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Abstract: Dependent censoring occurs in many biomedical studies and poses consid-

erable methodological challenges for survival analysis. We develop a new approach

for analyzing dependently censored data by adopting quantile regression models.

We formulate covariate effects on the quantiles of the marginal distribution of the

event time of interest. Such a modeling strategy can accommodate a more dynamic

relationship between covariates and survival time compared to traditional regres-

sion models in survival analysis, which usually assume constant covariate effects.

We propose estimation and inference procedures, along with an efficient and sta-

ble algorithm. We establish the uniform consistency and weak convergence of the

resulting estimators. Extensive simulation studies demonstrate good finite-sample

performance of the proposed inferential procedures. We illustrate the practical util-

ity of our method via an application to a multicenter clinical trial that compared

warfarin and aspirin in treating symptomatic intracranial arterial stenosis.

Key words and phrases: Copula model, dependent censoring, empirical process,

martingale, regression quantile.

1. Introduction

In survival analysis, a commonly adopted assumption is noninformative cen-

soring, the time to censoring is independent of the event time of interest given

covariates if any. This assumption may not be valid in many practical situa-

tions. A good example comes from the Warfarin-Aspirin Symptomatic Intracra-

nial Disease (WASID) study, the first clinical trial that compared warfarin and

aspirin in treating atherosclerotic intracranial arterial stenosis (Chimowitz et al.

(2005)). In this trial, the primary endpoint was ischemic stroke, brain hem-

orrhage, or death from vascular causes other than stroke. Study medications

were terminated early for 125 patients out of the total 569 patients due to such

disease-related reasons as adverse events and changes in health conditions. It is

questionable that these withdrawals were independent of the disease endpoints

of interest. In addition, 44 withdrawals occurred in the aspirin arm and 81 in the

warfarin arm. Such an unbalanced allocation can amplify the estimation bias for
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treatment effect caused by falsely treating withdrawals as independent censoring

(Huang and Zhang (2008)). These considerations necessitate properly adjusting

for dependent censoring.

By viewing the occurrence of dependent censoring as one type of failure,

we can formulate the survival data subject to dependent censoring as compet-

ing risks data. As a result, the dependent censoring problem can be tackled by

employing techniques for handling competing risks that are generally classified

into two categories (Kalbfleisch and Prentice (2002)): approaches based on the

crude quantities, such as the cause-specific hazard and the cumulative incidence

function that reflect the failure process in the presence of the competing risks;

methods that focus on the net quantities, for example the marginal distribution

function, which hypothesize the removal of the competing risks. When depen-

dent censoring is caused by events that preclude the observation, but not the

development, of the endpoint of interest, such as the informative withdrawals

in the WASID study, the latter approach may be preferred because it produces

inference that corresponds to the setting without interruption of the observation

process, and hence may be of more scientific relevance.

There is a rich literature on competing risks approaches based on net quan-

tities. As a common feature, additional assumptions on the relationship among

times to distinct failure types are required because the marginal and joint dis-

tributions are not nonparametrically identifiable (Tsiatis (1975)). For example,

in the one-sample case, much previous work with dependently censored data re-

stricts the joint distribution using either semiparametric or parametric models

(Link (1989) and Emoto and Matthews (1990), among others). Due to lack of

sufficient information to verify the assumed dependence structure, performing

a sensitivity analysis (Peterson (1976); Slud and Rubinstein (1983); Klein and

Moeschberger (1988); Zheng and Klein (1995); Scharfstein et al. (2001); Scharf-

stein and Robins (2002)) has been advocated to yield bounds for the estimands

of interest under various plausible assumptions on the joint distribution of the

event time and the censoring time.

The general regression setting is the focus here. Among existing work, Huang

and Zhang (2008) extended the Zheng and Klein (1995) approach to a bivariate

Cox proportional hazards model, where the joint distributions of competing risks

are linked to their marginal distributions through a known copula. Chen (2010)

developed a non-parametric maximum likelihood approach for a general class

of semiparametric transformation models, similarly assuming a copula model

to address the identifiability issue. These regression methods base inference on

models that only allow for constant effects, which may not be adequate in many

datasets (Kaslow et al. (1987); Dickson (1989); Thorogood et al. (1990); Verweij

and Van Houwelingen (1995); Jensen et al. (1997)).
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We propose a new regression method for dependently censored data based

on quantile regression modeling (Koenker and Bassett (1978)). By its flexibility

to accommodate varying covariate effects, quantile regression can often provide

useful scientific insight that cannot be uncovered by traditional regression models

with constant effects (Peng and Huang (2008); Peng and Fine (2009)). While

substantial work has been devoted to develop quantile regression methods for

survival data with known censoring times or independent censoring times (Pow-

ell (1984, 1986); Ying, Jung, and Wei (1995); Yang (1999); Honoré, Khan, and

Powell (2002); Portnoy (2003); Peng and Huang (2008); Wang and Wang (2009);

Huang (2010)), to the best of our knowledge, little work has been done to accom-

modate the survival with dependent censoring. Peng and Fine (2009) proposed

a quantile regression method for competing risks data based on the cumulative

incidence function that cannot be applied to draw inference on net quantities as

desired in the WASID study.

We assume linear quantile regression models for both the event time and the

dependent censoring time. For identifiability, we specify the dependence struc-

ture between the event time and the dependent censoring time by a copula model,

as in Huang and Zhang (2008) and Chen (2010). We utilize martingales associ-

ated with the cause-specific hazards to construct unbiased estimating equations

for the assumed models, following Peng and Huang (2008). Here the estimation

involves more delicate issues with the identifiability of upper tail quantiles due to

censoring, as well as technical challenges due to the dependent entanglement of

event time and censoring time. In the estimation procedure, we apply a “trunca-

tion” technique to avoid the estimation of upper tail quantiles. With the theory

in empirical processes and stochastic integral equations, we establish asymptotic

properties of the proposed estimators, including uniform consistency and weak

convergence. We develop an efficient and stable iterative algorithm to solve the

estimating equations. We present the method along with the asymptotic results

in Section 2. In Section 3 we report results from simulation studies. An appli-

cation to the WASID study is presented in Section 4 to illustrate the practical

utility of our method. Section 5 concludes the paper with a few remarks.

2. Methods

2.1. Data and model

Let T denote the failure time, D denote time to dependent censoring, and C

be an additional independent censoring time. Let Z̃ be a p× 1 covariate vector.

Take T̃ = T ∧ D, X = T̃ ∧ C, and Z = (1, Z̃T )T . Let δ̃ = I(T̃ ≤ C). The

censoring indicator is δ = δ̃ if T ≤ D, and δ = 2δ̃ if D < T . The observed data

consist of n replicates of (X, δ,Z
)
, denoted by {

(
Xi, δi,Zi

)
, i = 1, · · · , n}.
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Take the conditional τth quantile of a random variable Y given Z to be
QY (τ |Z) = inf{t : FY (t|Z) ≥ τ}, where FY (t|Z) = Pr(Y ≤ t|Z). We consider
the quantile regression model for T and D that takes the forms

QT (τ |Z) = g{ZTβ0(τ)}, τ ∈ (0, 1), (2.1)

QD(τ |Z) = h{ZTα0(τ)}, τ ∈ (0, 1), (2.2)

where g(·) and h(·) are known monotone link functions, and the unknown coef-
ficient vectors, β0(τ) and α0(τ), represent the covariate effects on QT (τ |Z) and
QD(τ |Z), respectively. For simplicity, we assume h and g are increasing func-
tions and h = g; the method can be readily extended to allow h ̸= g and one (or
both) of them is non-increasing monotone. While interest is generally centered
on β0(τ), the estimation of α0(τ) can be useful in practice. For example, in
the WASID study, inference on α0(τ) can help to investigate the factors that
contribute to the early withdrawal of patients.

Due to the dependence between T and D given the covariates, models con-
cerning the marginal distribution functions or quantile functions, such as (2.1)
and (2.2), cannot be identified without additional assumptions on the dependence
structure between T and D. Here we specify the dependence structure between
T and D by a copula model that relates the joint survival function of (T,D) to
the marginal distributions through

Pr(T > t1, D > t2|Z) = H{Pr(T > t1|Z),Pr(D > t2|Z)}, (2.3)

where H(·, ·) is known copula function. For example, H(·, ·) can be chosen from
a variety of parametric classes, such as the Clayton copula (Clayton (1978))
H(u, v) = {u−rc + v−rc − 1}−1/rc , rc > 0, and the Frank copula (Genest (1987))
H(u, v) = logrf {1 + (ruf − 1)(rvf − 1)/(rf − 1)}, rf > 0 and rf ̸= 1, where rc and
rf are known copula parameters. In practice, the copula parameter may be
chosen according to prior knowledge on the strength of the association between
T and D. Alternatively, one can perform a sensitivity analysis to obtain bounds
of β0(τ) and hence QT (τ |Z) by perturbing r in a plausible range.

2.2. Estimation equations

To estimate β0(τ) at (2.1), we utilize martingales associated with cause-
specific hazard functions. Let the counting process for T be N1(t) = I(X ≤
t, δ = 1), and take M1(t) = N1(t)−

∫ t
0 Y (u)λ∗

1(u|Z) du, where Y (u) = I(X ≥ u)
and λ∗

1(t|Z) = limh→0 Pr{t ≤ T < t+ h, T < D|T ≥ t,D ≥ t;Z}/h as the cause-
specific hazard function for T . As shown by Kalbfleisch and Prentice (2002),
M1(t) is a martingale with respect to the filtration Ft = {N1(u), Y (u+),Z}.
This implies

E{N1(t)−
∫ t

0
Y (s)λ∗

1(s|Z) ds} = 0, ∀t ≥ 0. (2.4)
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By using λ∗
1(t|Z) = −∂ log[H{F̄T (t1|Z), F̄D(t2|Z); r}]/∂t1|t1=t2=t (Kalbfleisch

and Prentice (2002)) and employing variable transformation inside the integral,

we can show that∫ t

0
Y (s)λ∗

1(s|Z) ds =

∫ FT {t|Z}

0
Y {QT (u|Z)}ϕ1(1− u, F̄D{QT (u|Z)|Z}) du,

(2.5)

where ϕ1(v1, v2) = ∂ log{H(v1, v2)}/∂v1 and F̄W (t) is the survival function for a

random variable W . Under models (2.1) and (2.2),

FD(t|Z) =

∫ 1

0
I{v ≤ FD(t|Z)}dv =

∫ 1

0
I[g{ZT

i α0(v)} ≤ t] dv

and therefore

F̄D{QT (u|Z)|Z} = 1−
∫ 1

0
I{ZT

i α0(v) ≤ ZT
i β0(u)}dv. (2.6)

From (2.1),(2.4), (2.5), and (2.6) we have

E
[ 1
n

n∑
i=1

Zi

{
N1i[g{ZT

i β0(τ)}]−
∫ τ

0
Y [g{ZT

i β0(u)}]

×ϕ1

(
1− u, 1−

∫ 1

0
I{ZT

i α0(v) ≤ ZT
i β0(u)}dv

)
du

}]
= 0, (2.7)

where N1i(t) is the sample analog of N1(t).

By treating T as the dependent censoring to D, a parallel equality to (2.7)

can be derived for α0(·). Take N2(t) = I(X ≤ t, δ = 2) and let {N2i(t)}ni=1 be

the sample analogs of N2(t). With ϕ2(v1, v2) = ∂ log{H(v1, v2)}/∂v2, we can

show that

E
[ 1
n

n∑
i=1

Zi

{
N2i[g{ZTα0(τ)}]−

∫ τ

0
Y [g{ZTα0(u)}]

×ϕ2

(
1−

∫ 1

0
I{ZT

i β0(v) ≤ ZT
i α0(u)}dv, 1− u

)
du

}]
= 0. (2.8)

Motivated by (2.7) and (2.8), we propose to estimate β0(τ) and α0(τ) from

the estimating equations

n1/2S(k)
n (β,α, τ) = 0, k = 1, 2, (2.9)

where

S(1)
n (β,α, τ) = n−1

n∑
i=1

Zi

{
N1i[g{ZT

i β(τ)}]−
∫ τ

0
Yi[g{ZT

i β(u)}]
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×ϕ1

(
1− u, 1−

∫ 1

0
I{ZT

i α(v) ≤ ZT
i β(u)}dv

)
du

}
,

S(2)
n (β,α, τ) = n−1

n∑
i=1

Zi

{
N2i[g{ZT

i α(τ)}]−
∫ τ

0
Yi[g{ZT

i α(u)}]

×ϕ2

(
1−

∫ 1

0
I{ZT

i β(v) ≤ ZT
i α(u)}dv, 1− u

)
du

}
.

The estimating equation (2.9) requires that β0(τ) and α0(τ) be identifiable

for all τ ∈ (0, 1), which may not be possible due to the censoring to T or D. Here

we modify (2.9) by truncating the time scale by an upper bound, g{ZTβ0(τU,1)}∧
g{ZTα0(τU,2)}, where τU,1, τU,2 ∈ (0, 1). This leads the new estimating equation

n1/2S∗(k)
n (β,α, τ) = 0, k = 1, 2, (2.10)

where

S∗(1)
n (β,α, τ) = n−1

n∑
i=1

Zi

{
N1i[g{ZT

i β(τ)}]I{g−1(Xi) ≤ ZT
i α(τU,2)}

−
∫ τ

0
Yi[g{ZT

i β(u)}]I{ZT
i β(u) ≤ ZT

i α(τU,2)}

×ϕ1

(
1− u, 1−

∫ τU,2

0
I{ZT

i α(v) ≤ ZT
i β(u)}dv

)
du

}
,

S∗(2)
n (β,α, τ) = n−1

n∑
i=1

Zi

{
N2i[g{ZT

i α(τ)}]I{g−1(Xi) ≤ ZT
i β(τU,1)}

−
∫ τ

0
Yi[g{ZT

i α(u)}]I{ZT
i α(u) ≤ ZT

i β(τU,1)}

×ϕ2

(
1−

∫ τU,1

0
I{ZT

i β(v) ≤ ZT
i α(u)}dv, 1− u

)
du

}
.

It can be shown that the terms in (2.10) still have expectation 0 at the true

parameters. A nice feature of the modified estimating equations is that they

only involve the estimation of {β0(τ), τ ∈ (0, τU,1)} and {α0(τ), τ ∈ (0, τU,2)},
and thus do not demand the identifiability of β0(τ) and α0(τ) in the upper tail

of τ . The conditions for τU,1 and τU,2 are deferred to the statement of asymptotic

results. In practice, τU,1 and τU,2 may need to be selected adaptively, and some

empirical rules for selecting them are to be presented.

2.3. Computing algorithms

We develop an iterative algorithm for finding the solution to (2.10), Algo-

rithm A, described as follows.

Step A0. Set m = 0. Choose the initial value α̂[m](τ), τ ∈ (0, τU,2].
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Step A1. Solve S
∗(1)
n (β, α̂[m], τ) = 0 for β̂[m+1](τ), τ ∈ (0, τ

[m+1]
U,1 ]. Update τU,1

with τ
[m+1]
U,1 .

Step A2. Solve S
∗(2)
n (β̂[m+1],α, τ) = 0 for α̂[m+1](τ), τ ∈ (0, τ

[m+1]
U,2 ]. Update

τU,2 with τ
[m+1]
U,2 .

Step A3. Let m = m + 1. Repeat Steps A1 and A2 until convergence criteria

are met.

At Step A0, one way to set the initial estimates is to fit model (2.1) for T

and model (2.2) for D using existing quantile regression techniques that assume

T and D are independent, for example, using Peng and Huang (2008)’s method.

At Step A1, we adopt a grid-based procedure that assumes β̂[m+1](τ) to be

a right-continuous step function jumping only on a prespecified grid, GLn = {0 =

τ0 < τ1 < · · · < τLn = τ
[m+1]
U,1 < 1}. Let ∥GLn∥ be the size of the grid GLn ,

max{τj+1− τj ; j = 0, · · · , Ln− 1}. The solution can be obtained by sequentially

solving the following monotone estimating equation in β(τj)(j = 1, · · · , Ln):

n−1/2
n∑

i=1

Zi

{
I[Xi ≤ g{ZT

i β(τj)}, δi = 1]I{g−1(Xi) ≤ ZT
i α̂

[m](τU,2)}

−
j−1∑
l=0

(τl+1 − τl)I[Xi ≥ g{ZT
i β(τl)}]I{ZT

i β(τl) ≤ ZT
i α̂

[m](τU,2)}

×ϕ1

(
1− τl, 1−

∫ τU,2

0
I{ZT

i α̂
[m](v) ≤ ZT

i β(τl)}dv
)}

= 0, (2.11)

with g{ZT
i β(0)} set to be 0.

Due to the monotonicity of (2.11), the root-finding problem in (2.11) is

equivalent to locating the minimizer of the L1-type convex function

lj(h) =

n∑
i=1

|I(δi = 1)I{g−1(Xi) ≤ ZT
i α̂

[m](τU,2)}g−1(Xi)

−I(δi = 1)I{g−1(Xi) ≤ ZT
i α̂

[m](τU,2)}hTZi|

+|R∗ − hT

n∑
l=1

{−I(δl = 1)}I{g−1(Xl) ≤ ZT
l α̂

[m](τU,2)}Zl|

+
∣∣∣R∗−hT

n∑
r=1

(
2Zr

j−1∑
s=0

I[g−1(Xr)≥ZT
r β(τs)]I{ZT

r β(τs)≤ZT
r α̂

[m](τU,2)}

×ϕ1

(
1−τs, 1−

∫ τU,2

0
I{ZT

r α̂
[m](v) ≤ ZT

r β(τs)}dv
)
× (τs+1−τs)

)∣∣∣, (2.12)
where R∗ is suitably large.
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Note that τU,1 is adaptively selected and may vary at each iteration. At the

end of the mth iteration, we choose τU,1 to be τ
[m+1]
U,1 , the largest quantile at

which β̂[m+1](·) can be solved. For example, we examine the distance between

β̂[m+1](τj) and β̂[m+1](τj+1) for each j, dj , and if it exceeds a moderate pre-

specified threshold, we stop the sequential procedure and set J = j and thus

τ
[m+1]
U,1 = τJ . In our numerical studies we set the threshold to 10. The underlying

rationale is that, given a fine grid GLn , β̂
[m+1](τj) and β̂[m+1](τj+1) are expected

be close in the identifiable τ–region for β̂(·) when j > 0.

The root-finding procedure at Step A2 can be transformed to minimizing a

L1-type convex function parallel to (2.12) and we omit the exact expressions here.

The L1–minimization problem can be readily solved by using existing packages

implemented in standard statistical software, such as l1fit() function in S-PLUS

and rq() function in R. A similar adaptive strategy as for selecting τU,1 can be

adopted for τU,2, which is updated at the mth iteration with τ
[m+1]
U,2 , the largest

quantile at which α̂[m+1](·) can be identified.

Based on our experience, the numerical performance of this algorithm can

be unstable when there is heavy censoring on D. For example, in the context of

the WASID study, about 80% of the observations on D were censored by either

T or C. This is expected in a well-designed study when D represents informative

dropouts. In such a case, adopting a more restrictive version of model (2.2) for

D can improve the estimation efficiency and thus help increase the numerical

stability. One specific remedy is to adopt an AFT model for D that only allows

the intercept α
(0)
0 (τ) to vary with τ , but imposes constancy on each covariate

effect α
(k)
0 (τ) for k = 1, · · · , p. Since D is subject to dependent censoring posed

by T , classical AFT estimation that requires conditional independent censoring

is not applicable to fit a AFT model for D. Taking this into account, we propose

a modified version of Algorithm A, Algorithm B, described as follows.

Step B0. Set m = 0. Obtain the initial values α̂[m](τ), τ ∈ (0, τU,2] by fitting

an AFT model using Jin et al. (2003)’s method.

Step B1. Solve S
∗(1)
n (β, α̂[m], τ) = 0 for β̂[m+1](τ), τ ∈ (0, τ

[m+1]
U,1 ]. Update τU,1

with τ
[m+1]
U,1 .

Step B2. Obtain α̂[m+1](τ), τ ∈ (0, τ
[m+1]
U,2 ] via the following procedure

(a) Solve S
∗(2)
n (β̂[m+1],α, τ) = 0 for α̃[m+1](τ), τ ∈ (0, τ̃U,2].

(b) Obtain the constant α̂[m+1](k) by taking the average of α̃[m+1](k)(τ) over τ ∈
[τa, τb] for k = 1, · · · , p, where τa ∈ (0, τ̃U,2) and τb ∈ (τa, τ̃U,2) are prespecified

constants that represent a well-identified region for α̃[m+1](τ).
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(c) Compute the residual on the g−1 scale, g−1(ϵi) = g−1(Xi)−Qi, where Qi =

Z̃T
i (α̂

[m+1](1) , · · · , α̂[m+1](p))T .

(d) Obtain α̂(0)[m+1]

(τ) for τ ∈ (0, τ
[m+1]
U,2 ] by solving S

∗∗(2)
n (β̂[m+1], α(0), τ) = 0,

where

S∗∗(2)
n (β̂[m+1], α(0), τ)

= n−1
n∑

i=1

Zi

{
I[g−1(ϵi) ≤ α(0)(τ), δi = 2]I{g−1(Xi) ≤ ZT

i β̂
[m+1](τU,1)}

−
∫ τ

0
I[g−1(ϵi) ≥ α(0)(τ)]I{α(0)(u) ≤ ZT

i β̂
[m+1](τU,1)−Qi}

×ϕ2

(
1−

∫ τU,1

0
I{ZT

i β̂
[m+1](v)−Qi ≤ α(0)(u)} dv, 1− u

)
du

}
.

Update τU,2 with τ
[m+1]
U,2 .

Step B3. Let m = m + 1. Repeat Steps B1 and B2 until convergence criteria

are met.

Here τU,2 is selected in a slightly different manner than in Algorithm A. At

the mth iteration, we set τU,2 at τ
[m+1]
U,2 , the largest τ at which the intercept

α̂(0)(τ) can be obtained. We still select τU,1 based on the identifiability of the

p+1 vector β̂(τ). As in Steps A1 and A2, equations involved in Steps B1 and B2

can also be treated as L1 minimization problems and thus conveniently solved.

Details of the convergence criteria for Steps A3 and B3 are provided in Appendix

D.

In practice, one may consider more general parametric submodeling of α0(τ)

along the lines of Fine, Yan, and Kosorok (2004) to bring down the dimensionality

of regression quantiles for D. The AFT model based remedy can be viewed as a

special case of this type of analysis, where constant submodels are assumed for all

non-intercept coefficients in α0(τ). The algorithm B can be adapted accordingly.

2.4. Asymptotic results

Under regularity conditions C1−C5 (provided in Appendix A), we establish

uniform consistency and weak convergence for β̂(τ) and α̂(τ).

Theorem 1. If C1−C5 hold and limn→∞ ∥GLn∥ = 0, then supτ∈[ν1,τU,1] ∥β̂(τ)−
β0(τ)∥

p−→ 0 and supτ∈[ν2,τU,2] ∥α̂(τ) − α0(τ)∥
p−→ 0, where 0 < ν1 < τU,1 and

0 < ν2 < τU,2.

Theorem 2. If C1−C5 hold and limn→∞ n1/2∥GLn∥ = 0, then n1/2{β̂(τ) −
β0(τ)} converges weakly to a Gaussian process for τ ∈ [ν1, τU,1] with 0 < ν1 <
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τU,1, and n1/2{α̂(τ) − α0(τ)} converges weakly to a Gaussian process for τ ∈
[ν2, τU,2] with 0 < ν2 < τU,2.

The proofs of these theorems can be viewed as extensions of those in Peng and

Huang (2008) to the bivariate case, but are not straightforward. To prove The-

orem 1, we first note that the proposed estimating functions S
(1)
n (β,α, τ) and

S
(2)
n (β,α, τ) converge to their expectations s(1)(β,α, τ) and s(2)(β,α, τ) uni-

formly in τ . Second, with fixed α in equations S
(1)
n (β,α, τ) = 0 and s(1)(β,α, τ)

= 0, the solutions for β can be viewed as functionals of α, namely β̂(α, τ) and

β̃(α, τ), respectively. We can then use β̃(α̂, τ) to bridge β̂(α̂, τ) and β0(τ) =

β̃(α0, τ). Similarly we can use α̃(β̂, τ) to bridge α̂(β̂, τ) and α0(τ) = α̃(β0, τ),

where α̂(β, τ) and α̃(β, τ) are the solutions for α to S
(2)
n (β,α, τ) = 0 and

s(2)(β,α, τ) = 0 with fixed β, respectively. To circumvent the difficulty that

∥β̂(0)∥ = ∞ and ∥α̂(0)∥ = ∞, which is implied by models (2.1) and (2.2) and

our estimating procedure, we consider

θ(τ) = µ

(
β(τ)

α(τ)

)
=

E
(
ZN1[g{ZTβ(τ)}]

)
E
(
ZN2[g{ZTα(τ)}]

) ,

and prove that θ̂(τ) converges in probability to θ0(τ) uniformly for τ ∈ (0, τU ].

This result further leads to the uniform convergency of β̂(τ) for τ ∈ [ν1, τU,1] and

α̂(τ) for τ ∈ [ν2, τU,2].

To prove Theorem 2, we first establish the connection between n1/2({β̂(τ)−
β0(τ)}T , {α̂(τ)−α0(τ)}T )T and n1/2{−S

(1)
n (β0,α0, τ)

T ,−S
(2)
n (β0,α0, τ)

T}T via

a stochastic integral equation. This result allows us to express n1/2({β̂(τ) −
β0(τ)}T , {α̂(τ)−α0(τ)}T )T as a linear map of n1/2{−S

(1)
n (β0,α0, τ)

T ,

−S
(2)
n (β0,α0, τ)

T}T . The latter can be shown to have weak convergence, which

implies the result in Theorem 2. The detailed proofs of Theorems 1 and 2 are

provided in Appendices B and C.

2.5. Inferences

Given the complex limiting distributions of β̂(τ) and α̂(τ), seen in the proof

of Theorem 2, we employ the bootstrap approach (Efron (1979)) to make infer-

ence on β0(τ) and α0(τ). We obtain B bootstrapped samples, each of which is

obtained by resampling with replacement n times from the original dataset. For

the b-th bootstrapped sample, we conduct the estimation procedure presented

in Sections 2.2−2.3 and obtain {β∗
b (τ), τ ∈ (0, τ∗U,1,b]} and {α∗

b(τ), τ ∈ (0, τ∗U,2,b]}
(b = 1, . . . , B). For each fixed τ , we estimate the variances of β̂(τ) and α̂(τ) by

the sample variances of {β∗
b (τ)}Bb=1 and {α∗

b(τ)}Bb=1, respectively, and construct

confidence intervals of β0(τ) and α0(τ) using normal approximations.



QUANTILE REGRESSION FOR DEPENDENTLY CENSORED DATA 1421

Hypotheses testing can be conducted to further investigate the patterns of

the covariate effects. Let β
(q)
0 be the coefficient corresponding to Z̃(q), the qth

component of Z̃ (q = 1, · · · , p). One might be especially interested in testing

the overall significance of β
(q)
0 (τ) across a pre-specified range of τ , say [l, u],

where 0 < l < u < τU,1, and the constancy of β
(q)
0 (τ) over τ ∈ [l, u]. The

corresponding null hypotheses can be formulated as H0 : β
(q)
0 (τ) = 0, τ ∈ [l, u]

and H̃0 : β
(q)
0 (τ) = ρ0, τ ∈ [l, u], respectively, where ρ0 is an unknown constant.

To address these problems, we first consider η0,q ≡
∫ u
l β

(q)
0 (v)dv/(u − l) for q =

1, · · · , p, which may be interpreted as the average covariate effect of Z̃(q) across

τ ∈ [l, u]. Following the justification provided in Peng and Huang (2008), it can

be shown that η̂q =
∫ u
l β̂(q)(v)dv/(u− l) is a consistent estimator for η0,q and is

asymptotically normal. Given the observed data, the limiting distribution of η̂q

can be approximated by the sample {η∗b,q}Bb=1, where η
∗
b,q =

∫ u
l β∗(q)

b (v)dv/(u− l).

To test H0, we note that under the null, the limit distribution of η̂q is a mean zero

normal distribution, the variance of which can be estimated via the resampling

procedure mentioned above. Therefore, a Wald-type test statistic for testing H0

is given by η̂q divided by its standard error.

Regarding H̃0, one can adopt the test statistic Γ̃ = {n1/2
∫ u
l {β̂

(q)(v) −
η̂q}Θ(v)dv}/(u− l), where Θ(·) is a pre-specified nonconstant and nonnegative

weight function. The essential idea of Γ̃ is to compare two different weighted av-

erages of β̂(q)(τ) over τ , which is expected to be small if β
(q)
0 (τ) is constant over

τ . When H̃0 holds, β
(q)
0 (v) = η0,q for all v ∈ [l, u] and thus Γ̃ = n1/2

∫ u
l [{β̂

(q)(v)−
β
(q)
0 (v)}−(η̂q−η0,q)]Θ(v) dv/(u−l). Given the functional linearity of β̂(τ)−β0(τ)

implied by the proof of Theorem 2.2, we can show that the limiting distribution

of Γ̃ under H̃0 is a normal distribution, which can be approximated by the condi-

tional distribution of Γ̃∗
b = n1/2

∫ u
l [{β

∗(q)
b (v)− β̂(q)(v)}−(η∗b,q− η̂q)]Θ(v) dv/(u−l)

given the observed data. Therefore, a percentile based test of size α is to reject

H̃0 when Γ̃ > d1−α/2 or Γ̃ < dα/2, where d1−α/2 and dα/2 are the 100(1− α/2)th

and 100(α/2)th percentiles of the empirical distribution of Γ̃∗
b . Alternatively,

one can estimate the variance of Γ̃ by σ̂(Γ̃)2, the empirical variance of Γ̃∗
b . The

p value for the Wald type test can be obtained by comparing Γ̃/σ̂(Γ̃) with the

distribution N(0, 1).

The hypothesis testing procedures presented follow similar lines as in Fine,

Yan, and Kosorok (2004) and Peng and Huang (2008). Detailed justifications

are thus omitted.

3. Simulation Studies

We studied the finite-sample performance of the proposed estimators via

Monte-Carlo simulations. For the association structure between T and D, we
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considered the Clayton copula with association parameter rc and the Frank cop-

ula with association parameter rf . We set rc = exp(1) and rf = exp(−7.325)

and, correspondingly, the values of Kendall’s tau are the same for both settings,

0.576, representing moderate dependency. To achieve the desired dependence

structure between T and D, we generated ϵ1 and ϵ2 based on a shared frailty

model so that (ϵ1, ϵ2) follows a Clayton or Frank copula model. We adopted

the gamma frailty to generate the Clayton copula model, following the proce-

dure provided in Oakes (1989); we used the Log-series frailty for Frank copula as

described in Yan (2007).

We generated T from a log linear model with heteroscedastic errors:

log T = b1Z1 + b2Z2 + ϵ1,

where Z1 ∼ Unif(0, 1), Z2 ∼ Bernoulli(0.5), and ϵ1 follows N(0, 0.22) if Z2 = 0

and N(0, 0.42) if Z2 = 1. In addition, D was generated from the AFT model

logD = a1Z1 + a2Z2 + ϵ2,

where ϵ2 ∼ N(µ2, 0.3
2). The independent censoring time C was Unif(0, cu). Un-

der this set-up, models (2.1) and (2.2) hold with g(·) = exp(·). It can be shown

that the underlying regression quantile is β0(τ) = {β(0)

0 (τ), β(1)

0 (τ), β(2)

0 (τ)}T ,

where β(0)

0 (τ)=QN(0,0.22)(τ), β
(1)

0 =b1, and β(2)

0 =b2+QN(0,0.42)(τ)−QN(0,0.22)(τ).

It can also be seen that α0(τ) = {Qϵ2(τ), a1, a2}T . Under each copula, we con-

sidered two specific configurations: (I) µ2 = 0, b1 = 0.27, b2 = 0, a1 = 0, a2 = 0.3,

and cu = 12, which results in 10% independent censoring and 45% dependent

censoring to T , and thus 45% dependent censoring to D; (II) µ2 = 0.1, b1 =

0.27, b2 = 0, a1 = 0, a2 = 0.3, and cu = 12, which results in 10% independent

censoring and 30% dependent censoring to T , and thus 60% dependent censoring

to D. For case (I) we assumed a general quantile regression model for D. For

case (II) we adopted the modified algorithm assuming AFT model for D with

τa = 0.1 and τb = 0.4.

Under each configuration we simulated 1,000 date sets of sample size n = 200.

An equally spaced grid on τ with size 0.01 was adopted when estimating β0(τ)

and α0(τ). We chose B = 100 as the number of bootstrap replicates for the

variance estimation.

Table 1 presents the estimation results when the Clayton copula was correctly

adopted. We report the biases (Bias), empirical standard deviations (EmpSD),

average estimated resampling-based standard deviations (AvgSD) of β̂(τ) and

α̂(τ), and coverage rates of 95% Wald confidence intervals of β0(τ) and α0(τ)

with τ = 0.1, 0.3, 0.5 and 0.7. These results show that under these set-ups the

biases are small, the bootstrap standard errors agree well with the empirical
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Table 1. Simulation results on parameter estimation under the Clayton
copula. Bias: biases; AvgSD: average estimated resampling-based standard
deviations; EmpSD: empirical standard deviations; Cov95: coverage rates of
95% Wald confidence intervals.

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95

10% indep. censoring, 45% dep. censoring to T , 45% dep. censoring to D, model (2.2) for D

0.1 β̂(0) 0.02 0.10 0.11 0.95 α̂(0) 0.01 0.10 0.11 0.94

β̂(1) 0.02 0.19 0.22 0.95 α̂(1) -0.02 0.17 0.19 0.94

β̂(2) -0.02 0.10 0.11 0.96 α̂(2) 0.02 0.10 0.11 0.95

0.3 β̂(0) 0.01 0.09 0.10 0.95 α̂(0) 0.02 0.08 0.10 0.94

β̂(1) 0.01 0.16 0.19 0.97 α̂(1) -0.02 0.14 0.16 0.94

β̂(2) -0.01 0.08 0.09 0.96 α̂(2) 0.01 0.08 0.10 0.96

0.5 β̂(0) 0.01 0.08 0.09 0.95 α̂(0) 0.02 0.09 0.13 0.97

β̂(1) 0.02 0.16 0.21 0.97 α̂(1) -0.02 0.14 0.19 0.97

β̂(2) -0.01 0.08 0.09 0.96 α̂(2) 0.01 0.08 0.10 0.97

10% indep. censoring, 30% dep. censoring to T , 60% dep. censoring to D, AFT model for D

0.1 β̂(0) 0.01 0.09 0.10 0.94 α̂(0) 0.02 0.08 0.10 0.96

β̂(1) 0.01 0.16 0.18 0.95 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.01 0.09 0.10 0.96 α̂(2) 0.03 0.09 0.10 0.96

0.3 β̂(0) 0.01 0.07 0.08 0.95 α̂(0) 0.02 0.08 0.10 0.96

β̂(1) 0.00 0.13 0.15 0.96 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.01 0.07 0.08 0.96 α̂(2) 0.03 0.09 0.10 0.96

0.5 β̂(0) 0.00 0.07 0.08 0.96 α̂(0) 0.02 0.08 0.10 0.97

β̂(1) 0.00 0.13 0.15 0.97 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.00 0.07 0.08 0.95 α̂(2) 0.03 0.09 0.10 0.96

0.7 β̂(0) 0.00 0.07 0.08 0.96 α̂(0) 0.03 0.10 0.11 0.96

β̂(1) 0.01 0.14 0.18 0.97 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.00 0.07 0.08 0.96 α̂(2) 0.03 0.09 0.10 0.96

ones, and the coverage rates are in general close to the nominal level. For case

(I), the convergence rate was 94.5% and on average 3.7 iterations were required

to achieve convergence. For case (II) the convergence rate was 99.2%, achieved

by an average of 4.4 iterations. In a similar fashion, Table E1 in Appendix E

presents the estimation results when data were generated based on the Frank

copula model. These results are also satisfactory. For case (I), the convergence

rate was 92.7% with 5.5 iterations on average. For case (II) the convergence

rate was 99.7%, achieved by an average of 5.3 iterations. With a dataset, the

algorithm failing to converge might indicate a lack of sufficient information to

estimate regression quantiles within the specified τ -range. In that case, one can

consider inference on a narrower τ -range or a more restrictive model for T or D

which requires less information to achieve a reasonable fit of the data.

We also compared our approach with a naive application of Peng and Huang

(2008) by treating D as independent censoring. Figure 1 displays the mean
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Figure 1. Upper panel: Comparison among true coefficients β0(τ) (bold
solid lines), mean estimates for β0(τ) from the proposed method (solid lines)
under a correctly specified Clayton copula, and mean estimates for β0(τ)
from the naive approach (dotted lines); lower panel: Comparison among
true coefficients α0(τ) (bold solid lines), mean estimates for α0(τ) from the
proposed method (solid lines) under a correctly specified Clayton copula,
and mean estimates for α0(τ) from the naive approach (dotted lines).

estimated coefficients from the proposed approach and those from the naive ap-

proach, along with the true coefficients under a correctly specified Clayton copula,

assuming an AFT model for D in both approaches. We can see that the pro-

posed estimator β̂(τ) is virtually unbiased and α̂(τ) has only small bias, while

the naive approach can produce substantial bias, suggesting the importance of

properly accounting for dependent censoring.

To assess the robustness of our methods, we also carried out estimation

procedures with mis-specified copulas and compared the results to those under

the correct copulas. Specifically, we focused on configuration (II), the case with

30% dependent censoring. With the true Kendall’s tau set to be 0.576, we first

generated T and D under the Clayton copula, and then estimated the regression

coefficients assuming two types of dependence structure. One was the Frank

copula with Kendall’s tau= 0.576, which represents the situation of mis-specified

copula function with correct degree of association, and the other was the Clayton
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copula with Kendall’s tau= 0.79, 0.33 and 0.16, in which the copula function was

true but the association parameters were not. Similarly, we also generated T

and D under the Frank copula, and examined the estimation when assuming the

Clayton copula with Kendall’s tau= 0.576 and the Frank copula with Kendall’s

tau= 0.26,−0.12 and − 0.33, respectively.

Table E2 (Appendix E) summarizes the results when we mis-specified the

copula function but correctly specified the association parameter, with the de-

pendent censoring rate set to be 30%. Here the biases are still small and the

coverage rates are again close to the nominal level. This suggests that, even

with incorrect copula function, we can still obtain unbiased estimation if correct

knowledge of the degree of association is accessible. In contrast, Figures E1 and

E2 (Appendix E) depict the estimated coefficients for T under correctly spec-

ified copula forms with mis-specified association levels. Now the magnitude of

the biases increases with the deviation of the assumed association from the true

value. For example, when the underlying copula was Clayton with Kendall’s

tau= 0.576, the resulting biases may be moderate (as large as 0.05) for β0(τ) by

assuming Kendall’s tau= 0.79 or 0.33, and more pronounced (as large as 0.09)

by assuming Kendall’s tau= 0.16.

4. The WASID Example

We applied the proposed method to the WASID study, a double-blind and

multicenter clinical trial that compared warfarin and aspirin in treating symp-

tomatic intracranial arterial stenosis, an important cause of stroke. In this trial,

569 patients who had stroke or transient ischemic attack resulting from steno-

sis of a major intracranial artery were randomized to receive either warfarin or

aspirin. In our analysis, T was defined as time from randomization to ischemic

stroke, brain hemorrhage, or death, whichever happened first. We refer to this

event as “study endpoint”. During an average of 1.8-year follow-up, T was ob-

served for 57 patients treated by warfarin and 60 patients treated by aspirin. For

various reasons, the study medications were terminated early for 125 patients,

among whom 81 were on the warfarin arm and 44 were on the aspirin arm.

The follow-up of these patients continued while they received appropriate dis-

ease management determined by their primary physicians. The primary analysis

reported in Chimowitz et al. (2005) followed an intent-to-treat (ITT) strategy:

for patients whose assigned treatments were terminated early, no distinction was

made between the follow-up information before and after the withdrawal.

To conduct a secondary on-treatment analysis that confers the treatment

effect pertaining to the situation where the originally assigned treatment was not

terminated early, our strategy was to censor the time to study endpoint at the

time of early termination of study medication. We also looked into the possibility
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of adopting a framework recently proposed for handling premature termination

of treatment (Zhang et al. (2011)) that requires distinguishing mandatory dis-

continuation of study medication, and attaches the effect of interest to the dy-

namic treatment regimen that accounts for mandatory treatment discontinuation.

However, per WASID protocol, there is no clear and definite rule to categorize

mandatory termination and optional termination of study medication. Decisions

for stopping study medication and post-withdrawal treatment were largely based

on the discretion of physicians. We did not pursue the analysis in this direction.

For our analysis, one complication was that the withdrawals might be corre-

lated with the underlying disease progression and thus pose dependent censoring

to T . We let D denote dependent censoring time, the time from randomization

to study withdrawal. Administrative censoring occurred for 146 patients in the

warfarin group and 172 patients in the aspirin group. Time to such independent

censoring was denoted by C. We considered three covariates: Treatment, 1 for

warfarin and 0 for aspirin; Diabetes, the indicator of having diabetes; Stenosis

Percentage, the percentage of stenosis by central reader.

We analyzed the WASID data based on some classical approaches, naively

treating early drug termination as independent censoring. No treatment effect

was detected by the log rank test. Adjusting for Diabetes and Stenosis Percent-

age, Cox regression also suggested that there was no significant treatment effect.

The hazard ratio of warfarin versus aspirin was 0.91 with p-value=0.63. Steno-

sis Percentage was not found to be significant in predicting time to the study

endpoint. Having diabetes was found to have a significant negative effect on the

progression to the study endpoint. The corresponding hazard ratio and p value

were 2.15 and < 0.001, respectively.

We applied the proposed regression approach, adjusting for the same set of

covariates considered in the naive analysis. We specified different r values such

that the corresponding Kendall’s tau were 0.2, 0.4, 0.6, and 0.8, representing the

cases where the positive associations between T and D were weak, moderate,

and strong. The link function was chosen to be log(·). Due to heavy censoring

to D by T or C with the censoring rate around 80%, we adopted an AFT model

for D to increase numerical stability. For inference, we performed 300 bootstrap

resampling for each scenario. We considered both the Clayton and Frank copulas.

We only present the results based on the Clayton copula, since the results under

the Frank copula were similar.

Figure 2 depicts the estimates for β0(τ) under the Clayton copula, together

with the results from a naive application of Peng and Huang (2008) in which D

was treated as independent censoring. In Figure 2, the naive estimate and the

proposed estimates for the treatment effect appear to be similar for τ < 0.18

and demonstrate a larger yet moderate divergence for later τ ’s. In all cases,
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Figure 2. The WASID example: Point estimates of regression coefficients for
time to the primary endpoint (ischemic stroke, brain hemorrhage, or death)
under the Clayton copula with Kendall’s tau=0, 0.2, 0.4, 0.6, and 0.8.

the estimated treatment effects over τ demonstrate a common pattern: negative

at lower quantiles, then decreasing in the magnitude and becoming stabilized

around 0. For Diabetes and Stenosis Percentage, the departure of the estimates

that assume dependent censoring from the naive estimate are more noticeable.

In Table 2, we summarize the standard errors of the naive estimates and

the proposed estimates under different specifications of r > 0. It can be seen

that the proposed estimates have comparable efficiency to the naive estimate

obtained by Peng and Huang (2008)’s method. We also performed the second-

stage inference procedure on the WASID data. Formal tests on the significance

of covariate effects were performed based on the average effects on quantiles of T

with τ ranging from 0.05 to 0.25. Results show that the treatment effect was not

significant for any choice of r we considered. This is consistent with Chimowitz

et al. (2005), who found no benefit of warfarin over aspirin in the WASID trial.

However, we found that Diabetes has significant effects under all choices of r

(all p-values < 0.001), with average effects -1.58, -1.49, -1.38, -1.28, and -1.11,

corresponding to the cases where Kendall’s tau =0, 0.2, 0.4, 0.6, and 0.8. This

suggests that the diabetic patients may progress significantly faster to the study

endpoint compared to nondiabetic patients. This finding is consistent with the
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Table 2. The WASID example: standard errors under the Clayton copula
with Kendall’s tau=0, 0.2, 0.4, 0.6, and 0.8. β̂(1), β̂(2) and β̂(3) are esti-
mated coefficients of Treatment, Diabetes, and Stenosis Percentage on T ,
respectively.

τ K’s tau=0 K’s tau=0.2 K’s tau=0.4 K’s tau=0.6 K’s tau=0.8

0.05 β̂(1) 0.79 0.77 0.78 0.76 0.72

β̂(2) 0.77 0.75 0.73 0.73 0.69

β̂(3) 2.10 2.04 2.04 2.04 1.95

0.10 β̂(1) 0.69 0.69 0.69 0.71 0.74

β̂(2) 0.65 0.65 0.64 0.66 0.69

β̂(3) 1.83 1.67 1.79 1.76 1.73

0.15 β̂(1) 0.43 0.41 0.37 0.36 0.35

β̂(2) 0.41 0.38 0.37 0.36 0.39

β̂(3) 1.45 1.38 1.33 1.26 1.17

0.20 β̂(1) 0.51 0.46 0.40 0.39 0.33

β̂(2) 0.60 0.48 0.44 0.34 0.32

β̂(3) 1.76 1.48 1.42 1.24 1.05

0.25 β̂(1) 0.53 0.50 0.46 0.41 0.35

β̂(2) 0.79 0.66 0.54 0.45 0.33

β̂(3) 2.24 1.85 1.67 1.46 1.19

naive Cox regression analysis, but is better endorsed by taking into account the

potential dependence between T and D.

To illustrate the impact of adjusting for dependent censoring in a more mean-

ingful way, we plot the estimated quantiles of T and D (see Figure 3 and Figure

E3 in Appendix E) for each treatment group with and without diabetes, with

Stenosis Percentage fixed at its mean value. From Figure E3, it is apparent that

the disparity among different estimates is negligible in the diabetes group, but

accounting for dependent censoring at different levels can lead to dramatically

different estimates forQT (τ |Z) in the non-diabetic group. One plausible explana-

tion for this is that non-diabetic patients generally progress to the study endpoint

slower than diabetic patients and thus are more prone to the “risk” of early ter-

mination of study medication. Consequently, adjusting for dependent censoring

for the non-diabetic patients makes a bigger influence on the estimated quantiles

of T . From Figure 3, assuming independence between patient withdrawal and

the study endpoint tends to give more optimistic estimate for QT (τ |Z) compared

to cases where T and D were assumed to be positively associated. This is rea-

sonable and intuitive explanation is that an observed D, meaning T > D and

T is censored, would be suggestive of a smaller T when T and D are believed

to be positively associated than that under independence between T and D. As
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Figure 3. The WASID example: Estimated quantiles of time to the primary
endpoint (ischemic stroke, brain hemorrhage, or death) under the Clayton
copula with Kendall’s tau=0, 0.2, 0.4, 0.6, and 0.8, with the Stenosis Per-
centage fixed at its mean ( 63.7%)

a result, the prediction of QT (τ |Z) would be more conservative under a posi-

tive association assumption. From Figure E3, the warfarin group tends to have

smaller D compared to the aspirin group, which means the patients treated by

warfarin tend to withdraw earlier than the other group. This is also consistent

with Chimowitz et al. (2005), who found a higher rate of adverse events in the

warfarin group than in the aspirin group.

In summary, we found no evidence of better clinical efficacy for warfarin com-

pared to aspirin in treating symptomatic intracranial arterial stenosis, which is

consistent with previously published results on this trial. In our analysis, we took

into account of the dependence between T and D and provided a comprehensive

view of the covariate effects under different specifications of the association.

5. Remarks

We propose a quantile regression method for survival data subject to de-

pendent censoring. Under the assumed model for the event time of interest,

covariate effects are formulated on the quantiles defined on the marginal survival

distribution. We model the dependence structure between the survival time and
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the censoring via a copula model. Such an assumption is not verifiable based

on observed data, so caution is needed when applying the proposed method.

Extensive numerical studies show that the proposed estimation is quite robust

to misspecification of the parametric class of the adopted copula, provided the

strength of association is reasonably specified.

Some earlier works (Moeschberger (1974); Link (1989); Emoto and Matthews

(1990), among others) directly specified the bivariate distribution by parametric

or semi-parametric models. Other works (Robins and Rotnitzky (1992); Robins

(1993); Robins and Finkelstein (2000); Scharfstein et al. (2001); Scharfstein and

Robins (2002)) proposed estimation based on inverse probability of censoring

weighting (IPCW) with the flexibility to accommodate time-dependent prog-

nostic factors. Analyses of dependently censored data can also be focused on

identifiable crude quantities to provide inference in settings that do not exclude

censoring events (Gray (1988); Pepe (1991); Lin (1997); Fine and Gray (1999)).

Considering crude quantities and net quantities offers alternative perspectives of

survival endpoint of interest, depending on context (Jiang, Chappell, and Fine

(2003)). The proposal here concerns net conditional quantiles of T , as motivated

by the WASID example, and provides a useful complement to existing methods

for dependently censored data.

Supplemental Material

Appendices A–E referenced in Sections 2–4 are available online at http:

//www3.stat.sinica.edu.tw/statistica
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