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Abstract: Under the criterion of the set inclusion, two-sided admissible 1− α con-

fidence intervals for the probability of success for a binomial random variable are

constructed using a new iterative method that is based on a direct analysis of

coverage probability. A refined Clopper-Pearson interval is derived and compared

with the Blyth-Still-Casella interval, and is recommended for statistical practice

due to its performance and accessibility. A generalization is provided to the case

of a discrete sample space with a single parameter distribution. Some details and

an R-code that computes the refined Clopper-Pearson interval are given in Supple-

mentary Materials.
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1. Introduction

Inference on a single proportion p is an important problem in statistical

practice, and confidence intervals for p that are reliable, optimal, and accessible

are needed. Let X be a binomial random variable with n trials and a probability

of success p, denoted by X ∼ Bin(n, p). Let f(x;n, p) be the probability mass

function for X. The sample space, {0, . . . , n}, is denoted by S. We are interested

in constructing two-sided confidence interval C(X) = [L(X), U(X)] for p, that is

short and computationally simple, from a class of intervals B satisfying

CoverC(p) =
n∑

x=0

I[L(x),U(x)](p)f(x;n, p) ≥ 1− α,∀p ∈ [0, 1]; (1.1)

L(x) ≤ L(x′), ∀ x ≤ x′ ∈ S; (1.2)

U(x) = 1− L(n− x), ∀ x ∈ S (1.3)

for α ∈ (0, 1). Thus, the coverage probability function of C(X) should be at least

1− α, and large values of X should go with large values of p.

As all intervals in B are of level 1 − α, shorter ones are preferred. For two

intervals C1(X) and C2(X) in B, C1(X) is no worse than C2(X) if

C1(x) is a subset of C2(x) for any x ∈ S. (1.4)
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This is the set inclusion criterion introduced in Wang (2006) to evaluate the

precision of an interval. If

CS(X) = ∩ ∀ C(X)∈BC(X), (1.5)

the intersection of all intervals in B, also belongs to B, then CS(X) is the smallest

interval in B. It automatically guarantees the minimum expected length and the

minimum false coverage probability, two commonly used criteria for precision.

Unfortunately, CS(X) belongs to B only when n or 1 − α is small. See Wang

(2006) for a sufficient and necessary condition on when CS belongs to B. We

construct admissible intervals in B: CA(X) ∈ B that satisfies:

if an interval C∈B is a subset of CA for any x ∈ S, then C(X)=CA(X). (1.6)

We also compare intervals utilizing such criteria as average expected length, total

length and the “standard deviation” of expected length in Section 2.4.

There are many confidence intervals for p. Vollset (1993), Newcombe (1998),

and Pires and Amado (2008) summarized more than twenty intervals that are

either approximate or exact, but none stands out in practice. Here we mention

a few.

The best known 1− α interval for p is the Wald interval,[
p̂− zα/2

√
p̂(1− p̂)

n
, p̂+ zα/2

√
p̂(1− p̂)

n

]
,

where p̂ = X/n and zα/2 is the upper α/2th percentile of a standard normal dis-

tribution. Based on the Central Limit Theorem, it is still in wide use. However,

it violates conditions (1.1) and (1.2), see Brown, Cai, and DasGupta (2001). In

fact, the Central Limit Theorem concerns the convergence of the distribution of

p̂ to a normal distribution at a single value of p, but does not guarantee the

coverage probability at least 1 − α for all values of p in [0, 1]. The infimum

coverage probability of four other widely used approximate 1 − α intervals, the

Wilson score interval (1927), the Agresti and Coull interval (1998), the Jeffreys

prior interval (Brown, Cai, and DasGupta (2001), and Pires and Amado (2008))

and the likelihood-based interval (Newcombe (1998)), converges to some value

strictly less than 1 − α for α = 0.1, 0.05, and 0.01 as n goes large, as shown in

Huwang (1995) and Wang and Zhang (2013). For example, when 1 − α = 0.9

and n =5,000, the infimum coverage probabilities of these five intervals are 0,

0.80, 0.88, 0.70, and 0.69, respectively. This raises a question of consistency for

large sample intervals. Among them, the Agresti-Coull interval has the largest

infimum coverage probability.

The first exact interval in B is the 1−α Clopper and Pearson interval (1934).

It is well known to be conservative. But Wang (2006) pointed out that the 1−2α
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Clopper-Pearson interval is the smallest in B if and only if its lower confidence

limit at x = n is no larger than its upper confidence limit at x = 0. Sterne

(1954) constructed confidence set for p by inverting tests. Following this, Crow

(1956) and Blyth and Still (1983) inverted a family of test acceptance regions

for H0 : p = p0 for all p0 ∈ [0, 1] and obtained admissible confidence intervals in

B. The Blyth-Still interval is so far the “best” exact small sample interval for p.

However, the intervals reported in Blyth and Still (1983) are 2-digit, which results

in an infimum coverage probability below the claimed confidence level. StatXact

9, a commercial software for exact inferences, computes CBSC , the Blyth-Still

interval with Casella refinement (1986) up to 4-digit. This will be the competitor

with our results. The Blyth-Still interval has a problem of implementation and

is not necessarily unique.

In this paper, we present a direct interval construction based on analysis

of coverage probability. Roughly speaking, we squeeze any given 1 − α interval

(lift up the lower limit and press down the upper limit) at all sample points one

by one in a predetermined order, and stop squeezing when the infimum coverage

probability touches 1−α. See Remark 1. This yields admissible intervals. Section

2 discusses interval construction for a proportion. For statistical practice, we

recommend interval CI in Section 2.3 due to a well defined construction, an

overall performance on expected length, and the availability of R-code from the

author for implementation, as discussed in Section 2.4. Section 3 generalizes to

the case of a discrete random variable. A brief summary is given in Section 4.

All proofs are given in Appendix.

2. Admissible Confidence Intervals for p

To obtain an interval C(X) = [L(X), U(X)] in B, 2n + 2 unknowns, L(0),

U(0), . . . , L(n+1), U(n+1), are to be determined. Due to (1.3), we reduce to only

n+ 1 unknowns, for example L(0), . . . , L(n+ 1), or some other n+ 1 equivalent

unknowns. It is still difficult to solve these n+ 1 unknowns simultaneously. For

a given value x of X, L(x) and U(x) are the only two unknowns and it is better

to solve these two at a time by making U(x)− L(x) as small as possible, which

leads to an iterative method. This method generates 1−α admissible confidence

interval in B. We call it the squeezing-one-at-a-time method. In this section, we

discuss the construction of C(X) under any order on S, and then show how to

improve any given interval in B to be admissible.

2.1. The interval construction with a special order on S

For simplicity, we describe an iterative construction of an interval in B in the

order of x = 0, 1, . . . , [n/2]. Let C∗(X) = [L∗(X), U∗(X)] be the interval gener-

ated in this subsection following Steps 1-3 described below. We determine the



1392 WEIZHEN WANG

n+1 unknowns in the order of L∗(0) and U∗(0) as a pair, then L∗(1) and U∗(1),

. . . , and then L∗([n/2]) and U∗([n/2]). For the other x−values, the confidence

limits are obtained automatically following (1.3). The interval construction based

on any order is discussed in the next subsection.

Step 1. Set L∗(0) = 0 (then U∗(n) = 1) due to (1), see Lemma 1 in Wang

(2006), and solve for U∗(0). For a given number c ∈ [0, 1], let

Lc(x) =

{
0 if x < n,

1− c if x = n,
(2.1)

and Uc(x) = 1 − Lc(n − x). Then c = Uc(0), Lc(x) meets (1.2), and Cc(X)
def
=

[Lc(X), Uc(X)] satisfies (1.3). Let

c∗ = inf D1, where D1 = {c ∈ [0, 1] : Cc(X) ∈ B}. (2.2)

To see whether Cc(X) belongs to B, compute CoverCc(p) to see that it is no less

than 1−α for all p ∈ [0, 1]. In summary, [L∗(0), U∗(0)] = [0, c∗] is determined in

this step, as well as [L∗(n), U∗(n)] = [1− c∗, 1], due to (1.3).

Lemma 1. For c∗ and D1 given in (2.2), c∗ is unique and Cc∗(X) ∈ B.

Step 2. Suppose [L∗(x), U∗(x)] is determined up to x < x0 for some x0 < n/2.

For 0 ≤ a ≤ b ≤ 1, let

La,b(x) =



L∗(x) if x < x0,

a if x0 ≤ x < n− x0,

1− b if x = n− x0,

1− U∗(n− x) if x > n− x0,

(2.3)

and Ua,b(x)=1−La,b(n−x). Then Ua,b(x0)=b and Ca,b(X)
def
= [La,b(X), Ua,b(X)]

satisfies (1.3). Consider those a and b’s if Ca,b(X) also satisfies (1.2). Pick a∗

and b∗ so that

b∗ − a∗ = inf
(a,b)∈D2

(b− a), where D2 = {(a, b) : Ca,b(X) ∈ B}. (2.4)

Then we obtain [L∗(x0), U
∗(x0)] = [a∗, b∗], as well as [L∗(n− x0), U

∗(n− x0)] =

[1− b∗, 1− a∗].

Lemma 2. For each 1 ≤ x0 < n/2, there exists a pair of (a∗, b∗) satisfying (2.4),

and (a∗, b∗) ∈ D2.

Lemma 3. For each 1 ≤ x0 < n/2, the pair (a∗, b∗) given in Lemma 2 is unique.
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Step 3. Suppose [L∗(x), U∗(x)] is determined up to x < n/2.

Step 3-1. If n is an odd number, the interval construction is complete.

Step 3-2. If n is an even number, the interval construction is complete if L∗(n/2)

is determined since U∗(n/2) = 1− L∗(n/2). For d ∈ [0, 1/2], let

Ld(x) =


L∗(x) if x < n

2 ,

d if x = n
2 ,

1− U∗(n− x) if x > n
2 ,

(2.5)

and Ud(x) = 1−Ld(n−x). Then Ud(n/2) = 1−d and Cd(X)
def
= [Ld(X), Ud(X)]

satisfies (1.3). Consider those d’s if Cd also satisfies (1.2). Let

d∗ = sup D3, where D3 = {d ∈ [0,
1

2
] : Cd(X) ∈ BB}. (2.6)

Then [L∗(n/2), U∗(n/2)] = [d∗, 1− d∗] and the interval construction is complete.

Theorem 1. An interval C∗(X) = [L∗(X), U∗(X)] generated by Steps 1−3 be-

longs to B, and is unique.

Remark 1. The iterative method squeezes undetermined intervals one at a time.

In each step, say x = x0, we pick the shortest C∗(x0) and make the other unde-

termined intervals as large as possible. Interval (2.3), for example, is the largest

interval in B that is equal to C∗(x) for x < x0 or x > n−x0 and [a, b] for x = x0.

The same holds for interval (2.1).

Remark 2. The uniqueness of C∗(X) is important, as no subjective selection is

needed.

Theorem 2. Interval C∗(X) = [L∗(X), U∗(X)] generated by Steps 1−3 is ad-

missible in B under the set inclusion criterion (1.4).

Remark 3. In interval construction, the infimum coverage probability needs to

be computed quite often. For a real number A and a function g(x), let g(A−)

denote the limit of g(x) when x approaches A from the left. Wang (2007) pointed

out that for any interval C(X) = [L(X), U(X)] in B the infimum coverage prob-

ability is one of the CoverC(L(x)−)’s for 1 ≤ x ≤ n. Therefore, in our numerical

calculation, CoverC(p) is computed at p = L(x)− δ for a small δ = 0.00000001 if

L(x) > 0, and the minimum of these quantities (at most n of them) is a precise

approximation of the infimum coverage probability of C(X).

Example 1. For X ∼ Bin(8, p), we construct a 95% admissible confidence

interval C∗(X) = [L∗(X), U∗(X)] in B.
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Step 1. Following (2.1), Cc(X) = [Lc(X), Uc(X)] has the form

x 0 1 2 3 4 5 6 7 8

Lc(x) 0 0 0 0 0 0 0 0 1− c

Uc(x) c 1 1 1 1 1 1 1 1

with one unknown c. Interval Cc has a coverage probability

CoverCc(p) = f(0; 8, p)I[0,c](p) +
7∑

i=1

f(i; 7, p) + f(8; 8, p)I[1−c,1](p).

For each given c of values 0, 0.0001,. . . , 1, following Remark 3, the infimum

coverage probability of Cc(X), achieved at p = L(8) − δ, is computed. If this

quantity is at least 0.95, then record c. Find the smallest c among those recorded,

which is equal to c∗. Here c∗ = 0.3126, and [L∗(0), U∗(0)] = [0, 0.3126] and

[L∗(8), U∗(8)] = [0.6874, 1].

Step 2. Now x0 = 1. Following (2.3), Ca,b(X) = [La,b(X), Ua,b(X)] has the form

x 0 1 2 3 4 5 6 7 8

La,b(x) 0 a a a a a a 1− b 0.6874

Ua,b(x) 0.3126 b 1− a 1− a 1− a 1− a 1− a 1− a 1

with unknowns a and b. For a ≤ 1 − a, a ∈ [0, 0.5], while for b ≥ a and

a ≤ 1 − b, b ∈ [a, 1 − a]. For each a from 0, 0.0001, . . . , 0.5 and each b from

a, a + 0.0001, . . . , 1 − a, compute coverage probabilities for Ca,b(X) at p = a −
δ, 1 − b − δ, and 0.6874 − δ. If the smallest among the three is at least 0.95,

then record the values of a, b, and b − a. Find the smallest b − a and the

corresponding a and b to be b∗ − a∗, a∗, and b∗. Here a∗ = 0.0063, b∗ = 0.6874,

[L∗(1), U∗(1)] = [0.0063, 0.6874], and [L∗(7), U∗(7)] = [0.3126, 0.9937].

Step 2’. Repeat Step 2 twice for x0 = 2 and x0 = 3 and obtain C∗(2) and C∗(6),

and C∗(3) and C∗(5).

Step 3-2. Since n = 8 is an even number, following (2.5), Cd(X) = [Ld(X),

Ud(X)] has the form

x 0 1 2 3 4 5 6 7 8

Ld(x) 0 .. .. 0.1111 d 0.2892 .. .. 0.6874

Ud(x) 0.3126 .. .. 0.7108 1− d 0.8889 .. .. 1

with unknown d. Note d ∈ [0.1111, 0.2892]. For each d from 0.1111, 0.1112, . . . ,

0.2892, compute the coverage probability for Cd(X) at p = Ld(x) − δ for x =

1, . . . , 8. If their smallest is at least 0.95, then record this value of d. Find the

smallest 1− 2d and the corresponding d to be 1− 2d∗ and d∗. Here d∗ = 0.1929,
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Table 1. 95% confidence intervals C∗ = [L∗, U∗], CP , and CI in Examples
1−3, and CBSC for p when n = 8.

x L∗(x) U∗(x) LBSC UBSC LP UP LI U I

0 0 0.3126 0 0.3491 0 0.4003 0 0.3695
1 0.0063 0.6874 0.0063 0.5000 0.0063 0.5000 0.0063 0.5000
2 0.0463 0.6874 0.0463 0.6509 0.0463 0.5997 0.0463 0.6305
3 0.1111 0.7108 0.1111 0.7108 0.1111 0.7108 0.1111 0.7108
4 0.1929 0.8071 0.1929 0.8071 0.1929 0.8071 0.1929 0.8071
5 0.2892 0.8889 0.2892 0.8889 0.2892 0.8889 0.2892 0.8889
6 0.3126 0.9537 0.3491 0.9537 0.4003 0.9537 0.3695 0.9537
7 0.3126 0.9937 0.5000 0.9937 0.5000 0.9937 0.5000 0.9937
8 0.6874 1 0.6509 1 0.5997 1 0.6305 1

and [L∗(4), U∗(4)] = [0.1929, 0.8071]. The interval construction is complete, and

interval C∗(X) is given in Table 1. This interval has the shortest possible length

at x = 0 and x = 8, but L∗(6) = L∗(7). See more discussion in Section 2.4.

2.2. The interval construction with any given order on S

We have presented an iterative interval construction for the order X =

0, 1, . . . , [n/2]. There are interval constructions based on different orders, each

resulting in an admissible interval. Thus, let {i0, . . . , i[n/2]} be a permutation of

{0, . . . , [n/2]}(denoted by Sh), and let CP (X) = [LP (X), UP (X)] be the interval

constructed following the order LP (i0), U
P (i0); L

P (i1), U
P (i1); . . . ; LP (i[n/2]),

UP (i[n/2]). Then CP (X) on the other x−values is obtained following (1.3).

Suppose CP (X) is already determined for LP (i0), U
P (i0), L

P (i1), U
P (i1),

. . . , LP (ik−1), UP (ik−1) for some integer 0 ≤ k ≤ [n/2]. Now we obtain

LP (ik) and UP (ik). For some a ≤ b, consider the largest interval CP
a,b(X) =

[LP
a,b(X), UP

a,b(X)] ∈ B satisfying

LP
a,b(x) =



LP (x) if x ∈ {i0, . . . , ik−1},

a if x = ik,

1− b if x = n− ik,

1− UP (n− x) if x ∈ n− {i0, . . . , ik−1}.

(2.7)

In fact, CP
a,b(X) is just equal to the union of all intervals in B satisfying (2.7)

and the intervals given in (2.1) and (2.3) are special cases of LP
a,b(x). The closed

form of LP
a,b(x) for the other x−values is complicated and is omitted. We give

LP
a,b(X) in the next example. Take aP and bP so that

bP − aP = inf
(a,b)∈DP

(b− a), for DP = {(a, b) : CP
a,b(X) ∈ B}. (2.8)
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Similar to Lemmas 1 and 2, we can show (aP , bP ) ∈ DP . Thus define

LP (ik) = aP and UP (ik) = bP ,

and the construction of CP (X) is complete. As in Theorems 1 and 2, CP (X)

belongs to B, is unique and admissible.

Example 2. (Example 1 continued) We construct CP (X) following the order

X = 2, 0, 1, 3, 4 for illustration.

Step 1. Following (2.7), CP
a,b(X) = [LP

a,b(X), UP
a,b(X)] has the form

x 0 1 2 3 4 5 6 7 8

LP
a,b(x) 0 0 a a a a 1− b 1− b 1− b

UP
a,b(x) b b b 1− a 1− a 1− a 1− a 1 1

with unknowns a and b. We find aP = 0.0463 and bP = 0.5997, and then

[LP (2), UP (2)] = [0.0463, 0.5997] and [LP (6), UP (6)] = [0.4003, 0.9537].

Step 2. Following (2.7), CP
0,b(X) = [LP

0,b(X), UP
0,b(X)] has the form

x 0 1 2 3 4 5 6 7 8

LP
0,b(x) 0 0 0.0463 0.0463 0.0463 0.0463 0.4003 0.4003 1−b

UP
0,b(X) b 0.5997 0.5997 0.9537 0.9537 0.9537 0.9537 1 1

with unknown b. We find bP = 0.4003, and then [LP (0), UP (0)] = [0, 0.4003]

and [LP (8), UP (8)] = [0.5997, 1].

More details of the construction are given in the Supplementary Materials.

All CP (x)’s are reported in Table 1. This interval has a short length at x = 2,

where we started construction.

2.3. Improving any existing non-admissible interval

Our interval constructions can be described as follows. Starting from the

largest and trivial 1 − α interval CT (X) = [LT (X), UT (X)] ≡ [0, 1], we squeeze

each [LT (x), UT (x)] in a predetermined order on S within class B. This approach
can be applied to squeeze any given C(X) ∈ B to yield an admissible interval.

The 1−α Clopper-Pearson interval, denoted by CCP (X) = [LCP (X), UCP (X)], is

conservative; however, it is intuitively attractive and easy to derive. We improve

CCP (X) to an admissible interval, denoted by CI(X) = [LI(X), U I(X)]. Note

that the length of CCP (x) is maximized at x = [n/2], we construct CI(X) by

squeezing each CCP (x) in the order x = [n/2], . . . , 0 in steps similar to those in

Section 2.1 but in the opposite order x = 0, . . . , [n/2], and define CI at the rest

of x−values by (1.3).
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Step 1-1(I). If n is an odd number, go to Step 2(I).

Step 1-2(I). If n is an even number, U I(n/2) = 1 − LI(n/2). For d ∈ [0, 1/2],
let

LI
d(x) =

{
LCP (x) if x ̸= n

2 ,

d if x = n
2 ,

(2.9)

and U I
d (x) = 1− LI

d(x). Then U I
d (n/2) = 1− d, and CI

d(X)
def
= [LI

d(X), U I
d (X)]

satisfies (1.3). Consider those d’s for which CI
d also satisfies (1.2). Let

dI = sup DI
1, where DI

1 = {d ∈ [0,
1

2
] : CI

d(X) ∈ BB}. (2.10)

Take [LI(n/2), U I(n/2)] = [dI , 1− dI ], a subset of [LCP (n/2), UCP (n/2)].

Step 2(I). For any 0 < x0 < n/2, suppose CI(x) has been defined for x0 <
x ≤ [n/2], so LI(x) is defined for x0 < x < n − x0 due to (1.3). If n is odd
and x0 = [n/2], then CI has not been defined for any x yet. For two numbers
0 ≤ a ≤ b ≤ 1, let

LI
a,b(x) =



LCP (x) if x < x0 or x > n− x0,

a if x = x0,

LI(x) if x0 < x < n− x0,

1− b if x = n− x0,

(2.11)

and U I
a,b(x) = 1 − LI

a,b(n − x). Then U I
a,b(x0) = b and CI

a,b(X)
def
= [LI

a,b(X),

U I
a,b(X)] satisfies (1.3). Consider those a and b’s for which CI

a,b(X) satisfies

(1.2). Pick aI and bI so that

bI − aI = inf
(a,b)∈DI

2

(b− a), for DI
2 = {(a, b) : CI

a,b(X) ∈ B}. (2.12)

Then take [LI(x0), U
I(x0)] = [aI , bI ], which is a subset of [LCP (x0), U

CP (x0)],
as well as [LI(n− x0), U

I(n− x0)] = [1− bI , 1− aI ],

Step 3(I). Now we construct [LI(0), U I(0)] = [0, U I(0)] (and [LI(n), U I(n)] =
[1− U I(0), 1]). For c ∈ [0, 1], let

LI
c(x) =


LCP (0) = 0 if x = 0,

LI(x) if 0 < x < n,

1− c if x = n,

(2.13)

and U I
c (x) = 1 − LI

c(n − x). Then c = U I
c (0) and CI

c (X)
def
= [LI

c(X), U I
c (X)]

satisfies (1.3). Consider those c’s for which CI
c (X) satisfying (1.2). Let

cI = inf DI
3, where DI

3 = {c ∈ [0, 1] : CI
c (X) ∈ B}. (2.14)
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Take [LI(0), U I(0)] = [0, cI ] and [LI(n), U I(n)] = [1 − cI , 1], due to (1.3). The

construction of CI(X) is complete.

Interval CI(X) is a subset of CCP (X), and is unique and admissible. The

proof is similar to those of Theorems 1 and 2, and is omitted.

Example 3. (Example 1 continued) Here we improve the 95% Clopper-Pearson

interval CCP (X) = [LCP (X), UCP (X)] given as

x 0 1 2 3 4 5 6 7 8

LCP (x) 0 0.0032 0.0319 0.0852 0.1570 0.2449 0.3491 0.4735 0.6305

UCP (x) 0.3695 0.5265 0.6509 0.7551 0.8430 0.9148 0.9681 0.9968 1

Shrinking CCP (X) in the order x = 4, 3, 2, 1, 0, CI(X) is computed, and reported

in Table 1. It has a smallest total length among the four reported intervals.

2.4. Comparison

We have C∗, CP , CI , and a competitor CBSC . All four are admissible and

of level 1− α. We take, for interval C(X), LengthC(X) = U(X)− L(X).

Figure 1 shows the expected length Ep(LengthC) of the four intervals when

n = 8 and 1− α = 0.95. Similar figures are expected for other sample sizes and

levels. The intervals C∗ (too wide at x = 1) and CP (too wide at x = 0) are not

for future competition, while CP (X), including C∗, has the shortest length at

the starting point of interval construction among all intervals in B. However, a

locally best interval does not necessarily imply an overall good performance. For

instance, C∗ in Example 1 has the shortest length at x = 0 but is wide at x = 1.

The interval CI(X), derived by squeezing CCP , seems a reasonable choice–being

a subset of CCP , CI can never be too wide at any sample point, and should have

an overall good performance.

Our numerical study supports this claim. To make comparisons fair, interval

limits are accurate to 4 digits after the decimal point and infimum coverage is

as close as possible to, and strictly no less than, the nominal level. A slight

modification is then needed for CBSC from StatXact 9. For example, in the

setting of Figure 1, the lower limit of CBSC at x = 2 is 0.04639 by StatXact 9,

which yields an infimum coverage probability 0.9499986, a little less than 0.95.

If we change it to 0.0463 (the best fit up to 4 decimal accuracy to have a correct

coverage), there results an infimum coverage probability of 0.9500012. Figure 2

displays the expected length of the 95% intervals CI and CBSC for n = 20 and

n = 30. As expected, the expected length of CI is smaller for p close to 0.5 and
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Figure 1. Expected length of the 95% confidence intervals C∗(dot),
CBSC(dash), CP (dash-circle) and CI(solid), in Examples 1, 2, and 3 when
n = 8.

Figure 2. Expected length of the 95% confidence intervals CBSC(dash) and
CI(solid), when n = 20 and n = 30.

is larger for p close to 0 or 1 because we start squeezing CCP at x = [n/2]. The

average expected length (the area under the expected length curve),

AELength =

∫ 1

0
EpLengthC(X)dp (2.15)

is the same, at least numerically, for the two intervals, as well as the total length:

T length =
∑n

x=0 LengthC(x). However, CI has a smaller “standard deviation”

of expected length,

SDElength =
(∫ 1

0
[Ep(LengthC(X))−AElength]2dp

)1/2
,
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Table 2. Comparison of two intervals CI and CBSC at different levels and
sample sizes.

n Tlength AElength SDElength Tlength AElength SDElength

99% CI 99% CBSC

8 5.6936 0.6326222 0.080732 5.6936 0.6326222 0.080732
20 9.2126 0.4386952 0.0808369 9.2126 0.4386952 0.08865476
30 11.2358 0.3624452 0.07634151 11.236 0.3624516 0.08147061

95% CI 95% CBSC

8 4.7084 0.5231556 0.065211 4.7084 0.5231556 0.071989
20 7.242 0.3448571 0.06644264 7.2424 0.3448762 0.07733478
30 8.7738 0.2830258 0.06307469 8.7744 0.2830452 0.07058812

90% CI 90% CBSC

8 4.064 0.4515556 0.05779491 4.064 0.4515556 0.07201108
20 6.2188 0.2961333 0.06433938 6.2154 0.2959714 0.06943668
30 7.4956 0.2417935 0.05295100 7.49566 0.2417955 0.05891413

than CBSC , and is then more stable. See Table 2 for more details.

As pointed out by a referee, when a given prior distribution π(p) about p

exists, an average probability mass function

h(x) =

∫ 1

0
f(x;n, p)π(p)dp

with respect to this prior can be computed for any x ∈ S. Then an order on

S is obtained by ranking h(x) from the largest to the smallest, and we squeeze

interval CCP according to this order. Instead of comparing AELength in (2.15),

we compare the weighted average expected length,

WAELength =

∫ 1

0
EpLengthC(X)π(p)dp. (2.16)

The resultant interval Cπ would have a smaller WAELength than CBSC . For

example, when π(p) is a symmetric beta distribution beta(p;α, β) with α = β > 1,

Cπ is equal to CI because the order by h(x) here is the same as the order under

which CI is constructed. Therefore, Cπ has a shorter WAELength since such

beta distributions put more weight on those p’s close to 0.5, and CI has a shorter

EpLength at these p’s, as shown in Figures 1 and 2. Table 3 reportsWAELength

for two intervals.

Blyth and Still (1983, p.110) proposed five complicated rules on the selection

of test acceptance regions for interval construction, and these rules cannot be met

simultaneously. For example, their rules a) (minimize the difference between two

tail probabilities) and d) (make the slope of its power function as close to zero
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Table 3. A comparison of WAELength for the intervals CI and CBSC at
different levels and sample sizes, using beta distributions.

n beta(p;2,2) beta(p;5,5) beta(p;10,10) beta(p;2,2) beta(p;5,5) beta(p;10,10)

99% CI 99% CBSC

8 0.6687248 0.6980417 0.7095757 0.6687248 0.6980417 0.7095757
20 0.4746483 0.5008912 0.5101356 0.4781796 0.507495 0.518108
30 0.3963984 0.421501 0.4308902 0.3988055 0.426874 0.4377858

95% CI 95% CBSC

8 0.5522812 0.5748420 0.5832294 0.5552485 0.5792979 0.5878416
20 0.3743549 0.3958376 0.4067811 0.3794085 0.403898 0.4178052
30 0.3109593 0.3306100 0.3373951 0.3145195 0.3387862 0.3483518

90% CI 90% CBSC

8 0.4773721 0.4975143 0.5052138 0.4837479 0.50938 0.5190704
20 0.3247083 0.3452646 0.3522806 0.3269854 0.3511658 0.3603209
30 0.2651966 0.2814203 0.2868806 0.2680767 0.288445 0.2964686

as possible at the null hypothesis value p0) cannot be achieved at the same time

since the binomial distribution is not symmetric for any p ̸= 0.5. Major statistical

softwares, including SAS and Minitab, do not provide the Blyth-Still interval.

The interval CI is obtained following two well-defined steps: construct the

Clopper-Pearson interval CCP ; squeeze CCP (x)’s in the order x = [n/2], . . . , 0,

and is unique. Figure 3 provides a comparison between CCP and CI when n = 20

and 1−α = 0.95. The improvement of CI over CCP is substantial: the infimum

coverage probabilities are 0.95001 and 0.95797, respectively, the total length of

CI is 94.20876% of that for CCP , and a uniformly shorter expected length of CI

is shown in Figure 3 (b). Most importantly, CI can be computed quickly using

R-code available from the author. For example, when n = 200, all 201 CI(x)’s

are calculated in 3.8 minutes on a HP laptop Intel(R) Core(TM) i5-2520M CPU

@2.50GHz RAM 8GB. A faster computation is expected if R-code is written

more efficiently.

If the smallest confidence interval exists in B, then C∗, CP , CI , CBSC and

any admissible interval are identical and are equal to the smallest interval. Oth-

erwise, the minimum complete class can be obtained by collecting all improved

intervals as shown in Section 2.3. Casella (1986) proposed a method that also

refines any interval C(X) in B. His method lifts the lower limits of the n + 1

intervals of C(X) one at a time in the order x = n, n − 1, . . . , 0, while we min-

imize the length of these intervals in any order on S. Our method can produce

an interval that has a good performance at any predetermined sample point, and

is more flexible.
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Figure 3. A comparison of the intervals CCP and CI , their coverage proba-
bilities and expected lengths, when n = 20 and 1 − α = 0.95. In (a), CCP

(circle), CI (solid circle); in (b), the expected lengths of CCP (dot) and CI

(solid).

3. Interval Construction on a Discrete Sample Space

The proposed iterative interval construction can also be generalized to the

case of a discrete sample space with a single parameter distribution family. In

fact, the construction may be simpler than the case of a binomial distribution

because condition (1.3) is not needed.

Suppose a discrete statistic X is observed with a cdf F (x; θ), for a parameter

θ ∈ [A,B] with A finite and B finite or infinite. Let X take at most countable

values {xi}ni=1 with xi < xi+1. Let pG(x; θ) be the pmf of X, and assume the dis-

tribution family F (x; θ) is stochastically nondecreasing in θ. This covers Poisson,

geometric, and negative binomial distributions. We search for admissible inter-
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vals in a class BG of 1 − α confidence intervals of form C(X) = [L(X), U(X)]

satisfying

L(xi) ≤ L(xi+1), U(xi) ≤ U(xi+1), ∀ i. (3.1)

We provide an interval construction in the order X = x1, x2, . . . , xn, though

one can construct the interval in any predetermined order. Let [LG(X), UG(X)]

denote the interval to be constructed.

Step 1-G. Set LG(x1) = A and solve for UG(x1). Consider an interval CG
c (X) =

[LG
c (X), UG

c (X)] with

[LG
c (X), UG

c (X)] =

{
[A, c] if X = x1,

[A,B] otherwise,
(3.2)

for some constant c ∈ [A,B]. Take c = cG so that

cG = inf DG
1 , where DG

1 = {c : CG
c (X) ∈ BG}. (3.3)

Then [LG(x1), U
G(x1)] = [A, c∗].

Step 2-G. Suppose [LG(x), UG(x)] is determined up to x < xi for some i ≥ 2.

Consider an interval Ca,b,xi
(X) = [La,b(X), Ua,b(X)] with

[La,b(x), Ua,b(X)] =


[LG(x), UG(x)] if x < xi,

[a, b] if x = xi,

[a,B] otherwise,

(3.4)

for some a and b. Pick aGi and bGi so that

bGi − aGi = inf
(a,b)∈Dxi

2;G

(b− a), where Dxi
2;G = {(a, b) : Ca,b,xi

(X) ∈ BG}. (3.5)

Then [LG(xi), U
G(xi)] = [aGi , b

G
i ]. By induction, LG(xi) is assigned a value for

all xi since X is discrete, as well as UG(xi). The construction is complete.

Lemma 4. For any 1 − α > 0 and for any confidence interval C(X) = [L(X),

U(X)] ∈ BG, L(xi+1) ≤ U(xi) for any consecutive values xi and xi+1 of X.

Theorem 3. For 1 − α > 0, the interval CG(X) = [LG(X), UG(X)] generated

by Steps 1-G and 2-G is in BG.

Since we squeeze intervals one at a time, the interval CG(X) is admissible

and is locally best at X = x1. Each pair (aGi , b
G
i ) is unique. The proofs here are

similar to those in Section 2, and are omitted.
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One can start interval construction at any point x = xj and follow any

predetermined order on the xi’s modifying Steps 1-G and 2-G. The resultant

intervals are admissible, and typically different. If so, the smallest confidence

interval does not exist. If xj is the first element in the permutation, then

CG(xj)
denoted
= [LG(xj), U

G(xj)] not only has the minimum length, but is a subset

of C(xj) for any interval C(X) ∈ BG. Here

LG(xj) =

{
sup{θ : F (xj−1; θ) ≥ 1− α} if F (xj−1;A) ≥ 1− α,

A otherwise,
(3.6)

UG(xj) =

{
inf{θ : F (xj ; θ) ≤ α} if F (xj ;B) ≤ α,

B otherwise.
(3.7)

That CG(xj) ⊂ C(xj) follows from two facts:

(a) LG(xj) and UG(xj) are the largest lower confidence limit and the smallest

upper confidence limit, respectively, among all C(X)’s in BG at X = xj . See

Bol’shev (1965).

(b) The interval [Lj(X), Uj(X)] belongs to BG, where

Lj(x) = AI[x1,xj−1](x) + LG(xj)I[xj ,xn](x),

Uj(x) = UG(xj)I[x1,xj ](x) +BI[xj+1,xn](x),

for any x.

Example 4. For a Poisson random variable X with mean λ ∈ [0,+∞) = [A,B),

estimate λ with 95% confidence level when x = 2.

If we use an interval constructed starting at x = 2, then

[LG(2), UG(2)] = [0.3553, 6.2957] (3.8)

follows from (3.6) and (3.7), and no other interval values are needed.

If we use an interval, say [LG
0 (X), UG

0 (X)], constructed in the order x =

0, 1, 2, . . ., then the interval construction stops at x = 2.

To construct the interval at x = 0, following Step 1-G or (3.6) and (3.7), we

obtain

[LG
0 (0), U

G
0 (0)] = [0, 2.9958].

To construct the interval at x = 1, following Step 2-G, interval Ca,b,1(X) has

the form

x 0 1 2 · · · n · · ·
La,b,1(x) 0 a a a a a

Ua,b,1(x) 2.9958 b +∞ +∞ +∞ +∞
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with unknowns a ≤ 2.9958 ≤ b. Compute the coverage probability function for

this interval for λ ≥ 0. If the smallest is at least 0.95, then record the values of

a and b. Find the smallest b− a, and the corresponding a and b to be LG
0 (1) and

UG
0 (1), respectively. Here [LG

0 (1), U
G
0 (1)] = [0.0512, 4.7439].

To construct the interval at x = 2, following (3.4) again, we obtain [LG
0 (2),

UG
0 (2)] = [0.3553, 6.2958], which happens to be the same as (3.8).

Besides obtaining the locally best intervals CG(X), we can also refine any

given interval in BG. For example, the Clopper-Pearson type of interval for θ,

can be improved in a way similar to that in Section 2.3. Again, the resultant

confidence interval depends on the order of the interval construction.

4. Summary

In this article, an iterative method is provided to construct two-sided 1− α

confidence intervals for a single proportion p, and is extended to the case of a

discrete sample space with a single parameter distribution. The resultant interval

is unique and admissible under the criterion of set inclusion, and depends on the

order of interval construction. This method can be used to generate the locally

best intervals or to refine any given 1−α interval to be admissible. Our numerical

study shows that CI proposed in Section 2.3 has the same accuracy (confidence

level) and the same precision (average expected length) as the Blyth-Still-Casella

interval, but is more stable and easier to implement. It is recommended for

statistical practice.
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Appendix: Proofs

Proof of Lemma 1. It is trivial that D1 is not empty if notice c = 1 belongs

in D1, so c∗ is unique. To show Cc∗(X) ∈ B, i.e., c∗ ∈ D1, let {ci}+∞
i=1 be a

nonincreasing sequence in D1 with a limit c∗. Then for each fixed p and the

indicator functions of the confidence intervals Cci(X) and Cc∗(X), we have

ICc∗ (X)(p) = lim
i→+∞

ICci (X)(p)

for each value of X. Thus

CoverCc∗ (p)=Ep[ICc∗ (X)(p)]= lim
i→+∞

Ep[ICci (X)(p)]= lim
i→+∞

CoverCci
(p)≥1−α,
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where the second equality is due to the Dominated Convergence Theorem. This

implies c∗ ∈ D1.

Proof of Lemma 2. First consider the case of x0 = 1.

For the existence of a∗ and b∗, first note Cc∗(X) ∈ B due to Lemma 1 and

C0,1(X) = Cc∗(X), then (a, b) = (0, 1) ∈ D2. Therefore, D2 is not empty. Let

{(ai, bi)}+∞
i=1 ⊂ D2 satisfying limi→+∞(bi − ai) = inf(a,b)∈D2

(b− a). Since bi and

ai are both bounded, there exists a subsequence {(aij , bij )}+∞
j=1 so that both the

limits of aij and bij exist and both of subsequences are monotone in j. Then let

b∗ = lim
j→+∞

bij and a∗ = lim
j→+∞

aij .

W.l.o.g., assume,

b∗ = lim
i→+∞

bi and a∗ = lim
i→+∞

ai.

To show (a∗, b∗) ∈ D2, there are four possibilities for the monotonicity of ai
and bi.

(1) ai nondecreasing and bi nonincreasing. Then

ICa∗,b∗ (X)(p) = lim
i→+∞

ICai,bi
(X)(p)

for each value of X and each p ∈ [0, 1], and

CoverCa∗,b∗ (p) = lim
i→+∞

Ep[ICai,bi
(X)(p)] = lim

i→+∞
CoverCai,bi

(p) ≥ 1− α,

where the first equality is due to the Dominated Convergence Theorem. This

implies (a∗, b∗) ∈ D2.

(2) ai nondecreasing and bi nondecreasing. For any p ̸= b∗,

ICa∗,b∗ (X)(p) = lim
i→+∞

ICai,bi
(X)(p)

for each value of X and each p ∈ [0, 1], and for p = b∗,

ICa∗,b∗ (X)(p) ≥ ICai,bi
(X)(p)

for each value of X, then

CoverCa∗,b∗ (p) ≥ limi→+∞CoverCai,bi
(p) ≥ 1− α,

This implies (a∗, b∗) ∈ D2.

(3) ai nonincreasing and bi nonincreasing. The proof is similar to case (2).

(4) ai nonincreasing and bi increasing or ai decreasing and bi nondecreasing. This

case is impossible because bi − ai ≥ b∗ − a∗.
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As a summary, (a∗, b∗) ∈ D2 for x0 = 1. Since (a∗, b∗) ∈ D2 for x0 = 1,

then D2 is not empty for x0 = 2, and the interval construction does not stop at

x0 = 1.

Secondly, for the case of x0 > 1 but x0 < n/2, the proof is similar to the

case of x0 = 1 and is omitted.

Proof of Lemma 3. Suppose the claim is not true. Let

xs = min{x0 : (a∗, b∗) is not uniquely determined for the given x0}.

Then xs exists and xs > 0 due to Lemma 1. Let (a∗s, b
∗
s) and (a′s, b

′
s) be two dif-

ferent pairs satisfying (2.4) for x0 = xs and a∗s < a′s(then b∗s < b′s). Let Cover∗s(p)

and Cover′s(p) be the coverage probability functions for intervals Ca∗s ,b
∗
s
(X) and

Ca′s,b
′
s
(X), respectively. So they both are no less than 1 − α due to Lemma 2.

There are two cases for b∗s − a∗s: = 0 or > 0.

If b∗s − a∗s = 0. Claim U∗(xs − 1) = b∗s. Suppose not, then U∗(xs − 1) < b∗s.

For a p0 ∈ (U∗(xs − 1), a∗s), then p0 ̸∈ Ca∗s ,b
∗
s
(x) for any x ∈ S. Therefore,

Cover∗s(p0) = 0,

a contradiction with the fact that Ca∗s ,b
∗
s
(X) is of level 1−α. Thus U∗(xs−1) = b∗s.

On the other hand, since b′s−a′s = b∗s−a∗s = 0, the same argument can be applied

on Ca′,b′(X). Then U∗(xs−1) = b′s as well. Note b
∗
s < b′s, hence, U

∗(xs−1) is not

uniquely determined, which contradicts with the definition of xs. So b∗s −a∗s > 0.

For a number a ∈ (a∗s,min{a′, b∗s}), consider a confidence interval Ca,b∗s (X).

i.e.,

La,b∗s (x) =



L∗(x) if x < xs,

a if xs ≤ x < n− xs,

1− b∗s if x = n− xs,

1− U∗(n− x) if x > n− xs.

(A.1)

It is clear that

Ca∗s ,b
∗
s
(x) = Ca,b∗s (x) = Ca′s,b

′
s
(x), for x < xs and x > n− xs. (A.2)

We will show Ca,b∗s (X) ∈ B below. Since b∗s − a < b∗s − a∗s, this contradicts with

the fact that b∗s − a∗s is the infimum of D2.

To show Ca,b∗s (X) ∈ B, we only need to proof CoverCa,b∗s
(p) ≥ 1 − α for all

p ∈ [0, 1]. For any p ̸∈ [a∗s, a)∪ (1−a, 1−a∗s], CoverCa,b∗s
(p) = Cover∗s(p) ≥ 1−α

because

{x : p ∈ Ca,b∗s (x)} = {x : p ∈ Ca∗s ,b
∗
s
(x)}
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due to the first equality of (A.2). For any p ∈ [a∗s, a) ∪ (1− a, 1− a∗s], since

{x : p ∈ Ca,b∗s (x)} = {x : p ∈ Ca′s,b
′
s
(x)}

due to the second equality of (A.2), we have CoverCa,b∗s
(p) = Cover′s(p) ≥ 1−α.

Therefore, Ca,b∗s (X) ∈ B, and a contradiction is constructed.

Proof of Theorem 1. If n is an odd number, then the interval construction is

actually complete in Step 2, and the theorem follows Lemmas 2 and 3.

If n is an even number, i.e., the interval construction on [L∗(x), U∗(x)] for

x = [n/2] follows Step 3-2. The uniqueness of d∗ defined in (2.6) is trivial, and

the proof of Cd∗(X) belonging to B is similar to Lemma 1.

Proof of Theorem 2. For any interval C(X) = [L(X), U(X)] ∈ B satisfying

C(x) ⊂ C∗(x) for all x ∈ S, suppose C(X) ̸= C∗(X). Let

x0 = min{x : C(x) ̸= C∗(x)}.

So x0 ≤ n/2, and

U(x0)− L(x0) < U∗(x0)− L∗(x0). (A.3)

If n is an even number and 1 ≤ x0 < n/2 or if n is an odd number and

1 ≤ x0, let C
′(X) = [L′(X), U ′(X)] with

L′(x) =



L(x) = L∗(x) if x < x0,

L(x0) if x0 ≤ x < n− x0,

1− U(x0) if x = n− x0,

1− U(n− x) = 1− U∗(n− x) if x > n− x0,

(A.4)

which always contains C(X). Therefore, C ′(X) = Ca,b(X) with a = L(x0) and

b = U(x0), and this pair (a, b) belongs to D2 given in (2.4) for x = x0. Hence

U(x0)− L(x0) ≥ U∗(x0)− L∗(x0) due to (2.4), which contradicts with (A.3).

If x0 = 0 or if n is an even number and x0 = n/2, we introduce an interval

C ′(X) as in (2.1) or (2.5), respectively, and construct a contradiction for (A.3),

and the proof is similar to the previous case and omitted.

Proof of Lemma 4. Suppose the claim is not true, i.e., there exist two consec-

utive points xi0 and xi0+1 with L(xi0+1) > U(xi0). Consider the coverage prob-

ability of this interval at any value θ0 ∈ (U(xi0), L(xi0+1)). Since U(x) ≤ U(xi0)

for all x ≤ xi0 and L(x) ≥ L(xi0+1) for any x ≥ xi0+1, θ0 does not belongs to

C(X) for any value of X. Thus

CoverC(θ0) = Eθ0IC(X)(θ0) = 0,
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a contradiction with C(X) of being level 1− α.

Proof of Theorem 3. If CaGi ,bGi ,xi
(X) ∈ BG for any i, note, for each θ ∈ [A,B],

the indicator function IC
aG
i

,bG
i

,xi
(θ) is nonincreasing and converging to ICG(θ) as

i increases to n(it may be +∞), then,

CoverCG(θ) = lim
i→n

CoverC
aG
i

,bG
i

,xi
(θ) ≥ 1− α,

where the first equality is due to Fatou’s Lemma. The theorem is established.

Now we prove CaGi ,bGi ,xi
(X) ∈ BG for any i.

If [A,B] is finite, then the proof of CaGi ,bGi ,xi
(X) ∈ BG is the same as that of

Lemmas 1 and 2. So we focus on the case of B = +∞.

Let {cj}+∞
j=1 be a nonincreasing sequence in DG

1 with a limit cG. Then, for

each fixed θ, we have

IC
cG;G

(x)(θ) = lim
j→+∞

ICcj ;G
(x)(θ)

for each value x of X. Thus

CoverC
cG;G

(θ) = lim
j→+∞

Eθ[ICcj ;G
(X)(θ)] = lim

j→+∞
CoverCcj ;G

(θ) ≥ 1− α,

where the first equality is due to the Dominated Convergence Theorem. This

implies cG ∈ DG
1 .

So far we have shown CcG;G(X) ∈ BG. Therefore, D
x2
2;G is not empty because

CA,B,x2(X) belongs to BG, which is due to the facts that CA,B,x2(X) = CcG;G(X)

and CcG;G(X) ∈ BG.

If inf(a,b)∈Dx2
2;G

(b − a) = +∞, then bG2 = +∞ = B, Dx2
2;G = {(a,+∞) : a ≥

A,Ca,B,x2(X) ∈ BG} and aG2 = sup{a ≥ A : Ca,B,x2(X) ∈ BG}. Repeat the proof
in the paragraph before the last paragraph on a nondecreasing sequence {aj}+∞

j=1

in Dx2
2;G having a limit aG2 , and conclude (aG2 , b

G
2 ) = (a∗2,+∞) ∈ Dx2

2;G.

If inf(a,b)∈Dx2
2;G

(b − a) < +∞, as in Lemma 2, let {aj}+∞
j=1 and {bj}+∞

j=1

be the monotone sequences so that (aj , bj) ∈ Dx2
2;G and limj→+∞(bj − aj) =

inf(a,b)∈Dx2
2;G

(b − a). By Lemma 4, {aj}+∞
j=1 is bounded by cG, then {bj}+∞

j=1 is

also bounded. Repeat the proof of Lemma 2 and conclude (aG2 , b
G
2 ) ∈ Dx2

2;G,

aG2 = limj→+∞ aj and bG2 = limj→+∞ bj .

Therefore, we have shown that CaG2 ,bG2 ,x2
(X) ∈ BG.

Repeat the last four paragraphs, we can show that CaGi ,bGi ,xi
(X) ∈ BG by

induction on i. Therefore, CaGi ,bGi ,xi
(X) ∈ BG for any i ≥ 2. The proof is

complete.
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