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Abstract: Biosignatures such as brain scans, mass spectrometry, or gene expression

profiles might one day be used to guide treatment selection and improve outcomes.

This article develops a way of estimating optimal treatment policies based on data

from randomized clinical trials by interpreting patient biosignatures as functional

predictors. A flexible functional regression model is used to represent the treatment

effect and construct the estimated policy. The effectiveness of the estimated policy

is assessed by furnishing prediction intervals for the mean outcome when all patients

follow the policy. The validity of these prediction intervals is established under mild

regularity conditions on the functional regression model. The performance of the

proposed approach is evaluated in numerical studies.

Key words and phrases: Empirical processes, functional data analysis, inverse treat-

ment probability weighting, locally efficient estimation.

1. Introduction

Recent advances in biomedical imaging, mass spectrometry, and high-through-

put gene expression technology produce massive amounts of data on individual

patients. This has the potential to advance the clinical prediction of disease ori-

gin, prognosis, and therapeutic response, and opens up the possibility of tailoring

treatments to the biosignatures of individual patients. For example, brain imag-

ing studies of how treatments for depression engage various neural mechanisms

may one day be used to guide treatment selection and improve outcomes (EM-

BARC (2013)), and PET studies that compare patients treated with cognitive

therapy and patients treated with anti-depressants may be used to predict which

treatment is more likely to benefit a given patient (DeRubeis et al. (2008)). In

addition, mass spectrometry profiling has successfully detected differences be-

tween cancer cases and controls, and may contribute to personalized cancer care

(Koomen et al. (2008); Taguchi et al. (2011)). Also, gene expression profiles

may be useful for designing individualized therapies for cancer or cardiovascular

disease (Heidecker and Hare (2007); van ’t Veer and Bernards (2008)). Unfortu-

nately, however, it is very difficult to develop optimal treatment policies based

on high-dimensional patient profiles and establish their effectiveness, not only
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from the practical point of view of designing clinical trials that can exploit new

scientific understanding, but also because statistical methodology has received

limited attention in this setting.

In this paper we study treatment policies based on large-scale patient pro-

files by interpreting them as functional predictors. Given pre-treatment patient

profiles, treatment assignments, and outcomes of all the patients in a random-

ized clinical trial, our aim is to develop a way of estimating and evaluating the

effectiveness of the treatment policy that optimizes interactions between the func-

tional predictor and treatment. Our approach to estimating effectiveness is to

provide prediction intervals for the mean outcome when all patients follow the

estimated policy. These prediction intervals could be used in practice to help

clinicians decide whether it is desirable to implement an estimated policy, or to

decide between alternative policies.

Early research in the area of individualized treatment concentrated on iden-

tifying qualitative interactions between treatment and patient pretreatment clin-

ical variables, with treatments for various subsets of patients selected by hy-

pothesis testing (Byar and Corle (1977); Shuster and Van Eys (1983); Gail and

Simon (1985)). In recent years, statistical methods for estimating a patient’s

risk category based on profile information have been developed (Dettling and

Bühlmann (2004); Cai et al. (2010, 2013)), and such estimates can help inform

decisions as to the best treatment. This approach is only appropriate in set-

tings where the best treatment (from among competing treatments) in each risk

category is known. There is also an abundance of literature focusing on meth-

ods for identifying features of high-dimensional patient profiles associated with

clinical outcomes (e.g., Gui and Li (2005); Fan and Lv (2008); Engler and Li

(2009)). These methods can be used to predict outcome under each competing

treatment, so an individualized treatment policy can be formulated by choosing

the treatment that achieves the best predicted outcome. Such treatment policies

are generally less cost effective, though, since they are likely to involve features

that do not interact with treatment.

A more direct approach is to restrict attention to a class of policies indexed

by a finite-dimensional parameter (η say), and then optimize a “doubly robust”

estimate of the mean outcome (Murphy et al. (2001)) that would be obtained

if everyone in the population follows the policy, see Zhang et al. (2012). This

approach produces an optimal policy that is robust to model misspecification

when the data come from a randomized clinical trial, but it is computationally

intractable unless η has very low dimension, because of non-concavity of the ob-

jective function. For functional predictors, however, it is desirable to consider

more complex policies that are capable of exploiting the wealth of patient in-

formation available, so η would need to have high dimension. Furthermore, this
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direct approach can result in unstable estimates of the policy, especially in small

samples, because the estimated objective function is not a smooth function of η.

We study an alternative approach based on initially fitting a functional re-

gression model for the interaction between the patient profile and treatment, and

then optimizing the interaction over competing treatments. This model-based ap-

proach is computationally tractable, provides stable estimates of the policy (in

the sense of having a low variance compared with the direct approach), and is

able to capture complex features of the patient’s profile. To assess the effective-

ness of the resulting estimated treatment policy, we develop several prediction

intervals for the expected outcome under the estimated policy.

The paper is organized as follows. In Section 2 we describe the proposed

procedure for estimating treatment policies. Various prediction intervals for eval-

uating the estimated policy in terms of the mean outcome are provided in Section

3. In Section 4 we discuss several functional regression models that fit into our

framework. In Section 5 we study the effectiveness of the estimated policy and

the accuracy of the proposed prediction intervals using simulations, and the ap-

proach is illustrated using gene expression data from the Cancer Genome Atlas

pilot project (TCGA (2008)). Further discussion is presented in Section 6. Proofs

of the main results are given in the Appendix.

2. Estimating Optimal Treatment Policies via Functional Regression

Models

Suppose we are given pre-treatment profiles, treatment assignments, and

outcomes from n patients in a randomized clinical trial. For simplicity we con-

sider only two competing treatments, denoted by A = ±1, and a scalar outcome

Y for which large values are desirable. Let a patient’s profile be represented by

X ∈ X , where X is a measurable space. A treatment policy is a map d from X
into the treatment space {−1, 1}.

Various methods are available for specifying optimal treatment policies based

on low-dimensional profiles (e.g., Song and Pepe (2004); Song and Zhou (2011);

Laber et al. (2010)), and also high-dimensional profiles (Qian and Murphy (2011);

Lu et al. (2013); Zhao et al. (2012)). However, biosignatures such as brain scans

are more naturally treated as functional predictors, X = {X(t), t ∈ T }, where T
is a finite-dimensional index set. In this setting we can expect better results if

the treatment policies d adapt to the smooth nature of X(t).

An appropriate measure of the effectiveness of d is the expected outcome,

P d[Y ], that would have resulted if d had been used to choose treatment for

the entire study population; here P d denotes the distribution of (X,A, Y ) given

A = d(X), and V (d) , P d[Y ] is called the value of the policy. We assume

throughout that we have i.i.d. data on (X,A, Y ) ∼ P from a randomized clinical
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trial (as when unbiased coin tosses are used to assign subjects to treatment

groups), and X is observed without measurement error. Our approach could

readily be extended to observational studies in which the treatment assignment

probability is unknown, but for simplicity we restrict attention to the case in

which it is known.

A treatment policy that maximizes the function d 7→ V (d) over all possible d

is called optimal. It is easy to verify that any d0(x) ∈ argmaxa∈{−1,1}E(Y |X =

x,A = a), x ∈ X , is optimal, where E denotes expectation under P . Since A is

independent of X and has mean zero,

E(Y |X,A) = E(Y |X) + T (X)A, (2.1)

where

T (X) =
E(Y |X,A = 1)− E(Y |X,A = −1)

2

is the treatment effect, so we can write d0(x) = sign(T (x)) where sign(0) ≡ 1.

Then it is natural to estimate d0 by d̂n(x) = sign(f̂n(x)), where f̂n is an estimator

of T based on the data from the randomized clinical trial.

To furnish such an estimate, we need a model for both the treatment effect

and the main effect m(X) = E(Y |X) of the pre-treatment profile. As we are only

interested in T , there is no loss of generality in assuming thatm is known (because

of the independence of A and X); see Remark 1 after Theorem 1 for further

discussion of misspecification of the model for m(·). We model the treatment

effect T by a family of functions of the general form fθ : X → R, with θ ranging

over a subset Θ of a finite-dimensional Euclidean space, and we use f̂n = fθ̂n ,

where θ̂n is the penalized least squares estimator

θ̂n , argmin
θ∈Θ

{
Pn[Y −m(X)− fθ(X)A]2 + pλ(θ)

}
. (2.2)

Here Pn is the empirical distribution for a sample of size n from the randomized

clinical trial, pλ(·) is a continuous penalty function and λ = λn is the tuning

parameter. In Section 4 we discuss examples of the model fθ. The penalty term

is included to avoid over-fitting, but in some of the examples penalization is not

necessary.

We will see in the next section that d̂n is asymptotically optimal in the

sense that V (d̂n) converges in probability to V (d0) as n → ∞, under suitable

regularity conditions on the model {fθ, θ ∈ Θ} and provided that T is in the

model. Moreover, this result holds even if the main effect of X is replaced by

an estimator (possibly in an inconsistent way); this robustness property is a

consequence of E(A|X) = 0 a.s. Note that “asymptotically optimal” in this

setting is different from its usage in the theory of efficient estimation.
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3. Assessing the Estimated Policy

In this section we study how to assess the effectiveness of the estimated

policy d̂n using an estimator of the form V̂ (d̂n), for various choices of estimators

V̂ (d) of V (d). The estimators V̂ are based on exploiting different aspects of the

model for the treatment effect T . In each case, under suitable conditions, we

show that the error involved in this assessment, V̂ (d̂n)−V (d̂n), is asymptotically

normal with mean zero and a variance that can be consistently estimated. This

leads to asymptotically valid prediction intervals for V (d̂n) in the sense that the

probability of V (d̂n) falling in the interval tends to the nominal coverage level.

These intervals can then provide an attractive way of assessing the potential

clinical effectiveness of d̂n in the study population.

Our first result shows that the value of the estimated policy converges in

probability to the value of the policy d′0(x) = sign(fθ0(x)) corresponding to the

best fit fθ0 for the treatment effect (in terms of mean squared error). In partic-

ular, if the model fθ for the treatment effect is correctly specified, then V (d̂n)

converges in probability to the value of the optimal policy, since d′0 = d0 in this

case; if the model fθ is misspecified, then d′0 may not be the best policy within

the class of policies defined by the model. This issue also arises when a smooth

surrogate of the empirical value function is maximized (Zhao et al. (2012)).

We need some mild regularity conditions on the model fθ(X) and the noise

component ϵ = Y − E(Y |X,A); they are Assumptions (A1)−(A3) in the Ap-

pendix.

Theorem 1. Suppose (A1)−(A3) hold and the penalty pλn(·) → 0 uniformly

over compact subsets of Θ as n → ∞. If θ0 = argminθ∈ΘE
[
T (X) − fθ(X)

]2
is

unique and either fθ0(X) ̸= 0 or T (X) = 0 a.s., then V (d̂n)
p→ V (d′0).

Remark 1. For simplicity, we have assumed that the main effectm(X) is known.

Nevertheless, the above result still holds when m(·) is unknown and is modeled

appropriately, for example by a parametric modelmγ that is linear in a Euclidean

parameter γ ∈ Γ, and having a positive-definite Gram matrix. Using similar

arguments to the proof of Theorem 1, it can be shown that penalized least squares

consistently estimates

(γ0, θ0) = arg min
γ∈Γ,θ∈Θ

E[Y −mγ(X)− fθ(X)A]2

under its conditions. Moreover, if T (X) = fθ0(X), then V (d̂n) converges to the

value V (d0) of the optimal policy. This holds even if mγ is misspecified, provided

A and X are independent, since then θ0 does not depend on mγ :

(γ0, θ0) =

(
argmin

γ∈Γ
E[m(X)−mγ(X)]2, argmin

θ∈Θ
E[T (X)− fθ(X)]2

)
.
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Remark 2. The uniqueness condition on θ0 can be relaxed; all we need is that

fθ0 is unique. The uniqueness condition makes the proof easier to present because

it can be shown that θ̂n
p→ θ0 (see Lemma A.1 in the Appendix) provided θ0 is a

well-separated minimizer, using general M-estimation theory, see van der Vaart

(1998, Theorem 5.7).

Remark 3. Note that fθ0(x) ̸= 0 or T (x) = 0 means d′0(x) is “decisive” or

the optimal policy d0(x) is “indecisive.” The method of proof of the theorem

is based on the convergence of f̂n to fθ0 , using a Lipschitz condition (A2) on

fθ(x) as a function of θ. The estimated policy, however, is the sign of f̂n(x)

and the Continuous Mapping Theorem is not applicable if fθ0(x) = 0. The

condition fθ0(x) ̸= 0 guarantees that d̂n(x) will eventually agree with d′0(x), so

the expected outcomes at X = x will agree. On the other hand, the condition

T (x) = 0 implies that the expected outcome at X = x does not depend on the

treatment assignment, so again the expected outcomes of the two policies agree.

We list several estimators of V (d) for a given policy d, noting that V (d) is

identifiable in terms of the randomization probability p(a|x) (earlier assumed to

be 1/2 for simplicity) on the basis of the identity

V (d) = P d[Y ] =

∫
Y dP d =

∫
Y
dP d

dP
dP = E

[
W (X,A; d)Y

]
, (3.1)

where the weight W (X,A; d) = 1A=d(X)

/
p(A|X) is a version of the Radon–

Nikodym derivative dP d/dP (since P d is absolutely continuous with respect to

P under the assumption that p(a|X) > 0 almost surely for each value of a).

Although EW (X,A; d) = 1, in an empirical version of (3.1), it is preferable to

normalize the observed weights by their sample mean. This leads to the inverse

probability of treatment weighted (IPTW) estimator (Robins (2000))

V̂I(d) =
Pn[W (X,A; d)Y ]

Pn[W (X,A; d)]
.

In our randomized trial setting where p(a|x) is known, the IPTW estimator

is consistent by the Law of Large Numbers. Alternatively, the randomization

probability can be eliminated by re-expressing (3.1) as

V (d) = E
[
1d(X)=1E(Y |X,A = 1) + 1d(X)=−1E(Y |X,A = −1)

]
. (3.2)

This can be estimated by replacing E(Y |X,A) in the above expression by Ê(Y |X,A) =
m(X) + f̂n(X)A, resulting in the G-computation estimator (Robins (1986))

V̂G(d) = Pn

[
m(X) + (21d(X)=1 − 1)f̂n(X)

]
.
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A correct model fθ is needed for this estimator to be consistent, along with more

complex conditions. Instead, we consider a locally efficient estimator derived

by Murphy et al. (2001) utilizing the randomization probability and plugging in

Ê(Y |X,A):
V̂L(d) = V̂G(d) + Pn[W (X,A; d)R̂n],

where R̂n = Y − Ê(Y |X,A) is the residual. This estimator is derived using semi-

parametric efficiency theory (see, e.g., Tsiatis (2006)) by projecting the score

function W (X,A; d)(Y −V (d)) of the IPTW estimator onto the orthogonal com-

plement of the tangent space for the nuisance parameter (the treatment assign-

ment probability). It is consistent (given knowledge of p(a|x)) even if fθ is mis-

specified, and it is locally efficient under the model E(Y |X,A) = m(X)+fθ(X)A.

As V̂I and V̂L are (pointwise) consistent estimates of V , we study the perfor-

mance of V̂I(d̂n) and V̂L(d̂n) as estimates of V (d̂n) in the setting of Theorem 1.

Theorem 2. Suppose (A1)−(A4) hold and pλn(·) → 0 uniformly over compact

subsets of Θ as n → ∞. If θ0 = argminθ∈ΘE
[
T (X) − fθ(X)

]2
is unique and

P (fθ0(X) = 0) = 0, then

(a)
√
n
[
V̂I(d̂n) − V (d̂n)

] d→ N(0, σ2I ), where σ
2
I = Var [W (X,A; d′0)(Y − V (d′0))]

is consistently estimated by σ̂2I = Pn[W (X,A; d̂n)(Y − V̂I(d̂n))]
2.

(b)
√
n
[
V̂L(d̂n)−V (d̂n)

] d→ N(0, σ2L), where σ
2
L = Var

[
W (X,A; d′0)R0+|fθ0(X)|+

m(X)
]
, with R0 = Y − m(X) − fθ0(X)A, is consistently estimated by its

sample variance σ̂2L in which θ0 is replaced by θ̂n.

Remark 4. To estimate σ2L when m(X) is unknown, m(X) can be replaced by

mγ̂n(X) in σ̂2L, where γ̂n is the consistent estimator of γ0 defined after Theorem 1.

Remark 5. It is natural to ask whether our results can be extended to the

setting of observational studies in which the treatment assignment distribution,

p(a|x), is unknown. Implementing V̂I and V̂L requires estimation of p(a|x), which
can be done by fitting a parametric model, as suggested in Murphy et al. (2001).

Both V̂I and V̂L are consistent if p(a|x) can be consistently estimated; V̂L has

the double robustness property (Murphy et al. (2001)) in the sense that it is also

consistent if model E(Y |X,A) = m(X) + fθ(X)A is correct and its parameters

can be consistently estimated. The asymptotic variances of the assessment errors

V̂ (d̂n)− V (d̂n) based on V̂I and V̂L are inflated due to the estimation of p(a|x).
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Prediction intervals.

Our asymptotic results lead to the 100(1 − α)% prediction interval În for

V (d̂n),

V̂ (d̂n)± zα/2
σ̂√
n
,

where zα/2 is the upper α/2-quantile of the standard normal distribution, V̂

and σ̂2, the IPTW or the locally efficient estimator and its associated consistent

variance estimator, respectively. The interval În satisfies P(V (d̂n) ∈ În) ≈ 1−α,
where P is the probability measure for randomness in the sample.

If we are interested in comparing two different treatment policies, d̂n and

d̂cn, obtained from fitting separate models for T (X), for example to examine

whether it is worthwhile to individualize treatment, we would compare d̂n with

the non-individualized policy d̂cn(x) = sign(ĉn), where ĉn is obtained by fitting

the model E(Y |X,A) = m(X) + cA with c a real-valued parameter. This can

be done by constructing a prediction interval for V (d̂n) − V (d̂cn) based on a

routine extension of Theorem 2 to the joint asymptotic distribution of the error

terms V̂n(d̂n)− V (d̂n) and V̂n(d̂
c
n)− V (d̂cn), along with a consistent estimator of

their asymptotic covariance matrix. The result is given in Theorem A.1 in the

Appendix.

4. Examples

There is a rich literature on functional regression models involving a predictor

X = {X(t), t ∈ T } indexed by a Euclidean parameter t. One especially flexible

formulation is the FAME model of James and Silverman (2005):

fθ(X) = α+
r∑

k=1

gk

(∫
T
X(t)ηk(t) dt

)
, (4.1)

where the functions gk and ηk are represented by a finite linear combination of

smooth basis functions. Here θ contains α along with all the coefficients used to

represent gk and ηk. James and Silverman (2005) showed that penalized least

squares consistently estimates θ0 assuming that the penalty term converges to

zero uniformly over compact sets. Our results apply to this model provided the

basis functions for gk are Lipschitz. Although the model is flexible, the resulting

policy is hard to interpret, and costly to implement because observation of X(t)

at all t ∈ T is needed.

In some applications it is desirable to restrict attention to treatment policies

that are easy to interpret and inexpensive to implement, for example basing

the policy on a single component of X. A simple example has the threshold

type policies dτ,c(x) = 1 if X(τ) > c, and −1 otherwise, where τ represents the
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component of X to be used in the policy, and c is the threshold. These policies

amount to using the three-parameter marginal model

fθ(X) = α+ βX(τ), (4.2)

where θ = (α, β, τ) ∈ R2 × T , and the threshold is given by c = −α/β provided

β ̸= 0. Here τ could represent a location in time or space, for example a time

point in a chromatograph, a genetic locus in a gene expression profile, or a voxel

in an fMRI image. Our results hold under conditions placed on the functional

predictor X = {X(t), t ∈ T }, i.e., (A2′), (A3′) and (A4′) in the Appendix.

A practical difficulty with threshold policies derived from the marginal model

(4.2) is that their performance is sensitive to small registration (or time-warping)

errors in X, especially when the sample paths of X are rough or contaminated

with measurement error. In that case it is preferable to use a smoother form

of treatment selection, say depending on X in a localized region, rather than a

point location τ , in which case both the location and the size (area) of the region

are parameters in the model. One possibility is to use an “area impact” model

based on a kernel function K:

fθ(X) = α+ β

∫
T
X(t)Kτ,b(t) dt, (4.3)

where Kτ,b(t) = K((t− τ)/b)/b, the bandwidth b restricted to be bounded away

from zero and infinity, and the kernelK to vanish at infinity. Our results continue

to apply. As the bandwidth tends to zero, the area impact model reduces to the

point impact model (4.2). One normally observes X at a set T0 of discrete points

in T , T0 considered to be dense in T , The integrals in the above examples are

then well-approximated by their corresponding Riemann sums.

5. Numerical Studies

We evaluated the numerical performance of our proposed method and com-

pared our approach with the Lasso, and with the fused Lasso that takes into

account the time ordering. In contrast to the Lasso, our functional data ap-

proach takes advantage of the smooth nature of X(t), rather than focusing on

isolated components. Yet our approach is flexible enough to allow treatment

policies based on localized features of X, as with the area impact model (4.3) or

the point impact model (4.2).

5.1. Simulations

Let the functional predictor X = {X(t), t ∈ [0, 1]} be Gaussian with mean

zero and covariance kernel Cov(X(s), X(t)) = 2−|100(s−t)|, s, t ∈ [0, 1]. We took
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Figure 1. The regression functions in Scenarios (a) and (b).

n i.i.d. trajectories of X observed over a uniform grid T0 of p “time” points

in T = [0, 1], and considered p = 100 and 400. The treatment assignment

was A = ±1 with probability 1/2 each, independently of X. The conditional

distribution of the outcome Y given (X,A) was normal with mean

E(Y |X,A) = 1 + 15

∫ 1

0
tX(t)dt+ T (X)A

and unit variance.

Scenario (a) T (X) = 0.61 +
∫ 1
0 ϕa(t)X(t) dt, where ϕa(t) is the piecewise

linear function in Figure 1 (a).

Scenario (b) T (X) = 0.55+
∫ 1
0 ϕb(t)X(t) dt, where ϕb(t) = 2[log(150t2+10)+

cos(4πt)], see Figure 1 (b).

In Scenario (a), there is a region of high impact around t = 0.4, and region of

small impact around t = 0.85. Scenario (b) is adapted from a numerical example

studied in Cardot et al. (2003), and represents the impact of the predictor as

a trend combined with a periodic signal. The coefficients in each scenario were

chosen to produce a medium effect size in terms of Cohen’s d index (Cohen

(1988)), the standardized difference in mean responses between the two treatment

groups:

d =
E(Y |A = 1)− E(Y |A = −1)

([Var(Y |A = 1) + Var(Y |A = −1)]/2)1/2
,
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with the effect size considered to be “small” if d = 0.2, “medium” if d = 0.5 and

“large” if d = 0.8.

We considered four ways of estimating T (X) based on a model for fθ. The

first two exploited the functional nature of X, the other two based on treating X

as a high-dimensional vector (with p components): the Lasso (Tibshirani (1996)),

and the fused Lasso (Tibshirani et al. (2005)) that extends the Lasso by taking

into account the ordering of the predictors.

B-spline: fθ(X) = UT θ, where θ ∈ R14, U = (Uj), U1 = 1, Uj =
∫ 1
0 ψj(t)X(t) dt

for j = 2, . . . , 14, with ψj the cubic B-spline basis functions having nine

interior knots equally spaced from 0.1 to 0.9.

Area impact: fθ(X) = α+β
∫ 1
0 Kτ,b(t)X(t)dt, where θ = (α, β, τ, b) andK(t) =

0.75
(
1− t2

)
1[−1,1] is the Epanechnikov quadratic kernel.

The B-spline model is a special case of the FAME model in (4.1) with r = 1,

g1(x) = x, and η1 represented using the ψj as basis functions. The estimated

policy d̂n is based on the estimator θ̂n of Remark 1, with mγ(X) = UTγ, U

as before. We do not include a penalty term when fitting these models because

the dimension of θ is not large, and we wish to evaluate the potential effect of

over-fitting on the value of the resulting policy.

Lasso: fθ(X) = XT θ, mγ(X) = XTγ, where X = (1, XT )T and θ, γ ∈ Rp+1,

with 10-fold cross validation to select the tuning parameter.

Fused Lasso: Same as the Lasso except there are two tuning parameters, that

we equal to make the cross validation computationally tractable.

Our first set of simulation results provide the value of the optimal policy

d0 along with summary statistics (mean ± SD) for the values of the estimated

policies d̂n based on the B-spline, area impact, and Lasso methods, see Figure

2. The sample size ranges from n = 50 to 800, in increments of 50, and 1,000

replicated samples were used for each given n; the plots on the right are based

on the finer grid with p = 400. The “true” values were computed from simulated

data sets of size n = 104.

The results under Scenario (a) (top row) show that the area impact method

(dotted line) produced policies with the highest value, as expected, because the

bulk of the treatment effect resembles an area-impact around t = 0.4. Under

Scenario (b) (bottom row), the B-spline method (solid line) was preferable for

sample sizes above 100, as expected due to its flexibility; when the sample size

is small, the area impact method was better, being more parsimonious, though

it falls well short of being optimal due to model misspecification. The Lasso

method (dash-dot line) was uncompetitive in both scenarios unless the sample

size was extremely large, and its performance deteriorated as the resolution of the
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Figure 2. Mean ± SD of values of policies derived from the four methods
based on 1,000 replicated samples with n ranging from 50 to 800 in incre-
ments of 50. The horizontal dotted line represents the value of the optimal
policy.

grid increased. The fused Lasso method (dashed line) was competitive with the

B-spline method under Scenario (a) based on the coarse grid, but otherwise not.

However, the fused Lasso method always did better than the Lasso, as expected,

because it takes into account the ordering of features.

Our second set of simulation results assess the accuracy and the width of

the proposed prediction intervals for V (d̂n) under each method, in the case of

Scenario (b) and for the fine grid, see Figure 3. The results for Scenario (a) and

the coarse grid were similar, and are included in the supplementary material.

The prediction intervals based on the IPTW estimator were always wider than

those based on the locally efficient estimator, yet the accuracy was no better

for IPTW unless the sample size was small. Undercoverage of the prediction
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interval based on the locally efficient estimator can be explained as follows. In

small samples (n ≤ 100), the estimated variance of V̂L(d̂n) is downwardly biased

under the B-spline method because of overfitting: the contribution of the residual

R0 (in Theorem 2 (b)) is under-estimated. This problem is almost absent with

the area impact method, because it is relatively parsimonious. Both the locally

efficient and IPTW estimators performed poorly under the Lasso and fused Lasso

methods, especially as the resolution of the grid increased, although there was

naturally some improvement with increasing sample size. We also examined the

performance of each method for finding prediction intervals for the difference in

the values of the individualized and non-individualized policies, under Scenario

(b), and the results (not shown) were similar to those presented in Figure 3.

5.2. Gene expression example

We considered gene expression data from the tumors of 156 patients diag-

nosed with a common type of adult brain cancer (glioblastoma), collected in the

Cancer Genome Atlas pilot project (TCGA (2008)). Our analysis was based on

log gene expression profiles X = {X(t), t ∈ T }, with 181 uniform grid points

on T = [0, 1] representing the 181 loci along chromosome 1; Figure 4 shows the

profile for one of the patients. We (artificially) assigned treatment A = −1 to the

first 78 patients, and A = 1 to the remaining patients. The primary outcome Y

was taken to be the observed log-survival time, shifted by A[0.34+
∫ 1
0 ϕ(t)X(t) dt],

where ϕ(t) = ϕa(t)/8 and ϕa(t) is the regression function in Scenario (a) in the

simulation study. The coefficients were chosen to provide a “medium” effect size

(based on the sample Cohen’s d).

We viewed the constructed triples (X,A, Y ) as data from a randomized clin-

ical trial. A simple two-sample t-test (ignoring X) found that treatment A = 1

results in significantly higher mean outcome Y than treatment A = −1 (P -value

= 0.002). To estimate the optimal treatment policy, we considered the same four

methods as in the simulation study except, to address the overfitting problem

with the B-spline method, we used penalized B-splines (James and Silverman

(2005)) along with 10-fold cross validation to select the tuning parameter.

The estimates of the regression function ϕ(t) from the penalized B-spline

and area impact methods are given in Figure 5. Comparing with Figure 1 (a),

the area impact method captures the region of high impact around t = 0.4,

and the penalized B-spline method gives considerable weight to the same region,

although in a more dispersed fashion. If the estimated treatment policy based on

the penalized B-spline or the area impact method were applied to patients in the

trial, treatment 1 would be selected for 129 and 122 patients, respectively. The

95% prediction intervals for the value of policies estimated using the penalized

B-spline and area impact methods are given in Table 1. The intervals based
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Figure 3. Coverage rate and average width of 95% prediction intervals for
the values of estimated policies under Scenario (b), fine grid (p = 400).

Figure 4. Log gene expression at 181 loci along chromosome 1 in tissue from
a brain cancer patient.

on the locally efficient estimator here are slightly narrower than those based on

the IPTW estimator, as we found in the simulation study. The treatment policy

estimated via the Lasso and the fused Lasso involved gene expression information

from 12 and 47 loci, respectively. If the estimated treatment policy based on the

Lasso and fused Lasso were applied to patients in the trial, treatment 1 would

be selected for 110 and 107 patients, respectively. The four competing methods

produced markedly different treatment policies in this example. We did not
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Figure 5. Estimates of the regression function ϕ(t) based on the penalized
B-spline method (left) and the area impact method (right).

Table 1. 95% prediction intervals for values of policies derived from the
penalized B-spline and area impact methods.

Penalized B-spline Area-impact
IPTW [2.67, 3.15] [2.79, 3.18]

Locally efficient [2.72, 3.17] [2.84, 3.21]

Table 2. 95% prediction intervals for pairwise comparisons between the
values of policies derived from the penalized B-spline, area impact and non-
individualized methods.

V (d̂PBS
n )− V (d̂AI

n ) V (d̂PBS
n )− V (d̂cn) V (d̂AI

n )− V (d̂cn)

IPTW [−0.22, 0.07] [0.04, 0.36] [0.07, 0.48]
Locally efficient [−0.22, 0.04] [0.02, 0.34] [0.07, 0.47]

compute the prediction intervals for the Lasso and fused Lasso methods since

they are not reliable in such a small sample.

To compare treatment policies derived from the penalized B-spline method

(denoted d̂PBS
n ) and the area impact method (denoted d̂AI

n ), as well as to test

whether it is worthwhile to individualize treatment, we constructed 95% pre-

diction intervals for V (d̂PBS
n ) − V (d̂AI

n ), V (d̂PBS
n ) − V (d̂cn) and V (d̂AI

n ) − V (d̂cn)

based on Theorem A.1, where d̂cn is the non-individualized policy constructed as

discussed at the end of Section 3. In this example d̂cn selects treatment 1 for

all patients. We see from the results in Table 2 that there was no significant

difference between the two individualized treatment policies derived from the

penalized B-spline and the area impact methods, yet they both produced signif-

icantly better expected outcome than the non-individualized treatment policy.

6. Discussion

We have developed a way of estimating optimal treatment policies based
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on regression models having functional predictors. Randomized trials involving

functional predictors are not yet common due to the high costs involved, but they

are the wave of the future; one promising example is the ongoing EMBARC study,

aimed at identifying features of biosignatures (including fMRI brain scans) that

can explain why some people respond better to different antidepressants than

others EMBARC (2013). Our methods show that it is feasible to exploit such

data for developing personalized treatments, and this may provide an incentive

for further studies of this type in the future.

The large sample accuracy of the proposed prediction intervals for the mean

outcome resulting from the policy is established in Theorem 2, assuming that

the decision boundary is avoided almost surely. Under this condition, the policy

corresponding to the best fit of the model for the treatment effect (namely d′0) is

unique and “decisive.” When d′0 is indecisive, the proposed prediction intervals

fail because the distribution of the error (V̂ (d̂n) − V (d̂n)) involved in assessing

the mean outcome is not asymptotically normal. This asymptotic non-regularity

occurs due to the non-smoothness of the value V (d′0) at the indecisive points,

and is similar to the problem of assessing the test error of a classifier. In the case

of finite-dimensional predictors, a bootstrap procedure based on pre-testing has

been proposed to deal with non-regularity in classification Laber and Murphy

(2011); an interesting direction for future research is to develop a bootstrap

procedure for pre-testing that is suitable for functional predictors.

A referee asked us why functional predictors make the problem of treat-

ment selection more challenging, and how our approach engages this issue. With

functional predictors we are potentially dealing with infinitely many variables,

so the optimal policy is likely complex. This raises challenges for the statistical

methodology and for its practical implementation. Computational issues become

especially severe because the value function is a non-concave function of the policy

(or whatever parameters are used to specify it). We have addressed this prob-

lem with an approach that is straightforward to implement, and yet that can

still be justified theoretically under some natural conditions on the sample paths

of the functional predictors; in addition, we have furnished several examples of

functional regression models to which the theory applies.

As mentioned earlier, Zhao et al. (2012) optimize a concave surrogate for

the value function, rather than the value function itself, for computationally

tractability. They use an SVM approach based on a very flexible Gaussian radial

basis to eliminate problems with misspecification (in an asymptotic sense), but

in practice if the SVM model is misspecified, then, just as in our case, it is

rather unclear what asymptotic optimality their proposed estimator would have.

Moreover, their aim was somewhat different than ours — our aim, in addition to

estimating the policy, has been to provide a prediction interval for the value of



TREATMENT POLICIES USING FUNCTIONAL PREDICTORS 1477

the estimated policy, which was not considered by Zhao et al.; indeed, within the

SVM framework, the model space was treated by Zhao et al. as having a growing

dimension, so it would not be easy to provide theoretical justification for such a

prediction interval.

We have restricted attention to a single-stage decision problem. However,

time-varying treatments are common, and are needed, e.g., for individuals with

a chronic disease who experience a waxing and waning course of illness. The

goal then is to construct a policy that tailors the type and dosage of treatment

through time according to the individual’s changing health status. There is an

abundance of statistical literature in this area (Thall et al. (2000, 2002); Murphy

(2003, 2005); Robins (2004); Lunceford et al. (2002); van der Laan et al. (2005);

Wahed and Tsiatis (2006)) but, to our knowledge, functional predictors such as

protein expression or fMRI have not been considered. It would be interesting to

extend our approach to this multi-stage setting.
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Appendix: Assumptions and Proofs

Assumptions.

(A1) The noise ϵ = Y − E(Y |X,A) is independent of (X,A). In addition,

E(Y |X,A) and ϵ are square integrable.

(A2) θ̂n is bounded in probability.

(A3) There exist υ > 0 and a square integrable random variable ξ such that

|ft(X)− fs(X)| ≤ ξ∥t− s∥υ for all s, t ∈ Θ a.s., where ∥ · ∥ is the Euclidean

norm. In addition, fθ0(X) is square integrable.

(A4) The function class {1fθ(X)≥0 : θ ∈ K} is P -Donsker for any compactK ⊂ Θ,

and this property is preserved under products with either Y or m(X).

The last three conditions hold for all the functional regression models con-

sidered in Section 4 under explicit conditions on X. In particular, for the point

impact model (4.2) and the area impact model (4.3), with X = {X(t), t ∈ T }
and T a subset of a finite-dimensional Euclidean space, the following three as-

sumptions imply (A2), (A3), and (A4) needed for Theorems 1 and 2.

(A2′) T is compact.
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(A3′) There exist υ > 0 and a square integrable random variable ξ such that

|X(t) −X(s)| ≤ ξ∥t − s∥υ for all s, t ∈ T a.s. In addition, X(0) is square

integrable.

(A4′) There exist C > 0, r > 0 such that P (X(t) ∈ [x1, x2]) ≤ C|x2 − x1|r for all

t ∈ T , x1 ≤ x2.

Remark A.1. (A2) is a mild tightness assumption needed to establish the con-

sistency of θ̂n, and is a standard condition in parametric M-estimation (see van

der Vaart and Wellner, (1996, p. 308)); it is not needed if the parameter space

Θ is bounded.

Remark A.2. Assumption (A3) is a Lipschitz continuity condition for the func-

tion class {fθ : θ ∈ Θ} and holds for typical models, for example if fθ is linear

in θ ∈ Θ. Similarly, Assumption (A3′) is a Lipschitz continuity condition for the

sample paths of X, and can be checked for specific processes using Kolmogorov’s

continuity theorem Revuz and Yor (2006). More specifically, if there exist some

c, υ > 0 and γ > 0 such that E[|X(t) −X(s)|γ ] ≤ c∥t − s∥1+υγ for all s, t ∈ T ,

then (A3′) holds with ξ = sups ̸=t(|X(t) − X(s)|/∥t − s∥υ). If X is a Gaussian

process, then it suffices that E[X(t)−X(s)]2 ≤ c∥t− s∥υ for some c, υ > 0.

Remark A.3. Assumption (A4′) is needed to show the Donsker property (using

bracketing entropy) for classes of weighted indicator functions involving events

of the form {α+βX(t) ≥ 0}, see Lemma A.3. If X is a Gaussian process, then it

suffices that Var(X(t)) is bounded away from zero. Assumption (A4′) is used in

Theorem 5 of Kuelbs et al. (2013) to prove that a class of (unweighted) indicator

functions is Donsker, but it is not clear whether their approach could be extended

to our setting.

Proof of Theorem 1. For any policy d, V (d) = E[m(X)+(21d(X)=1−1)T (X)].

Thus

|V (d′0)− V (d̂n)| ≤ 2E
∣∣∣(1d′0(X)=1 − 1d̂n(X)=1

)
T (X)

∣∣∣ .
Under the condition that either fθ0(X) ̸= 0 or T (X) = 0 a.s., we have

|V (d′0)− V (d̂n)| ≤ 2E
∣∣∣1fθ0 (X) ̸=0

(
1d′0(X)=1 − 1d̂n(X)=1

)
T (X)

∣∣∣
≤ [g(θ̂n)]

1/2
[
ET 2(X)

]1/2
,

where g(θ) = P
(
fθ(X) < 0 < fθ0(X)

)
+ P

(
fθ0(X) < 0 ≤ fθ(X)

)
. We show

that g(θ) is continuous at θ = θ0. This, together with θ̂n
p→ θ0, Lemma A.1,

guarantees g(θ̂n)
p→ g(θ0) = 0 by the Continuous Mapping Theorem. Note that

(A1) implies that ET 2(X) is finite, and the result follows.
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For any δ > 0, the first term in g(θ) is upper bounded by P (0 < fθ0(X) ≤
δ) + P (fθ0(X)− fθ(X) > δ). In particular,

P (fθ0(X)− fθ(X) > δ) ≤ E|fθ0(X)− fθ(X)|
δ

≤ (Eξ)∥θ − θ0∥υ

δ
,

where the first inequality follows from Chebyshev’s inequality, and the second

inequality follows from (A3). Choosing δ = ∥θ − θ0∥υ/2 yields

P (fθ(X) < 0 ≤ fθ0(X)) ≤ P (0 < fθ0(X) ≤ ∥θ − θ0∥υ/2) + (Eξ)∥θ − θ0∥υ/2,

which converges to zero as θ → θ0. Similarly, P (fθ0(X) < 0 ≤ fθ(X)) tends to

zero as θ → θ0. Thus g(θ) is continuous at θ = θ0. This completes the proof.

Lemma A.1. Suppose θ0 = argminθ∈ΘE
[
T (X)−fθ(X)

]2
is unique, (A1)−(A3)

hold, and the penalty pλn(·) → 0 uniformly over compact subsets of Θ. Then

θ̂n
p→ θ0.

Proof. Let lθ(X,A, Y ) =
[
Y − m(X) − fθ(X)A

]2
, L(θ) = Plθ and Ln(θ) =

Pnlθ + pλn(θ). Then θ0 minimizes L(θ) and θ̂n minimizes Ln(θ) over Θ. We

show that a) supθ∈K |Ln − L| p→ 0 for any compact set K ⊂ Θ, and b) L(·) is

continuous. The Consistency then follows from the argmax continuous mapping

theorem under (A2) and the fact that θ0 is unique.

For a), we can ignore the penalty term because it is assumed to be asymptot-

ically negligible uniformly over compact sets. Let F = {fθ(X) : θ ∈ K} for any

compact subset K ⊂ Θ. Under (A3), the bracketing number N[ ](ε,F , L1(P )) <

∞ for every ε > 0, by Theorem 2.7.11 of van der Vaart and Wellner (1996), so F
is P -GC, and a) follows from GC preservation properties and Assumption (A).

For b), for any θ and θ′,

|L(θ)− L(θ′)| =|P [fθ(X)− T (X)]2 − P [fθ′(X)− T (X)]2|
=|P [fθ(X) + fθ′(X)− 2T (X)][fθ(X)− fθ′(X)]|
≤P

∣∣[fθ(X) + fθ′(X)− 2T (X)]ξ
∣∣∥θ − θ′∥υ,

which converges to zero as θ → θ′, so b) holds.

In the sequel we use the notation Wd = W (X,A, d), Wn = W (X,A, d̂n),

W0 =W (X,A, d′0), and

DK = {d(X) = sign(fθ(X)) : θ ∈ K} (A.1)

for any compact subset K ⊂ Θ. We also use the (empirical process) notation

Gn =
√
n(Pn − P ), and the convention that P and Pn only act on (X,A, Y ).
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Proof of Theorem 2. For (a), the definition of V̂I(d) implies Pn[Wn(Y −
V̂I(d̂n))] = 0 and P [Wn(Y − V (d̂n))] = 0, so

√
n[V̂I(d̂n)− V (d̂n)] =Gn[Wn(Y − V̂I(d̂n))]

=Gn[Wn(Y − V (d′0))] + [V (d′0)− V̂I(d̂n)]GnWn. (A.2)

We show that the second term above is op(1). By Lemma A.2 below, the class

of functions {WdY : d ∈ DK} is P -Donsker for any compact K ⊂ Θ, and

thus (Pn −P )WnY = op(1) by (A2). This together with Theorem 1 implies that

Pn[WnY ] = (Pn−P )[WnY ]+V (d̂n) = V (d′0)+op(1). Similarly, PnWn = 1+op(1).

Thus V̂I(d̂n) = Pn[WnY ]/PnWn
p→ V (d′0) by Slutsky’s lemma. In addition,

{Wd : d ∈ DK} is P -Donsker, and

P (Wn −W0)
2 = 4E

[
1d̂n(X) ̸=d′0(X)

]
= 4g(θ̂n)

p→ 0, (A.3)

where the condition that P (fθ0(X) = 0) = 0 is used in the second equality, and

g(θ̂n) is defined in the proof of Theorem 1 where it was shown to be op(1). Thus

GnWn
d→ N(0,Var(W0)) by (A2) and Lemma 19.24 of van der Vaart (1998), so by

Slutsky’s lemma the second term in (A.2) is op(1). Similar arguments show that

the first term in (A.2) converges in distribution to N
(
0, σ2I

)
, which completes

the proof of the first part of (a).

The proof that σ̂2I
p→ σ2I is based on expanding the quadratic terms in the

difference between Pn[W
2
n(Y −V̂I(d̂n))2] and P [W 2

0 (Y −V (d′0))
2]. The result then

follows using similar arguments to (A.3), and P -GC properties of the classes of

functions {W 2
d : d ∈ DK}, {W 2

dY : d ∈ DK} and {W 2
dY

2 : d ∈ DK} that hold

since their bracketing numbers are finite by the proof of Lemma A.2.

For (b),

√
n[V̂L(d̂n)− V (d̂n)] = Gnh(X,A, Y ; θ̂n)

where

h(X,A, Y ; θ) =WdY + (1−Wd)m(X) + |fθ(X)| −Wdfθ(X)A,

and d(X) = sign(fθ(X)). Here we used V (d̂n) = EWnY = Eh(X,A, Y ; θ̂n),

which holds since

E[Wn(m(X) + f̂n(X)A)|X] = m(X) + |f̂n(X)|.

We apply Lemma 19.24 of van der Vaart (1998), for which it suffices to check

that the class of functions {h(X,A, Y ; θ) : θ ∈ K} is P -Donsker for any com-

pact K ⊂ Θ, and P [h(X,A, Y ; θ̂n) − h(X,A, Y ; θ0)]
2 p→ 0. The first of these

follows from Lemma A.2 and Donsker preservation properties (see, e.g., Kosorok
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(2008, Section 9.4)), and the second follows from Lemma A.1 and the Continu-
ous Mapping Theorem, where the continuity condition is checked using a similar
argument to (A.3).

The proof of σ̂2L
p→ σ2L is similar to the proof of σ̂2I

p→ σ2I , and is omitted.

Lemma A.2. Under (A1), (A3), and (A4), the classes of functions G1 = {Wd :
d ∈ DK}, G2 = {WdY : d ∈ DK}, G3 = {Wdm(X) : d ∈ DK}, G4 = {|fθ(X)| :
θ ∈ K}, and G5 = {Wdfθ(X) : d(X) = sign(fθ(X)), θ ∈ K} are P -Donsker for
any compact K ⊂ Θ, where DK is the class of functions defined in (A.1).

Proof. For any policy d ∈ DK we have 1A=d(X) = 1fθ(X)≥01A=1+1fθ(X)<01A=−1,
and the randomization probability that appears in Wd is simply p(a|x) = 1/2.
Using (A4) it then follows that G1 is P -Donsker, by Donsker preservation prop-
erties. Similarly, we can show that G2 and G3 are P -Donsker.

Using Theorem 2.7.11 of van der Vaart and Wellner (1996) and (A3), it can
be checked that G4 satisfies the bracketing entropy condition, and thus G4 is
P -Donsker.

For any function in G5,

Wdfθ(X) =
[
1fθ(X)≥01A=1 + 1fθ(X)<01A=−1

] fθ(X)

p(A|X)

=2[1A=1max{fθ(X), 0}+ 1A=−1min{fθ(X), 0}].

By Theorem 2.7.11 of van der Vaart and Wellner (1996) and (A3), it can be
checked that {fθ(X) : θ ∈ K} satisfies the bracketing entropy condition, and thus
is P -Donsker. Hence G5 is P -Donsker using Donsker preservation properties.

We show that the class of weighted indicator functions G1 for the point
impact model (4.2) is P -Donsker, so the main part of (A4) holds; this can be
checked in the same way for the area impact model (4.3).

Lemma A.3. Suppose fθ(X) = α + βX(τ) as in model (4.2). Under (A2′),
(A3′) and (A4′), the class of functions G1 = {1A=d(X) : d ∈ D} is P -Donsker,
where D = {d(X) = sign(α+ βX(τ)) : (α, β, τ) = θ ∈ R2 × T }.

Proof. For simplicity we assume T = [0, 1]. We derive an upper bound for the
bracketing number of G1 relative to the L2(P )-norm. Note that for any policy
d(X) = sign(α+ βX(τ)),

1A=d(X) =1α≥0,β=01A=1 + 1α<0,β=01A=−1 + 1β>0[1A=11X(τ)≥−α/β

+ 1A=−11X(τ)<−α/β ] + 1β<0[1A=−11X(τ)>−α/β + 1A=11X(τ)≤−α/β].

If both 1X(τ)<−α/β and 1X(τ)≤−α/β fall in some bracket [g1, g2] for 0 ≤ g1 ≤ g2,
when β ̸= 0, we see that 1A=d(X) lies in one of the four brackets:

[1A=−1, 1A=−1], [1A=1, 1A=1], [1A=−1g1 +1A=1(1− g2), 1A=−1g2 +1A=1(1− g1)],
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[1A=1g1 + 1A=−1(1− g2), 1A=1g2 + 1A=−1(1− g1)].

These brackets have L2(P )-size no larger than the L2(P )-size of the bracket

[g1, g2].

Next we construct brackets for the class of functions G′
1 = {1X(τ)<ρ, 1X(τ)≤ρ :

(ρ, τ) ∈ R × [0, 1]}. For any 0 < ε < 1, choose a grid of time points 0 = t0 <

t1 < · · · < tB = 1 such that tb − tb−1 ≤ ε2/υ for b = 1, . . . , B. Clearly the total

number of intervals B can be chosen smaller than 2ε−2/υ. By (A3′) and Markov’s

inequality,

P
(

sup
τ∈[0,1]

|X(τ)| > x
)
≤ E[ξ + |X(0)|]

x

for any x > 0. Thus, there exists a grid of points ρ0 < · · · < ρH on R
with ρh − ρh−1 = ε1/r and H < 4E[ξ + |X(0)|]ε−(1+1/r) such that P (X(·)
goes outside [ρ0, ρH ]) < ε. Functions in G′

1 with ρ > ρH are in the bracket

[1supτ∈[0,1] X(τ)≤ρH , 1], which has L2(P )-size [P (supτ∈[0,1] X(τ) > ρH)]1/2 < ε1/2.

Similarly, functions in G′
1 with ρ < ρ0 are in the bracket [0, 1infτ∈[0,1] X(τ)≤ρ0 ],

which has L2(P )-size smaller than ε1/2. The remaining functions in G′
1 are covered

by the brackets [1supτ∈[tb−1,tb]
X(τ)≤ρh−1

, 1infτ∈[tb−1,tb]
X(τ)≤ρh ] for b = 1, . . . , B, h =

1, . . . , H. Note that 1X(τ)<ρ and 1X(τ)≤ρ are in the same bracket. The L2(P )-size

of such a bracket is [P (Q)]1/2, where

Q =
{

inf
τ∈[tb−1,tb]

X(τ) ≤ ρh, sup
τ∈[tb−1,tb]

X(τ) > ρh−1

}
.

By (A3′) and (A4′), we have

P (Q ∩ {X(tb−1) /∈ [ρ0, ρH ]}) ≤P ({X(tb−1) /∈ [ρ0, ρH ]}) ≤ ϵ,

P (Q ∩ {X(tb−1) ∈ [ρh−2, ρh+1]}) ≤P ({X(tb−1) ∈ [ρh−2, ρh+1]}) ≤ 3rCε,

P (Q∩{X(tb−1)∈ [ρ0, ρh−2]∪[ρh+1, ρH ]})≤P
(

sup
τ∈[tb−1,tb]

|X(τ)−X(tb−1)|>ε
)

≤E
(

sup
τ∈[0,ε2/υ ]

|X(tb−1+τ)−X(tb−1)|
)
ε−1

≤εEξ.

Thus P (Q) ≤ (3rC + Eξ + 1)ε. This implies that G′
1 can be covered by 8E[ξ +

|X(0)|]ε−(1+1/r+2/υ) brackets of L2(P )-size less than [(3rC+Eξ+1)ε]1/2, and G1

can be covered by 32E[ξ + |X(0)|]ε−(1+1/r+2/υ) brackets of the same L2(P )-size.

Replacing [(3rC + Eξ + 1)ε]1/2 with ε, we obtain

N[ ](ε,G1, L2(P )) ≤ 32E[ξ+ |X(0)|](3rC+Eξ+1)1+1/r+2/υε−2(1+1/r+2/υ). (A.4)
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It follows that G1 satisfies the bracketing entropy condition, and is thus P -

Donsker.

In addition to fθ, suppose we have second model of the same form, say gc,

and let c0, d̂
c
n, and d̂

c
0 correspond to θ0, d̂n, and d̂

′
0, respectively.

Theorem A.1. If the conditions of Theorem 2 hold for both fθ(X) and gc(X)

as models for the treatment effect T (X), then

(a)
√
n
{
V̂I(d̂n)−V̂I(d̂cn)−[V (d̂n)−V (d̂cn)]

} d→ N(0, σ2I,c), where σ
2
I,c = Var

[
W (X,

A; d′0)(Y −V (d′0))−W (X,A; dc0)(Y −V (dc0))
]
can be consistently estimated by

its sample variance with V replaced by V̂I , d
′
0 replaced by d̂n, and d

c
0 replaced

by d̂cn.

(b)
√
n
{
V̂L(d̂n)−V̂L(d̂cn)−[V (d̂n)−V (d̂cn)]

} d→ N(0, σ2L,c), where σ
2
L,c = Var

[
W (X,

A; d′0)R0 +|fθ0(X)| − W (X,A; dc0)R
c
0 − |gc0(X)|

]
with R0 = Y − m(X) −

fθ0(X)A and Rc
0 = Y −m(X) − gc0(X)A), can be consistently estimated by

its sample variance.

The proof is similar to that of Theorem 2 and is omitted.

Contents of supplementary material: Further results from the simulation

study discussed in Section 5.1 (pdf file).
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