
part) ≤ Var (U inc

simp).

For proofs of these results, the 2012 Pennsylvania State University Ph.D. thesis

by Q. Wang is available electronically from Penn State University Library.

A further drawback of simple random sampling arises because one needs a

good method to estimate Q(0) in V̂u, and the simple random sampling method

can fail to generate enough non-overlapped pairs as needed to calculate Q(0)

accurately.

5. Studying the U-Estimator

We designed a simulation study to compare various nonparametric methods

in estimating the variance of a general U-statistic. We considered a U-statistic

with a large kernel size k so that the standard asymptotic U-statistic variance

would likely be highly biased and the closed form U variance is difficult to com-

pute. In this context, we compared the proposed unbiased variance estimator

with several standard resampling estimators. We present speed comparisons and

discuss the bias problems in the other methods. We also studied the possible neg-

ative values of the unbiased variance estimator along with the proposed simple

fix-up.

5.1. A simulation study

Liu and Lindsay (2009) assessed the quality of the fit of a model to a data

set through goodness-of-fit testing used in an inverse fashion. They assumed the

alternative was true, and estimated the statistical power of detection of the alter-

native at sample sizes less than n, constructing a U-statistic for this estimation.

Their results showed that this to be a difficult estimation problem.

Here we apply this methodology to the problem of evaluating the estimated

power of a one-sample Kolmogorov-Smirnov test for normality. We compare

the performance of the unbiased variance estimator V̂u with some bootstrap and

jackknife variance estimators. It is seen that V̂u provides an estimator that is

competitive with its bootstrap and jackknife counterparts on features such as
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bias, variance, and computational speed. We later use the same setting to inves-

tigate the performance of the nonnegative variance estimator V̂ +
u in comparison

with V̂u.

Consider a sample of size n taken independently from a logistic distribution

with location parameter 0 and scale parameter 1. We wish to test whether these

data are normal. We take subsamples of size k from the data set and test them

for normality. The power of a one-sample Kolmogorov-Smirnov test for normality

at significance level 0.05 and sample size k is

powerk = Pk(test statistic ≥ threshold) = Pk(p-value ≤ 0.05).

In this case the parameter of interest θk = E(I{p-value ≤ 0.05 | Xk}) can be

estimated unbiasedly by a U-statistic with kernel function ϕ(Xk) = I{p-value ≤
0.05 | Xk} of size k, where k is the training sample size. Our proposed variance

estimator V̂u applies as long as k ≤ n/2.

5.2 Simulation results

The simulation setting was as follows: R = 500 samples of size n = 100

were drawn independently from a logistic distribution. For each sample of size

n, we tested for normality using a one-sample Kolmogorov-Smirnov test based

on subsets of size k = pn where p = 0.1, 0.25, and 0.5. The logistic density is

difficult to distinguish from the normal at this sample size. The mean estimated

power at the three sample sizes were 0.158, 0.283, and 0.523, respectively. The

columns in Table 1 to Table 3 correspond to the unbiased estimator realized by

partition resampling, the naive nonparametric bootstrap estimator, the smooth

bootstrap estimator, and the jackknife estimator. For more on bootstrap and

jackknife methods, see Efron (1987).

The partition resampling scheme was implemented in estimating the U esti-

mator and its variance, simultaneously, with mB randomly partitioned subsam-

ples of size k. For mB = 1, 000, this corresponds to B = 100 random partitions

for k = 0.1n, B = 250 random partitions for k = 0.25n, and B = 500 random

partitions for k = 0.5n. To standardize our comparisons, we used the same num-

ber of subsamples of size k when we constructed the bootstrap and jackknife

estimates (the results in the following tables were based on 2,000 subsamples for

each estimator). We have summarized in Tables 1 to 3 the following: the average

of the variance estimates, the standard deviation of the variance estimates, and

the ratio of absolute bias over standard deviation. The latter measure reflects

the shift in the sampling distribution of the statistic away from the true value,

but in a scale free way. In addition, we also report the average computation time

in minutes per estimator.



1128 QING WANG AND BRUCE LINDSAY

Table 1. Comparison with bootstrap and jackknife estimators (n = 100, k =
0.1n).

V̂u V̂ inc
partition,B V̂ inc

partition,B Nonpara. Smooth Jackknife

(mB = ∞) (mB = 1, 000) (mB = 2, 000) Bootstrap Bootstrap

Ave{V̂ar (Un)} 0.0025 0.0027 0.0026 0.0034 1.7× 10−5 0.0067

SD{V̂ar (Un)} 0.0021 0.0027 0.0024 0.0018 2.9× 10−5 0.0039

| Bias | /SD 0.000 0.084 0.034 0.513 85.890 1.097

Computation 0.042 0.082 5.682 4.407 0.893

Table 2. Comparison with bootstrap and jackknife estimators (n = 100, k =
0.25n).

V̂u V̂ inc
partition,B V̂ inc

partition,B Nonpara. Smooth Jackknife

(mB = ∞) (mB = 1, 000) (mB = 2, 000) Bootstrap Bootstrap

Ave{V̂ar (Un)} 0.0162 0.0161 0.0161 0.0200 8.5× 10−5 0.0259

SD{V̂ar (Un)} 0.0125 0.0131 0.0128 0.0066 1.2× 10−4 0.0130

| Bias | /SD 0.000 0.005 0.008 0.575 133.161 0.748

Computation 0.020 0.037 8.017 5.142 1.816

Table 3. Comparison with bootstrap and jackknife estimators (n = 100, k =
0.5n).

V̂u V̂ inc
partition,B V̂ inc

partition,B Nonpara. Smooth Jackknife

(mB = ∞) (mB = 1, 000) (mB = 2, 000) Bootstrap Bootstrap

Ave{V̂ar (Un)} 0.0578 0.0569 0.0568 0.0469 1.8× 10−4 0.0822

SD{V̂ar (Un)} 0.0571 0.0578 0.0573 0.0147 2.7× 10−4 0.0397

| Bias | /SD 0.000 0.016 0.017 0.740 210.912 0.0616

Computation 0.014 0.051 8.039 8.213 1.540

The standard deviation of V̂u in column one was estimated based on (4.2).

WithmB = 2, 000, the variance of the incomplete variance estimator was close to

Var (V̂u). The bias of the bootstrap and jackknife estimators were significantly

larger than that of V̂u. The ordinary jackknife can cause significant positive

bias, as seen in Table 1−3. For other evidence, see Table 1 in Wu (1986). The

smoothing that is used in the smooth bootstrap estimator creates normality in

the data and thus results in significant bias. With partition resampling scheme,

the unbiased variance estimator is efficient to compute compared to its bootstrap

and jackknife counterparts. This advantage is more obvious for half-sampling,

as each size-n sample is partitioned into two disjoint half-samples which can be

used to estimate Q(0) directly.
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As the unbiased variance estimator can be written as a complete U-statistic
itself (Remark 3), it can be thought of as a subsampling unbiased estimator,
where we average over a sampling-without-replacement scheme. In comparison,
bootstrap methods are based on sampling with replacement. The subsampling
approach is superior in terms of unbiasedness.

5.3. A numerical study of the negative estimation problem

We investigated the performance of the simple nonnegative variance estima-
tor V̂ +

u based on a simulation study with the same setting as in the previous
section (mB = 2, 000).

We have V̂ +
u = max{V̂u, S2

U}, where S2
U = Q(k)−Q(k − 1). In this section

we use the complete data notation for simplicity, but the simulation calculations
were based on incomplete estimators. Figure 1 displays the relationship between
V̂u and S2

U based on the simulation as in Section 5.2. The rightmost vertical
dashed line in each plot marks the level of the true value for the variance. The
filled squares represent values of V̂ +

u = S2
U when V̂u < 0, the negative values

we wish to eliminate. The filled triangles represent values of V̂ +
u = S2

U when
S2
U > V̂u > 0, the cases where we use a downward biased estimate to substitute

for V̂u.

Remark 5. In Figure 1, the scale of the vertical axis is different from the hori-
zontal axis. Notice the structural relationship between S2

U and V̂U in panel (c).
We think it is interesting mathematical conundrum rather than a statistically
useful structure.

The simulation generated negative values for V̂u, at 1.9% when k = 0.1n,
1.3% when k = 0.25n, and 3.5% when k = 0.5n. The number of negative values
decreased as the partition sampling size B was increased. Figure 1 shows that it
is rare for S2

U > V̂u > 0. Indeed, S2
U is so small in magnitude and so relatively

tightly distributed that most cases occurred when V̂u was negative. In addition,
when V̂ +

u > V̂u, it was often closer to Var (Un). This helped to reduce the mean
squared error of the positive estimator as seen in Table 4. The variance estimator
worked well in this study; we discuss future work needed on the distribution of
V̂u and V̂ +

u in the discussion section.
We can compare S2

U , the forced positive estimator V̂ +
u , and V̂u in terms of

their mean, standard deviation, and mean squared error. The results based on
the same simulation are summarized in Table 4.

Table 4 indicates that S2
U was consistently much smaller than V̂u in expecta-

tion. The positive variance estimator V̂ +
u led to an estimate with negligible bias

as compared with the unbiased variance estimator V̂u. In addition, its variance
was slightly smaller than the variance of V̂u. We conclude that the forced positive
estimator is an inexpensive but effective amendment to variance estimation.



1130 QING WANG AND BRUCE LINDSAY

Figure 1. Plots of S2
U versus V̂u.

Table 4. Comparing S2
U , V̂u, and V̂

+
u .

n = 100, k = 10 n = 100, k = 25 n = 100, k = 50

S2
U V̂u V̂ +

u S2
U V̂u V̂ +

u S2
U V̂u V̂ +

u

True 0.0025 0.0162 0.0578
Mean 0.00007 0.0026 0.0026 0.00009 0.0161 0.0161 0.00010 0.0568 0.0583
SD 0.00002 0.0024 0.0023 0.00002 0.0128 0.0128 0.00003 0.0573 0.0555
MSE 5.93e-6 5.98e-6 5.68e-6 2.59e-4 1.66e-4 1.64e-4 3.33e-3 3.33e-3 3.31e-3

6. Model Selection with Real Data Example

Although unconventional, we treat cross-validation as a U-statistic method-

ology. In this section, we demonstrate our method by considering a likelihood
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cross-validation problem (Van der Laan, Dudoit, and Keles (2004)).

In this methodology, the kernel size k is ñ+1, where ñ (ñ < n) is the size

of the training sample. Thus, if we are to estimate the variability of the risk

estimation, we need to use training samples with size ñ < n/2. There are a

number of important reasons to use smaller training samples. For one, see Hall

and Robinson (2009), where “bagging cross-validation” based on training samples

of size n/2 was shown to significantly improve mean integrated square error

performance in kernel density bandwidth selection. For others, see Shao (1993),

Van der Laan, Dudoit, and Keles (2004), and Shah and Samworth (2012).

We present an additional reason to consider smaller training samples in like-

lihood cross-validation. Standard likelihood cross-validation corresponds to a

nonparametric version of aic-type risk estimation (Akaike (1974)). We argue

that likelihood cross-validation with training samples of size ñ = n/(log n− 1) is

equivalent to the standard bic risk estimation (Schwarz (1978)), and verify this

in a rich data set that has many parametric models to compare. We note that

likelihood cross-validation is more generally applicable than aic and bic, but we

have chosen a model where both exist and can be compared. We then show how

to use our U-statistic variance estimation methodology to eliminate models that

are not significantly smaller in bic risk than other, more parsimonious, models.

6.1. Model selection methodology

Let the true distribution have the density function τ(x)dx. For each δ in

an index set, say δ ∈ {1, 2, 3, . . .}, let model Mδ be a class of densities {mθδ |
θδ ∈ Θδ ⊆ Rpδ} indexed by the parameter θδ. Here pδ is the dimension of

parameter θδ. In a later example, each model Mδ corresponds to a particular

logistic regression model, and our goal is to pick the model Mδ with the smallest

risk.

The Kullback-Leiber distance between τ and mθδ is

d(τ, δ) =

∫
τ(x) log{τ(x)/mθδ(x)}dx.

Let Xn be a sample of size n, and let θ̂δ(Xn) be the parameter estimator for

model Mδ based on that sample. Then, the relative Kullback-Leibler risk for

using fitted model mθ̂δ(Xn)
has the form R(δ, n) = −EXn+1{log m̂θ̂δ(Xn)

(Xn+1)},
where Xn+1 is the size-(n + 1) sample (Xn, Xn+1). Risk depends on the sample

size n used to estimate θδ.

Ray and Lindsay (2008) noted that one can create a more flexible family

of risk estimators by defining the relative risk based on a subsample of size ñ.

Indeed, much of the risk estimation literature does this implicitly through the
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choice of the sample size for the “training set”. We call ñ the training sample

size and estimate the parameter θδ by θ̂δ(Xñ), with

R(δ, ñ) = −EXñ+1

{
log m̂θ̂δ(Xñ)

(Xñ+1)
}
. (6.1)

We construct a U-statistic estimate for the relative risk R(δ, ñ) by defining

a symmetric kernel function of size k = ñ+ 1 (ñ ≤ n− 1),

ϕKL,δ(Xñ+1) = − 1

ñ+ 1

ñ+1∑
i=1

log m̂θ̂δ(X(−i))
(Xi), (6.2)

where Xñ+1 is a sample of size ñ + 1 taken out of Xn, Xi is the ith observation

in Xñ+1, and X(−i) contains the ñ observations in Xñ+1 except Xi. The kernel

size k in (6.2) depends on the training sample size ñ which is usually of order n.

The U-statistic estimate for the relative risk R(δ, ñ) has the form

lcv(δ, ñ) =
1(
n

ñ+1

) ∑
1≤i1<···<iñ+1≤n

ϕKL,δ(Xi1 , . . . , Xiñ+1). (6.3)

The letters “lcv” stand for likelihood cross-validation. To reduce computational

efforts, we can use an incomplete U-statistic to estimate R(δ, ñ),

lcvB(δ, ñ) =
1

B

B∑
i=1

ϕKL,δ(S̃i) (B ∈ N+). (6.4)

Here ϕKL,δ is defined in (6.2), and S̃i is a subsample of size ñ + 1 taken out of

Xn.

An alternative for estimating the risk in R(δ, n) is the aic method (Akaike

(1974)). If we generalize this method to an arbitrary ñ, we get a formula based

on some asymptotic expansions that include regularity assumptions. This gener-

alization of aic estimates the relative risk R(δ, ñ) with aic/(2n) using training

sample size ñ based on, see Lindsay and Liu (2007) and Ray and Lindsay (2008),

aic(δ, ñ) = 2n

{
− l

n
+
pδ
2n

+
pδ
2ñ

}
,

where l is the log-likelihood based on the fitted model mθ̂(Xñ)
. The conventional

aic has ñ = n; the conventional bic (Schwarz (1978) can be generated with

ñ = n/(log n− 1) (Ray and Lindsay (2008)).

The likelihood cross-validation statistic (6.3) is an alternative to aic(δ, ñ)/2n

as a method for estimating the same risk value. If one uses ñ = n/(log n− 1), it

is an analogue of the bic method.
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Generally speaking, lcv(δ, ñ) and aic(δ, ñ) are not always asymptotically
equivalent, as the derivation of aic(δ, ñ) is based on asymptotic chi-square ap-
proximations. These are invalid when τ is not in the model or when standard
likelihood asymptotics fail to hold even when the model is true. For a model
that is not regular, like a mixture model, it might be preferable to construct a
U-statistic risk estimate, knowing that the aic criterion has weaker foundations.

Remark 6. Following Benjamini and Gavrilov (2009), if one compares two
nested parametric models, say Mi and Mj with pj = pi + 1, based on the gen-
eralized aic method, the difference in their aic scores is aic(δ = i, ñ)− aic(δ =
j, ñ) = 2(lj−li)−(ñ+n)/ñ, where lδ is the log-likelihood based on the fitted model
mθ̂δ(Xñ)

(δ = i, j). When the smaller model is true, under regularity conditions

2(lj − li) → X 2(1) as n → ∞. Therefore, when considering the hypothesis test
H0 : Mi versus Ha : Mj , the decision of favoring the larger model Mj is equiva-
lent to rejecting the null hypothesis with a level of significance α approximately
equal to P

{
X 2(1) > (ñ+ n)/ñ

}
. We call this number the “p-value index”. This

level is about 0.16 for ñ = n. When ñ = n/2, it corresponds to α = 0.08; when
ñ = n/3, it yields α = 0.05. This provides further motivation for using half or
less subsampling in the estimation of θδ when conservative modelling is desired.

6.2. Numerical results

We consider the Census Income data, also known as the Adult data. It is
available in the R package “arules” under the name AdultUCI. This data set
was extracted from the 1994 census database. A task is to determine whether
an individual makes over 50 thousand a year given a set of predictors. The
AdultUCI data set has records of 15 variables from 48,842 individuals. It has
been cited in Kohavi (1996), Caruana and Niculescu-Mizil (2004), and Agrawal,
Ikant, and Thomas (2005).

We focused on a set of nine variables, including age (A), workclass (W),
education (E), marital-status (M), occupation (O), race (R), sex (S), hours-per-
week (H), and income (I). The attributes age and hours-per-week were each
discretized into four categories. After some data manipulations, our data set had
n = 26897 observations and p = 9 attributes. More details of data trimming
process can be found in the Appendix.

To predict whether an individual makes more than 50 thousand dollars a
year, it is natural to consider income (I), a binary variable, as the response.
Take the probability that the ith individual with yearly income higher than
50 thousand, coded as 1, is pi. Then, income is Bernoulli(pi), where pi is the
probability that the ith observation is 1. We fit logistic regression models

log
( pi
1− pi

)
= linear form of some predictors.
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Table 5. Candidate Models.

Mδ

Model 1 M
Model 2 M+E
Model 3 M+E+O
Model 4 M+E+O+A
Model 5 M+E+O+A+H
Model 6 M+E+O+A+H+W
Model 7 M+E+O+A+H+W+S
Model 8 M+E+O+A+H+W+S+R

Table 6. Compare Different Model Selection Methods.

Model aic/(2n) Rankaic bic/(2n) Rankbic lcv Ranklcv
1 0.4686 8 0.4697 8 0.4721 8
2 0.4183 7 0.4205 7 0.4233 7
3 0.4035 6 0.4076 6 0.4114 6
4 0.3918 5 0.3964 5 0.4003 5
5 0.3846 4 0.3897 4 0.3935 3
6 0.3823 3 0.3884 1 0.3921 1
7 0.3822 2 0.3884 2 0.3922 2
8 0.3820 1 0.3888 3 0.3940 4

After initial model screening using stepwise selection, the best model in the

bic sense was identified as the one with six main effects. We considered eight

candidate models with only first-order terms in our model comparison. These

models are summarized in Table 5. Here we only considered the best model of

each size.

The model selection index for each criterion is summarized in Table 6. We

compare the generalized aic method, the bic method, and the lcv method with

training sample size ñ = n/(log n − 1) = 2, 923. This size of ñ yields a p-value

index of 0.0014 (see Remark 6). The calculation of the lcv scores was based

on implementing a partition resampling scheme with B = 55 random partitions,

where each partition yields 9 disjoint subsets of size ñ+1. After a partition was

created, all models were fit using that same partition (this is necessary if one is

to accurately estimate the variance of the difference in risk estimates, see Section

6.3). Table 6 also includes the rankings of the eight candidate models based on

optimization of each criterion.

The result in Table 6 demonstrates how numerically similar the bic method

and the lcv method can be in model selection for parametric models. We know

that the bic has some nice properties, like consistency, and we have shown in

Table 6 that the bic/(2n) criterion provides almost identical model rankings and

nearly identical risk estimation as the lcv. (Although the rankings for Model
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5 and Model 8 are different between the bic and the lcv methods, it can be

shown that the risk in Model 8 is not significantly worse than Model 5. However,

as Model 5 is more parsimonious, we would prefer Model 5 to Model 8, as seen

in the last column of Table 7.) In comparison, the aic method tended to favor

larger models, as it has a smaller penalty term for model complexity compared

with the bic criterion.

6.3. Pairwise model comparison based on the U-statistic criterion

One fundamental problem with using risk estimation to choose models is that

the high variability in the risk estimates can lead one to choose a less parsimonious

model than is needed to minimize risk. Note that the lcv score for Model 6 is only

slightly smaller than that of Model 5. If the difference in risks is not significant,

then one may prefer to select Model 5 even if its lcv score is slightly larger.

Suppose we want to compare two models, say Mi and Mj , where Mi

represent the more parsimonious model (not necessarily nested in Mj). Let

lcvdiff(ñ) = lcv(δ = i, ñ)−lcv(δ = j, ñ), and take θ = E{lcvdiff(ñ)}. We wish

to use the parsimonious model unless there is significant evidence against it, and

so consider the hypotheses

H0 : θ ≤ 0; Ha : θ > 0. (6.5)

We use an analogue of the paired t-test to test this hypothesis.

Note that lcv(δ = i, ñ) and lcv(δ = j, ñ) are U-statistics and denote their

kernels as ϕi and ϕj . The difference lcvdiff is a U-statistic with kernel ϕdiff =

ϕi − ϕj , and its variance can be estimated unbiasedly with V̂diff based on (2.3).

For subsampling, we use the same partitions on each data set. In this example,

both the kernel size k and the sample size n are relatively large (k = 2,924, n =

26,897). We calculated lcvdiff and their variance estimates based on partition

resampling with B = 55. Rejection follows if lcvdiff/

√
V̂diff > 1.645. This is

fairly conservative relative to the one-standard-error rule discussed in the next

section. Since the selected model depends on this cut-off, one could decide in

view of models selected at different cut-offs. Ideally it would not make much

difference.

Comparing Model 5 and Model 6, for instance, lcvdiff = 0.00133,

√
V̂diff =

0.000438, and t=lcvdiff/

√
V̂diff=3.04. (The ratio of the t-statistics,

√
V̂u/

√
V̂diff,

is predicted to be within the range (0.89,1.10) according to the discussion in Sec-

tion 4.2. Therefore, a larger partition size B would likely not change the signifi-

cance of the t-statistic.) We might therefore conclude that the risk of Model 5 is

significantly larger than that of Model 6, and we may prefer Model 6 to Model

5.
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Table 7. Pairwise Comparison of Risks.

δ 1 2 3 4 5 6 7 8
1 X 2 3 4 5 6 7 8
2 X 3 4 5 6 7 8
3 X 4 5 6 7 8
4 X 5 6 7 8
5 X 6 7 5
6 X 6 6
7 X 7
8 X

Table 7 summarizes the results of pairwise tests between all of the eight can-

didate models of Table 5. Here, the integer value in each cell gives the “winner”

of each pair taken at the nominal α = 0.05 level, where winner means the larger

model if it is significantly better than the smaller one; otherwise, the winner is

the smaller model.

If row i has entries only equal to “i”, then that model is not significantly

worse in risk to any larger model. If column j has entries only equal to “j”, then

model j is significantly better than any smaller model. In Table 7 we see that

Model 6 had both these characteristics.

6.4. Comparison to the one-standard-error (1-SE) rule

A referee has pointed out that our model selection procedure bears similarity

to the 1-SE rule of Breiman et al. (1984) that is a commonly used rule of thumb

(see, for example, Hastie, Tibshirani, and Friedman (2009)). The 1-SE rule

suggests that one uses the most parsimonious model whose risk is no more than

one standard error above the risk of the best model. Let Mj be the model with

the smallest lcv score and Mi be a more parsimonious model. Based on the

1-SE rule, we should prefer Model i unless (lcvi − lcvj)/
√
V̂j > 1, where V̂j is

the variance estimate of Model j. We could have carried out such an analysis

using our variance estimator to compute the standard error of lcvj .

The 1-SE rule looks like a t-test rule with a modified test statistic. The test

statistic used in our pairwise model comparison was T1 = lcvdiff/

√
V̂diff. This

would equal T2 = lcvdiff/
√

2V̂j if the U-statistics involved had equal variances

and if they were statistically independent. Under those assumptions, the 1-SE

rule would be roughly equivalent to our pairwise comparison when used at critical

value 1/
√
2. However, there is a good reason to think that the two U-statistics

involved show positive association, and so we anticipate that V̂diff < 2V̂j . A table

demonstrates the comparison between V̂j and V̂diff based on our data example.
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Table 8. Comparison between individual variance and pairwise variance.

Model 1 2 3 4 5 6 7 8√
V̂j 0.00317 0.00325 0.00329 0.00329 0.00328 0.00332 0.00332 0.00328√
V̂diff NA 0.00203 0.00112 0.00097 0.00076 0.00044 0.00012 0.00052

√
2V̂j√
V̂diff

NA 2.2668 4.1445 4.8080 6.0819 10.7067 39.7538 8.9612

The value V̂diff under Model j is the estimated variance of lcvdiff when comparing

Model j − 1 with Model j.

The last row shows the t-ratio T1/T2. We conclude that T1 is much larger

than T2. Thus, if we used the same critical value for T2 as for T1, with T2 we

would be much less likely to choose the larger model despite the evidence of its

superiority. The effect of correlation was not only large, it was quite variable,

making it hard to predict the magnitude of this conservative behavior. We think

that this is an important finding for cross-validation methodology. It is clear that

one can estimate the difference in risk between two models much more accurately

than it would appear from one-at-a-time standard errors.

7. Discussion

We have shown that one can successfully build an unbiased estimator for

U-statistics of large kernel size k. The main limitation on our method, at least as

applied to cross-validation, is that we require k ≤ n/2. Since the kernel size k is

often determined by the size of the training sample size, say ñ, this would seem

to limit the method to estimating risk variances when the training sample size

does not satisfy ñ < n/2. For example, for likelihood cross-validation we need

k = ñ + 1 ≤ n/2. As a consequence one could not directly estimate the risk for

such commonly used methods as leave-one-out or ten-fold cross-validation.

We believe these limitations can be overcome. For example, the cross-

validation method, as applied to the squared error risk in density estimation,

has a U-statistic kernel of size 2, independent of the training sample size, and so

our method can be applied directly. We have preliminary results showing that

it is often more effective to estimate risk with ñ small, and then extrapolate the

answer to create a risk estimate for sample size n. For more on this see the

bagging bandwidth selection method of Hall and Robinson (2009). Their conclu-

sion was that half samples were much better than leave-one-out cross-validation.

Furthermore, Shao (1993) showed that consistency of cross-validation in model

selection problems can require ñ/n→ 0.

We hope to build a better understanding of the asymptotic properties of the

unbiased estimator as well as its nonparametric competitors. In addition, we
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anticipate the development of methods that would enable one to balance bias

and variance in a more flexible way.
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Appendix

Proof for the U-statistic representation of V̂u
Let Sa, Sb be two subsamples of size k taken from S2k. We determine weights

ω(a, b) such that
(
n
2k

)−1∑
S2k⊆Xn

∑
Sa,Sb⊂S2k

ϕ(Sa)ϕ(Sb)w(a, b) is proportional to

Q(k) =
(
n
k

)−2∑
Sa,Sb⊂Sn

ϕ(Sa)ϕ(Sb).

In the first of these, each pair (Sa, Sb) appears once or zero times inside

the bracket and will appear once in the outer sum for each size-2k sample that

contains the pair. In the second, each pair (Sa, Sb) appears once inside the

bracketed sum. Let n(a, b) be the number of different size-2k samples S2k in

which Sa, Sb are subsets. Then we can set ω(a, b) = 1/n(a, b). After adjusting

the initial constants,

Q(k) =

(
n

2k

)−1 ∑
S2k⊆Xn

ψk(S2k), ψk(S2k) =

(
n

2k

)(
n

k

)−2 ∑
Sa,Sb⊂S2k

ϕ(Sa)ϕ(Sb)ω(a, b).

Consider Q(0) =
∑

P0
ϕ(Sa)ϕ(Sb)/N0. It is easily shown that

Q(0) =

(
n

2k

)−1 ∑
S2k⊆Xn

ψ0(S2k), ψ0(S2k)

=

(
n

2k

)
N−1

0

∑
Sa,Sb⊂S2k

ϕ(Sa)ϕ(Sb)I{Sa ∩ Sb = ∅}.

If ψ(S2k) = ψk(S2k) − ψ0(S2k), V̂u has a representation as a complete U-

statistic:

V̂u = Q(k)−Q(0) =
1(
n
2k

) ∑
S2k⊆Xn

ψ(S2k).

Proof for Proposition 1. Because
∑m

j=1

{
ϕ(Sa,j)− ϕ̄a

}2
=

∑
j ̸=l{ϕ(Sa,j)
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−ϕ(Sa,l)}2/(2m), we have

B∑
a=1

m∑
j=1

{
ϕ(Sa,j)− ϕ̄a

}2
=

1

2m

B∑
a=1

∑
j ̸=l

{ϕ(Sa,j)− ϕ(Sa,l)}2

=
B∑

a=1

m∑
j=1

ϕ(Sa,j)
2 − 1

m

B∑
a=1

m∑
j,l=1

ϕ(Sa,j)ϕ(Sa,l).

Note that
∑B

a=1(ϕ̄a − ϕ̄)2 =
∑B

a=1

∑m
j,l=1 ϕ(Sa,j)ϕ(Sa,l)/m

2 − Bϕ̄2. Among

the B partitions (each with m nonoverlapped subsets of size k) there are m(m−
1)B nonoverlapped within-class pairs in total. Therefore,

1

m(m− 1)B

{ 1

2m

B∑
a=1

∑
j ̸=l

(ϕ(Sa,j)− ϕ(Sa,l))
2 −m(m− 1)

B∑
a=1

(ϕ̄a − ϕ̄)2
}

= ϕ̄2 − 1

m(m− 1)B

B∑
a=1

∑
j ̸=l

ϕ(Sa,j)ϕ(Sa,l) = Q(k)−Q(0).

Proof for Lemma 1. Let Ac denote the set of all pairs of size-k samples with

overlaps exactly equal to c, and let nc be the number of pairs in Ac (0 ≤ c ≤ k).

It is easily seen that Pc =
∪c

l=0Ac, and Nc =
∑c

l=0 nc, where Pc, Nc are defined

in Section 2.2.

Given c (1 ≤ c ≤ k), consider Q(c) − Q(c − 1). By (2.2), we have Q(c) =

N−1
c

{∑
A0
ϕ(Si)ϕ(Sj) + · · ·+

∑
Ac
ϕ(Si)ϕ(Sj)

}
. Then, it can be shown that

Q(c)−Q(c− 1) =
−nc

NcNc−1

{∑
A0

ϕ(Si)ϕ(Sj) + · · ·+
∑
Ac−1

ϕ(Si)ϕ(Sj)
}

+
1

Nc

∑
Ac

ϕ(Si)ϕ(Sj).

Because E {ϕ(Si)ϕ(Sj) | O(S1, S2) = j} = σ2c + θ2, where σ2c = Var {ϕc(X1,

. . . , Xc)}, we have

E {Q(c)−Q(c− 1)} = nc
Nc

(σ2c + θ2)− nc
NcNc−1

c−1∑
j=0

nj(σ
2
j + θ2)

=
nc

NcNc−1

c−1∑
j=0

nj(σ
2
c − σ2j ).

Since σ2c ≥ σ2j (1 ≤ j < c ≤ k) (see Theorem 5.1 in Hoeffding (1948)), each

term inside the summation is nonnegative. Then, E {Q(c)−Q(c− 1)} ≥ 0. The
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fact that E {Q(k)−Q(c− 1)} − E {Q(k)−Q(c)} = E {Q(c)−Q(c− 1)} yields

the result.

Proof for Lemma 2.

Since Q(k − 1) = (Nk/Nk−1)
{
Q(k)− (1/Nk)

∑
Ak
ϕ(Si)ϕ(Sj)

}
, we have

Q(k)−Q(k−1)=
1

Nk−1

N∑
i=1

ϕ2(Si)−
Nk−Nk−1

Nk−1
Q(k)=

1

Nk−1

{ N∑
i=1

ϕ2(Si)−nkU2
n

}
.

Notice that nk = N, Nk−1 = N(N− 1), and Un =
∑N

i=1 ϕ(Si)/N. Therefore,
Q(k)−Q(k − 1) =

∑N
i=1(ϕ(Si)− Un)

2/ {N(N− 1)}.

Data Set in Section 6

For the Census Income data used in Section 6, we first removed attributes

“fnlwgt”, “education-num”, “native-country”, “relationship”, “capital-gain”, and

“capital-loss”, as those variables are either of little interest or redundant given

other existing predictors. In addition, we discarded observations from individ-

uals with education level lower than high school, since those people commonly

do not have stable income. We discretized variable “age” into the categories

Young, Middle-aged, Senior, Old, based on cut-off intervals (0,30], (30,45], (45,

65], (65, 100); variable “hours-per-week” (number of hours worked per week)

was discretized into Part-time, Full-time, Over-time, Workaholic, based on cut-

off intervals (0, 25], (25, 45], (45, 60], (60, 200). Then, we trimmed all of the

observations with missing values. After these adjustments, we ended up with

a data frame with n = 26897 observations and the following nine categorical

variables (the number of levels for each variable is shown inside the parenthe-

ses): age (4), workclass (8), education (8), occupation (14), race (5), sex (2),

hours-per-week (4), and income (2).
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