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Abstract: In many regression problems, the relations between the covariates and

the response may be nonlinear. Motivated by the application of reconstructing

a gene regulatory network, we consider a sparse high-dimensional additive model

with the additive components being some known nonlinear functions with unknown

parameters. To identify the subset of important covariates, we propose a method

for simultaneous variable selection and parameter estimation by iteratively combin-

ing a large-scale variable screening (the nonlinear independence screening, NLIS)

and a moderate-scale model selection (the nonnegative garrote, NNG) for the non-

linear additive regressions. We have shown that the NLIS procedure possesses the

sure screening property and is able to handle problems with non-polynomial di-

mensionality; for finite dimension problems, the NNG for the nonlinear additive

regressions has selection consistency for the unimportant covariates and estimation

consistency for the parameter estimates of the important covariates. The proposed

method is applied to simulated data and to real data for identifying gene regulations

to illustrate its numerical performance.
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sions, nonnegative garrote, sigmoid function, sure screening.

1. Introduction

With the rapid advancement of modern technologies, high-dimensional data

now arise frequently in such areas as microarrays, RNA-seq, proteomics, biomed-

ical imaging, signal processing, and finance. In high-dimensional statistical mod-

eling, it is a fundamental problem to identify important explanatory variables.

For linear regression models, many penalization methods have been proposed to

conduct variable selection and estimation, and much effort has gone into their

statistical properties in high-dimensional settings. These methods include bridge

regression (Frank and Friedman (1993); Huang, Horowitz, and Ma (2008)), least

absolute shrinkage and selection operator or Lasso (Tibshirani (1996); Zhao and

Yu (2006); van de Geer (2008); Zhang and Huang (2008)), the nonnegative gar-

rote (Breiman (1995); Yuan and Lin (2007)), the smoothly clipped absolute devi-
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ation (SCAD) penalty (Fan and Li (2001); Fan and Peng (2004); Kim, Choi, and

Oh (2008)), the adaptive Lasso (Zou (2006)), and the Dantzig selector (Candes

and Tao (2007)).

In many applications, there is little prior information to justify the assump-

tion that the effects of covariates on the response take a linear form. A widely

adopted approach to address nonlinearity is to extend the linear regression to

a nonparametric additive model. The nonlinear effect of a covariate is mod-

eled through a nonparametric function that is usually approximated by a linear

combination of some basis functions. The selection of important variables then

corresponds to the selection of groups of basis functions. Methods for selecting

grouped variables have been studied in Antoniadis and Fan (2001) and Yuan and

Lin (2006). Lin and Zhang (2006) proposed the component selection and smooth-

ing operator (COSSO) method for model selection in smoothing spline ANOVA

with a fixed number of covariates. Recently, Ravikumar et al. (2009), Meier,

Geer, and Bühlmann (2009), and Huang, Horowitz, and Wei (2010) considered

variable selection in high-dimensional nonparametric additive models where the

number of additive components is larger than the sample size.

Nonparametric additive models are flexible enough to account for a variety

of nonlinear relationships, and are essentially linear once the nonparametric com-

ponents are expressed as linear combinations of basis functions. Consequently,

computation is relatively easy. Still alternative nonlinear models with known

functional forms are necessary for some applications. In particular, a given non-

linear model can be more interpretable, and it avoids the selection of nonpara-

metric smoothing parameters such as the number of bases, whose impact on

variable selection has not been well understood. We focus on exploring variable

selection for nonlinear additive models.

Our work is motivated by the application of reconstructing a gene regula-

tory network (GRN), in which the regulatory function of each gene is a sigmoid

function. The sigmoid function model for describing a GRN has been discussed

by Mestl, Plahte, and Omholt (1995) and Chen et al. (2004), among others. A

simple sigmoid function is

f(x) =
1

1 + e−αx
. (1.1)

It is usually used in modeling nonlinear systems that exhibit “saturation”, the

parameter α > 0 indicating the transition rate. Since in biological systems it

is common that most nodes are only directly connected to a small number of

other nodes (Jeong et al. (2000)), it is often assumed that the GRN is a sparse

network. The identification of a GRN then requires the selection of the important

regulators for each target gene using variable selection techniques.
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We consider the high-dimensional nonlinear additive model

Y = β0 +

p∑
j=1

βjfj(Xj ,αj) + ϵ, (1.2)

where Y is the response variable, X = (X1, . . . , Xp)
T is the vector of covariates,

f(X,α) = {f1(X1,α1), . . . , fp(Xp,αp)}T are known nonlinear functions, and ϵ is

the random error term with mean 0 and variance 0 < σ2 < ∞. The parameters

α = (αT
1 , . . . ,α

T
p )

T usually control the shape of f . We let the dimension p

of the covariates increase with the sample size n, even larger than n, and the

coefficient vector β = (β1, . . . , βp)
T is to be sparse in the sense that most of its

elements are zeros. Given the i.i.d. observed data {(xi, yi), i = 1, . . . , n} with

xi = (xi1, xi2..., xip)
T , we are interested in identifying the subset of important

covariates M∗ = {1 ≤ j ≤ p : βj ̸= 0} and also in estimating the parameters

(β0, βj ,αj), j ∈ M∗.

Compared with the linear and generalized linear models, there is little statis-

tical research on statistical inference, and especially variable selection, for non-

linear regression and generalized nonlinear models. Jennrich (1969), Malinvaud

(1970), and Wu (1981) proposed nonlinear least squares (NLS) estimation for

nonlinear regression models and derived their asymptotic properties. A good

review can be found in Seber and Wild (2003). Wei (1998), Kosmidis and Firth

(2009), and Biedermann and Woods (2011) studied likelihood-based estimation

and statistical inference for generalized nonlinear models. Xue, Miao, and Wu

(2010) considered NLS estimation for nonlinear ordinary differential equation

models with measurement errors and established their large sample theories.

Jiang, Jiang, and Song (2011) proposed a weighted composite quantile regression

(WCQR) estimation and studied the model selection with the adaptive LASSO

and SCAD penalties for nonlinear models with a diverging number of parameters.

For given estimates α̂j , (1.2) can be treated as a linear regression model

and variable selection methods developed for linear regressions can be then ap-

plied to estimate βj . We propose to use the nonnegative garrote (NNG), which

requires a consistent initial estimate. Intuitively, the variable selection proce-

dure works better if the initial estimates are close to the true values and, for a

number of covariates, this is difficult. Here we adopt the idea of independence

screening introduced by Fan and Lv (2008). The sure independence screening

(SIS) method performs efficient dimension reduction via marginal correlation

learning for ultra-high dimensional feature selection. It has been shown that,

with probability tending to 1, the independence screening technique retains all

of the important features in the model. The SIS was later extended to high-

dimensional generalized linear models (Fan and Song (2010)) and nonparametric
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additive models (Fan, Feng, and Song (2011)). The idea of using marginal in-

formation to deal with high dimensionality was also adopted in other works.

Hall, Titterington, and Xue (2009) considered a marginal utility derived from

an empirical likelihood point of view. Hall and Miller (2009) proposed a gen-

eralized correlation ranking that allows nonlinear relationships. More recently,

Wang (2012) studied sure independence screening using a factor profiling ap-

proach; Xue and Zou (2011) considered sure independence screening for sparse

signal recovery; Gorst-Rasmussen and Scheike (2012) investigated independent

screening for single-index hazard rate models with right censored data; see Zhu et

al. (2012) and Li, Zhong, and Zhu (2012) for recent developments of model-free

approaches for feature screening.

In this paper, we propose a nonlinear independence screening method based

on the residual sum of squares of the marginal modeling, and establish its sure

screening property for model (1.2). We fit p marginal nonlinear regressions of the

response Y against each covariate Xj separately, and rank their importance to

the joint model according to the residual sum of squares of the marginal models.

The covariates whose residual sum of squares are smaller than a threshold are

selected and then a more refined variable selection technique such as the nonneg-

ative garrote can be applied to the nonlinear additive model conditional on these

selected covariates. This procedure can significantly reduce the dimension of the

covariates and, more importantly, its sure screening property ensures that all the

important covariates are retained with probability tending to 1. Our method

is a non-trivial extension of Fan and Lv (2008) and Fan and Song (2010). For

the nonlinear model (1.2), the minimum distinguishable signal of the marginal

screening is closely related to the stochastic and numerical errors in the opti-

mization of the nonlinear parameters. In addition, the objective function derived

from the nonlinear model often has multiple local minima, making the estima-

tion and marginal screening more challenging. We extend the sure independent

screening approach from linear models to nonlinear models, making some local

assumptions, such as the local convexity. We show in Section 3 that our nonlin-

ear independence screening approach can handle problems with non-polynomial

or ultra-high dimensionality.

The remainder of the paper is organized as follows. Section 2 describes the

nonnegative garrote for variable selection in nonlinear additive models with finite

predictors and its asymptotic properties. We elaborate on independence screen-

ing for the nonlinear additive models with ultra-high dimensional covariates and

establish its sure independence screening property in Section 3. We present the

results of simulation studies in Section 4 and provide an illustrative application

in Section 5. Section 6 includes concluding remarks and some discussion. Proofs

of the asymptotic results in Sections 2 and 3 can be found in the web-appendix.



SPARSE HIGH-DIMENSIONAL NONLINEAR REGRESSION MODELS 1369

2. Nonnegative Garrote for Nonlinear Additive Models

2.1. Method

In this section, we consider the case of p < n. For the multiple linear
regression model

yi =

p∑
j=1

βjzij + εi, i = 1, . . . , n, (2.1)

the nonnegative garrote (Breiman (1995)) finds a set of nonnegative scaling fac-
tors cj to minimize

1

2

n∑
i=1

[
yi −

p∑
j=1

cj β̂jzij

]2
+ nλn

p∑
j=1

cj , subject to cj ≥ 0, (2.2)

with an initial estimates β̂j for model (2.1). The garrote estimates are then given
by β̃j = ĉj β̂j . An appropriately chosen λn can shrink some ĉj to exactly 0 and
thus produces a sparse model. We omit the subscript n in λn when no confusion
occurs. The selection consistency of the nonnegative garrote was first proved by
Zou (2006), and Yuan and Lin (2007) showed that, as long as the initial estimate
is consistent in terms of estimation, the nonnegative garrote estimate is consistent
in terms of both estimation and model selection given that the tuning parameter
λ is appropriately chosen. The ordinary least squares estimator is often chosen
as the initial estimation.

We extend the idea of the nonnegative garrote (NNG) to the additive non-
linear regression (1.2) with finite p predictors. To simplify the presentation, the
response variable Y and the nonlinear functions fj are assumed to be centered
with E(Y ) = 0 and E[fj(Xj ,αj)] = 0 for all j = 1, . . . , p, so the intercept β0 = 0.
The method can be easily adapted to include an intercept. Given initial estimates
α̂j , (1.2) reduces to (2.1) with zij = fj(xij , α̂j), j = 1, . . . , p, as the predictors.
One can then proceed with the nonnegative garrote with the initial estimates β̂j
for variable selection and estimation. Suppose the nonnegative garrote selects
covariates Xj , j ∈ Ŝ = {1 ≤ j ≤ p : ĉj ̸= 0}. The parameters αj are then
updated conditional on β̂j , j ∈ Ŝ. These steps iterate until some convergence
criterion is met, for instance, the residual sum of squares of the fitted model does
not change up to a tolerance. The initial estimates need to be carefully chosen,
because the solution path consistency of the nonnegative garrote depends on the
consistency of the initial estimator. We use the nonlinear least square estimates
of (1.2) as the initial estimates when the model dimension of (1.2) is not very
high.

The algorithm can be viewed as the solution of a separable nonlinear least
squares problem (Ruhe and Wedin (1980); Golub and Pereyra (2003)). The pa-
rameters are separated into two sets, where {βj} are linear parameters and {αj}
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are nonlinear parameters. In each iteration, the optimization with respect to
{βj} is performed first, and the correction to {αj} follows after that. It has been
shown that eliminating one set of parameters can result in faster convergence
of the optimization problem. We refer to Ruhe and Wedin (1980) and Golub
and Pereyra (2003), and references therein, for detailed descriptions of separa-
ble nonlinear least squares problems and the convergence properties of related
algorithms.

2.2. Asymptotic properties

Let γ = (βT ,αT )T with β = (β1, . . . , βp)
T and α = (αT

1 , . . . ,α
T
p )

T , with
true parameter γ0 = (βT

0 ,α
T
0 )

T . Take ℓ(γ,X, Y ) = [Y − F (X,γ)]2 with
F (X,γ) =

∑p
j=1 βjfj(Xj ,αj), and Pnℓ(γ,x,y) = n−1

∑n
i=1 ℓ(γ,xi, yi) = n−1∑n

i=1[yi −
∑p

j=1 βjfj(xij ,αj)]
2. We need the following conditions.

(A1) For all j = 1, . . . , p, βj ∈ Bj ⊂ R and αj ∈ Hj ⊂ Rdj , where Bj and Hj

are compact and convex with finite diameters A1 and A2, respectively. For
Γ =

∏p
j=1 Bj ×Hj ⊂ Rp+

∑p
j=1 dj , γ0 is an interior point of Γ.

(A2) For any γ ∈ Γ, E[F (X,γ) − F (X,γ0)]
2 = 0 if and only if βj = β0j and

αj = α0j for all j = 1, . . . , p.

(A3) If Ω1n = {X : ∥X∥∞ ≤ Kn} and I1n(X) = I(X ∈ Ω1n) for some sufficiently
large positive constants Kn, ∥ · ∥∞ the supremum norm, then F (X,γ),
∂
∂γF (X,γ), and ∂2

∂γ∂γT F (X,γ) exist and are continuous and uniformly
bounded for X ∈ Ω1n and γ ∈ Γ, with bounds k1, k2, and k3, respectively.

(A4) The covariate vector X has a continuous density and there exist constants
D1 and D2 such that the density function gj of Xj satisfies 0 < D1 ≤
gj(x) ≤ D2 < ∞ on the support [a, b] of Xj , 1 ≤ j ≤ p.

(A5) There exists a sequence of random variables {γ̂} with ∂Pnℓ(γ,x,y)
∂γ |γ=γ̂ = 0

such that Pnℓ(γ,x,y) is locally convex in some neighborhood of γ̂, say
A(δ) = {γ ∈ Γ, ∥γ − γ̂∥ ≤ δ} for some δ > 0 and γ0 ∈ A(δ).

(A6) The Fisher information

I(γ) = E

[
∂F (X,γ)

∂γ

∂F (X,γ)

∂γT

]
is finite and positive definite at γ = γ0.

(A7) If Ωn = {(X, Y ) : ∥X∥∞ ≤ Kn, |Y | ≤ K∗
n} and In(X, Y ) = I{(X, Y ) ∈

Ωn} for some sufficiently large positive constants K∗
n, there exists a constant

C1 such that with bn = C1max{k21, A1k1k2}V −1
1 (p/n)1/2 and V1 given in

(S.6) in the web-appendix,

sup
γ∈Γ,∥γ−γ0∥≤bn

∣∣E[ℓ(γ,X, Y )− ℓ(γ0,X, Y )](1− In(X, Y ))
∣∣ ≤ o

( p
n

)
.
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Conditions (A2) and (A6) ensure identifiability and the existence of the

nonnegative garrote. We use (A5) to replace Condition C in Fan and Song

(2010), because our objective function may have multiple local minima. The

proposed nonnegative garrote for nonlinear additive models requires an initial

estimate and a natural choice is the NLS estimate. From the standard NLS

estimation theories developed by Jennrich (1969), Malinvaud (1970), and Wu

(1981), under (A1)−(A6), the NLS estimator γ̂ defined in (A5) is consistent

and asymptotically normal. Let ĉj(λ) minimize (2.2). The nonnegative garrote

estimates are β̃j = ĉj(λ)β̂j and α̃j = α̂j for j = 1, . . . , p.

Theorem 1.

(i) Assume var{f(X,α0)} is positive definite and the initial estimate γ̂ satisfies

max1≤j≤p(|β̂j − β0j | + ∥α̂j − α0j∥) = Op(δn) for some δn → 0. Under

(A1)−(A3), for λ → 0 satisfying δn = o(λ), we have P{ĉj(λ) = 0} → 1 for

any j such that β0j = 0, and ĉj(λ) = 1+Op(λ) for any j such that β0j ̸= 0.

(ii) With the nonlinear least squares estimate as the initial estimate γ̂, (A1)−
(A6), and λ → 0 satisfying n−1/2 = o(λ), we have P{β̃j = 0} → 1 for any j

such that β0j = 0, and estimation consistency for the estimates correspond-

ing to important predictors almost surely.

We establish an exponential bound for the tail probability of the NLS esti-

mator γ̂, parallel to Theorem 1 in Fan and Song (2010), that is to be used in the

next section.

Theorem 2. For the NLS estimator γ̂ at (A5), if (A1)−(A7) hold, then for any

t > 0, we have P (
√
n∥γ̂ − γ0∥ ≥ 16k∗nmax{k1, A1k2}(1 + t)/V1) ≤ exp(−2t2) +

nP (Ωc
n), with k∗n = 2(k1 +K∗

n).

Next we show that the required δn consistency of the initial estimates can

be achieved with δn = 1/
√
n by using the nonlinear least squares estimate.

3. Independence Screening for High Dimensional Nonlinear Regres-

sions

As the dimension p of covariates in (1.2) grows with the sample size n, and

especially when p ≫ n, the iterative algorithm of Section 2 may not work well.

The nonlinear least squares for models with a large number of parameters and

redundant covariates may not converge suitably to the local minimum, and the

nonnegative garrote cannot be applied when the sample size is smaller than the

number of covariates. We take the idea of sure independence screening for linear

or generalized linear regression models proposed by Fan and Lv (2008) and Fan

and Song (2010), and extend it to nonlinear additive regression models.
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Rewrite p as pn and fit pn marginal nonlinear regressions of the response

Y against each covariate Xj separately, then rank their importance to the joint

model according to a measure of the goodness of fit of their marginal models. In

Fan and Lv (2008) and Fan and Song (2010), the covariates are standardized,

EX2
j = 1, j = 1, . . . , pn, so the magnitude of the coefficient estimate of the

marginal model can preserve the nonsparsity of the joint model. To extend this

idea to (1.2), we take β̂′
j = β̂M

j

√
n−1

∑n
i=1 f

2
j (xij , α̂

M
j ), where β̂M

j and α̂M
j ,

j = 1, . . . , pn, are the NLS estimates of the marginal models. Such β̂′
j can be

considered as the marginal NLS estimates obtained by standardizing fj(Xj ,αj)

and we can use the magnitude of β̂′
j as the marginal utility for the independence

screening. We refer to this strategy as marginal least square estimate or MLSE

screening when we select the set of variables with the magnitude of β̂′
j greater

than a prespecified threshold ζn:

N̂ = {1 ≤ j ≤ pn : |β̂′
j | ≥ ζn}. (3.1)

The MLSE screening involves β̂M
j and α̂M

j , because both estimates con-

tribute to determine the relationship between Y and Xj . Another way to in-

corporate the information of both β̂M
j and α̂M

j is through the residual sum of

squares (RSS) of the component-wise nonlinear regressions. We propose to rank

the covariates Xj ’s according to the RSS of the marginal models and select the

set of variables:

M̂ = {1 ≤ j ≤ pn : RSSj ≤ ξn}, (3.2)

with RSSj = minβj ,αj

∑n
i=1[yi − βjfj(xij ,αj)]

2 as the residual sum of squares of

the jth marginal fit, and ξn as a prespecified threshold value. This strategy is

analogous to the likelihood ratio screening proposed in Fan, Samworth, and Wu

(2009) and we refer to it as RSS screening. We show in the following section that

it is asymptotically equivalent to the MLSE screening in preserving the nonspar-

sity of the joint model. In practical computations, the sets N̂ and M̂ may not

be the same because the nonlinear optimization problem can have several local

minima. Moreover, RSS screening is easier to implement as one does not need to

standardize the nonlinear functions fj(Xj , α̂j). We have found in our numerical

analyses that RSS screening is more robust than MLSE screening, so it is adopted

in our simulation studies and the data application. To determine a data-driven

threshold ξn for RSS screening, one can use random permutation to create null

models as in Fan, Feng, and Song (2011). An alternative thresholding scheme

is to choose d covariates with the smallest marginal residual sum of squares. In

case of large pn, this thresholding approach can save a lot of computing effort by

avoiding the random permutations.
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The nonlinear independence screening (NLIS) procedure reduces the dimen-

sionality of covariates from pn to a possibly much smaller space with model

size |M̂|. Following variable screening, we can apply a more refined model se-

lection technique to choose important covariates in the nonlinear additive model

conditional on the selected variable set |M̂|, and for this purpose, we use the non-

negative garrote for nonlinear additive models described in Section 2. Based on

the philosophy in Fan and Lv (2008), independence screening should be applied

when pn is very large; while for moderately high pn, one should use penalized

methods for variable selection. In our case, the penalized model selection via the

nonnegative garrote for nonlinear additive models requires good initial parameter

estimates through NLS optimization and this is very difficult when pn is large.

For variable selection of (1.2), screening is necessary when pn is only relatively

high.

The crucial point for us is that the nonlinear independence screening proce-

dure does not mistakenly miss important covariates. We show in the following

section that our procedure has a sure screening property, as defined by Fan and

Lv (2008), so that all important covariates are retained with probability tending

to 1. This is an extension of Fan and Lv (2008) and Fan and Song (2010) because,

in our case, the minimum distinguishable signal in selecting M̂ is closely related

to the stochastic and numerical errors in estimating the nonlinear parameters.

In addition, fitting marginal models to a joint regression can be considered as

a type of model misspecification (White (1982)) as most of the covariates are

dropped from the model fitting. The NLS objective function of a misspecified

nonlinear model can be unstable, so our implementation is more difficult than

that of linear models. The theoretical development requires assumptions that

are appropriate to the nonlinear problem setting, such as local convexity.

3.1. Asymptotic properties

Let M∗ = {1 ≤ j ≤ pn : β0j ̸= 0} be the true sparse model with size

νn = |M∗|, where β0 = (β01, . . . , β0pn)
T and α0 = (αT

01, . . . ,α
T
0pn)

T are the true

parameter values. Let γj = (βj ,α
T
j )

T , Fj(Xj ,γj) = βjfj(Xj ,αj), ℓ(γj , Xj , Y ) =

[Y − Fj(Xj ,γj)]
2, and Pnℓ(γj ,xj ,y) = n−1

∑n
i=1[yi − βjfj(xij ,αj)]

2. Take

γM
j = {βM

j , (αM
j )T }T = argmin

γj

Eℓ(γj , Xj , Y ), (3.3)

for j = 1, . . . , pn, where E is expectation under the true model.

The following conditions are needed for the asymptotic properties of the

nonlinear independence screening procedure.

(B1) There exist positive constants k4 and k5 such that k5 ≤ Ef2
j (Xj ,αj) ≤ k4

for all j = 1, . . . , pn.
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(B2) The marginal Fisher information:

Ij(γj) = E

[
∂Fj(Xj ,γj)

∂γj

∂Fj(Xj ,γj)

∂γT
j

]

is finite and positive definite at γ = γM
j , for j = 1, . . . , pn.

(B3) There exists a constant C2 > 0 such that for all j = 1, . . . , pn,

sup
γ∈Γ,∥γ−γM

j ∥≤C2

∣∣Eβ2
j f

2
j (Xj ,αj)I(|Xj | ≥ Kn)

∣∣ ≤ o(n−1).

(B4) There exist some positive constants m0, m1, s0, s1, and a > 1, such that

for any real t,

E exp[tfj(Xj ,αj)] ≤ s0 exp(m0t
a), j = 1, . . . , pn,

Eexp(tϵi) ≤ s1 exp(m1t
a), i = 1, . . . , n.

(B5) For j = 1, . . . , pn, there exists a marginal least squares estimator (MLSE)

γ̂M
j with

∂Pnℓ(γj ,xj ,y)
∂γj

|γj=γ̂M
j

= 0 such that Pnℓ(γj ,xj ,y) is locally convex

in some neighborhood of γ̂M
j , say A1δ = {γj ∈ Γ, ∥γj − γ̂M

j ∥ ≤ δ} for some

δ > 0 and γM
j ∈ A1δ.

(B6) There exists a positive constant V2 such that for all γj ∈ A1δ, we have

Eℓ(γj , Xj , Y ) ≥ V2∥γj − γM
j ∥2, j = 1, . . . , pn.

(B7) If Σα = cov[f(X,α0),f(X,αM )] and λmax(Σα) is its maximum eigen-

value, there exist positive constants D3 and D4 such that 0 < D3 ≤
βT
0 Σαβ0 ≤ D4 < ∞.

Condition (B1) is imposed to bound the nonlinear effects of the covariates

so that their scales are of the same order. Condition (B4) is similar to Condi-

tion D in Fan and Song (2010) and is satisfied if fj(Xj ,αj) has a subgaussian

distribution, i.e., P exp[tfj(Xj ,αj)] ≤ exp(τ2t2/2) for all real t, or equivalently,

P{|fj(Xj ,αj)| ≥ t} ≤ c∗ exp{−t2/(2τ2)} for some constant c∗. bounded sym-

metric distribution. Condition (B5) is the marginal version of Condition (A5).

Our Theorem 3 gives a uniform convergence result for the MLSEs defined in (B5)

and the sure screening property of MLSE screening, and Theorem 4 provides an

asymptotic rate on the MLSE model size. These theorems are extensions of The-

orems 4 and 5 in Fan and Song (2010) to the nonlinear additive model setting

(1.2). Condition (B7) is parallel to Condition F in Fan and Song (2010). For

Lemma 3 referenced in the following, see the supplementary materials.



SPARSE HIGH-DIMENSIONAL NONLINEAR REGRESSION MODELS 1375

Theorem 3. Suppose (A1), (A3), (A4), and (B1)−(B6) hold.

(i) If n1−2κ/(k∗n)
2 → ∞ for some constant 0 < κ < 1/2 given in Lemma 3,

then for any c3 > 0, there exists a positive constant c4 such that

P
(

max
1≤j≤pn

∥γ̂M
j − γM

j ∥ ≥ c3n
−κ

)
≤ pn

{
exp

[
− c4n

1−2κ

(k∗n)
2

]
+ ns2 exp[−m2(K

∗
n)

a/(a−1)]
}
,

with s2 = sνn0 s1.

(ii) Let N̂ζn = {1 ≤ j ≤ pn : |β̂M
j | ≥ ζn}, where ζn is a predefined threshold

value. If, in addition, conditions in Lemma 3 hold, then by taking ζn =

c5n
−κ with c5 ≤ c2/2 (c2 is given in Lemma 3), we have

P (M∗ ⊂ N̂ζn) ≥ 1− νn

{
exp

[
− c4n

1−2κ

(k∗n)
2

]
+ ns2 exp[−m2(K

∗
n)

a/(a−1)]
}
.

Theorem 4. Under Conditions (A1), (A3), (A4) and (B1)−(B7), for any ζn =

c5n
−2κ,

P [|N̂ζn | ≤ O{n2κλmax(Σα)}]

≥ 1− pn

{
exp

[
− c4n

1−2κ

(k∗n)
2

]
+ ns2 exp[−m2(K

∗
n)

a/(a−1)]
}
.

Remark 1. Under Condition (B1), after some derivations, we can get that β̂M
j

and β̂′
j have the same order, with probability tending to 1 exponentially fast.

Thus Theorem 3 and Theorem 4 also hold for β̂′
j .

Remark 2. In order to obtain the optimal order of K∗
n, we balance the two

terms in the upper bound of Theorem 3(i) and get K∗
n = n(1−2κ)(a−1)/(3a−2). It

follows that

P
(

max
1≤j≤pn

∥γ̂M
j − γM

j ∥ ≥ c3n
−κ

)
= O

{
pn exp

(
−c4n

(1−2κ)a/(3a−2)
)}

.

Furthermore, if Y is bounded, then K∗
n can be taken as a finite constant. So

P
(

max
1≤j≤pn

∥γ̂M
j − γM

j ∥ ≥ c3n
−κ

)
= O

{
pn exp

(
−c4n

1−2κ
)}

.

In both cases, the tail probability in Theorem 3 has the exponential rate. Thus,

similar to Fan and Song (2010), we can handle non-polynomial dimensionality

with log pn = o
{
n(1−2κ)a/(3a−2)

}
or log pn = o(n1−2κ).

Next we consider the sure screening property of the RSS screening (3.2).

Let R∗ = (R∗
1, . . . ,R

∗
pn)

T , where R∗
j = Eℓ(γM

0 , Xj , Y ) − Eℓ(γM
j , Xj , Y ) and
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γM
0 = {0, (αM

j )T }T . The empirical values of R∗ can be written as Rn =

(R1,n, . . . ,Rpn,n)
T , where Rj,n = Pnℓ(γ̂

M
0 ,xj ,y) − Pnℓ(γ̂

M
j ,xj ,y) and γ̂M

0 =

{0, (α̂M
j )T }T , j = 1, . . . , pn. Obviously, we have ℓ(γM

0 , Xj , Y ) = Y 2 ≡ [Y − 0 ·
fj(Xj ,α

M
j )]2 and ℓ(γ̂M

0 , xj , y) = y2 ≡ [y − 0 · fj(xj , α̂M
j )]2. We sort the vector

Rn in a descending order and select a set of variables:

M̂ξn = {1 ≤ j ≤ pn : Rj,n ≥ ξn},

where ξn is a predefined threshold value. We show that this RSS screening is

equivalent to the MLSE screening in the sense that they both possess the sure

screening property, and the numbers of selected variables of these two screening

methods are of the same order.

Theorem 5. Suppose that Conditions (A1), (A3), (A4), (B1)−(B7) and condi-

tions in Lemma 3 hold. By taking ξn = c7n
−2κ for a sufficiently small c7 > 0,

there exists a c8 such that, with s2 = sνn0 s1,

P (M∗ ⊂ M̂ξn) ≥ 1− νn

{
exp

[
− c8n

1−2κ

(k∗n)
2

]
+ ns2 exp[−m2(K

∗
n)

a/(a−1)]
}
.

Theorem 6. Under the same conditions as in Theorem 5, we have

P [|M̂ξn | ≤ O{n2κλmax(Σα)}]

≥ 1− pn

{
exp

[
− c8n

1−2κ

(k∗n)
2

]
+ ns2 exp[−m2(K

∗
n)

a/(a−1)]
}
.

3.2. Iterative NLIS-NNG algorithm

Following Fan and Lv (2008) and Fan, Samworth, and Wu (2009), we propose

a strategy to iteratively combine a large-scale variable screening and a moderate-

scale model selection for the nonlinear additive regressions to further enhance

the performance of the method in terms of false selection errors. The complete

algorithm works as follows:

1. For every j ∈ {1, . . . , pn}, compute the marginal fit by solving

min
βj ,αj

n∑
i=1

[yi − βjfj(xij ,αj)]
2. (3.4)

Rank the covariates according to the marginal residual sum of squares

RSSj =

n∑
i=1

[yi − β̂M
j fj(xij , α̂

M
j )]2.
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Select the top d covariates with the smallest RSSj , or covariates with RSSj
smaller than a threshold ξn estimated from the random permutation. The set

of selected covariates is denoted by S1.

2. Apply the NNG for the nonlinear additive model introduced in Section 2 on

the set S1 to select a subset M1. The BIC score of the model with covariates

in M1 is computed, denoted as BIC(1).

3. For every j ∈ Mc
1 = {1, . . . , pn} \M1, minimize

n∑
i=1

[yi −
∑
l∈M1

βlfl(xil,αl)− βjfj(xij ,αj)]
2, (3.5)

with respect to βl, αl, l ∈ M1 and βj , αj , j ∈ Mc
1. This regression reflects

the additional contribution of the jth covariate conditioning on the existence

of the variable set M1. After marginally screening similar as in Step 1 by

ranking the RSS of model (3.5), we choose a set of covariates S2 ∈ Mc
1. The

NNG procedure is then applied on the set M1 ∪ S2 to select a subset M2.

4. Repeat Step 3 until Mk = Mk+1, or the size of Mk reaches a prespecified

threshold d∗. The set of selected covariates isMK , whereK = argmink BIC(k).

In the marginal screening step, the data-driven threshold ξn estimated from

the random permutation can be computed as follows. Suppose that covariates

in Mk have been recruited after k iterations. We randomly permute the rows of

{Xj} to yield {X̃j}, j ∈ Mc
k and then minimize the null model

n∑
i=1

[yi −
∑
l∈Mk

βlfl(xil,αl)− βjfj(x̃ij ,αj)]
2, (3.6)

with respect to βl, αl, l ∈ Mk, and βj , αj , j ∈ Mc
k. The threshold ξn is chosen

to be the q-th quantile of the RSS of the null models (3.6). In the simulation

examples, we use q = 0, so ξn is the minimum value of the permuted RSS. An

alternative screening scheme is to choose d covariates with the smallest marginal

RSS. This strategy is computationally more efficient than the permutation-based

screening. In addition, we show in Section 4 that this alternative thresholding

scheme produces smaller numbers of false positives and also smaller prediction

errors.

The proposed method can be extended to models with multiple possible

parametric forms for covariates. For example, the additive components fj in

model (1.2) can be either linear or nonlinear. The marginal screening step in the

above algorithm can be modified to include both the marginal nonlinear fit and

the marginal linear fit for each covariate and the marginal RSS is then selected

as the minimum value of the RSS of the linear and nonlinear marginal models.
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The top d covariates with the smallest RSSj are selected, denoted as S1. We

then apply the NNG for nonlinear additive models to the model

yi =
∑
j∈S1

β
(nlin)
j fj(xij ,αj) +

∑
j∈S1

β
(lin)
j xij + ϵ, (3.7)

where β
(lin)
j and β

(nlin)
j are the coefficients for the linear and nonlinear compo-

nents, respectively. In the implementation, the initial estimates of (β
(nlin)
j ,αT

j ,

β
(lin)
j ) need to be computed carefully, as the variable selection procedure can

be very sensitive to these initial values. One may add some restrictions on the

parameter searching space, such as
∣∣β(nlin)

j β
(lin)
j

∣∣ = 0, or use multiple initial es-

timates to improve the efficiency and accuracy of the nonlinear optimization. A

simulation example in which the additive regression model contains both linear

and nonlinear components is included in Section 4.

4. Simulation Studies

In this section, we report on the numerical performance of our method in simu-

lations. The simulation data were generated from the nonlinear additive model

(1.2) without intercept. The covariates Xj were simulated according to the ran-

dom effects model

Xj = 5
Wj + tU

1 + t
− 2.5, j = 1, . . . , pn,

where W1, . . . ,Wp and U were i.i.d. random variables from Unif(0, 1). We used

t = 1, so the covariates Xj were in (−2.5, 2.5) with pairwise correlation equal to

0.5. The sample size was set to be n = 100.

In the first example, all fj ’s were nonlinear functions, chosen to be the cen-

tered sigmoid function:

fj(x, α) =
1

1 + e−αx
− 0.5.

We considered the following scenarios:

S1. βj = 3, 1 ≤ j ≤ 4 and βj = 0, j > 4; αj ’s chosen equidistantly on [1.5, 4.2],

1 ≤ j ≤ 4; ϵi ∼ N (0, 0.822);
S2. p = 50; βj = 3, 1 ≤ j ≤ 10 and βj = 0, j > 10; αj ’s chosen equidistantly

on [1.5, 4.2], 1 ≤ j ≤ 10; ϵi ∼ N (0, 1.312);

The error term was chosen to give a signal-to-noise ratio (SNR) 3:1, defined as

the square root of the ratio of the sum of nonzero components squared divided by

the sum of residual squared. The total number of covariates p was 50 or 200. For

scenario S1, we also considered p =1,000 in order to illustrate the performance

of our method under the ultra-high dimensional case.
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Table 1. Average values of the numbers of true positives (TP) and false pos-
itives (FP) and the medians of the prediction errors (PE) for the first exam-
ple. c-NLIS-NNG and p-NLIS-NNG refer to our proposed method with the
direct cut-off screening scheme and the permutation-based screening scheme,
respectively, and g-INIS refers to the iterative nonparametric independence
screening method developed by Fan, Feng, and Song (2011). Robust stan-
dard deviations are given in parentheses.

Simulation Setting Method TP FP PE

S1 p = 50 c-NLIS-NNG 3.99 (0.02) 0.11 (0.19) 0.7070 (0.0848)
p-NLIS-NNG 3.99 (0.02) 1.82 (1.11) 0.7443 (0.1017)

g-INIS 4.00 (0.00) 0.93 (0.78) 0.9905 (0.1915)

p = 200 c-NLIS-NNG 3.95 (0.09) 0.27 (0.40) 0.7646 (0.1087)
p-NLIS-NNG 3.97 (0.05) 1.91 (0.97) 0.7753 (0.0946)

g-INIS 3.98 (0.04) 1.17 (0.97) 1.0648 (0.1722)

p = 1000 c-NLIS-NNG 3.90 (0.18) 0.52 (0.56) 0.7806 (0.1347)
p-NLIS-NNG 3.89 (0.20) 2.67 (1.35) 0.8080 (0.1244)

g-INIS 3.92 (0.15) 0.84 (0.85) 0.9906(0.2211)

S2 p = 50 c-NLIS-NNG 9.80 (0.35) 0.54 (0.64) 2.0932 (0.3186)
p-NLIS-NNG 9.77 (0.37) 2.35 (1.31) 2.2965 (0.3428)

g-INIS 7.90 (1.38) 1.23 (0.92) 4.0681 (1.0882)

p = 200 c-NLIS-NNG 8.90 (1.26) 2.22 (1.42) 2.3630 (0.5701)
p-NLIS-NNG 8.49 (1.39) 5.64 (2.30) 2.8248 (0.7689)

g-INIS 4.58 (1.56) 2.81 (1.63) 9.0936 (2.5190)

We considered a second example in which the additive regression model

contained both linear and nonlinear components:

Y =

3∑
j=1

βj

(
1

1 + e−αjXj
− 0.5

)
+

6∑
j=4

βjXj + ϵ.

In this simulation, we not only needed to choose the important covariates for

predicting the response, but also needed to determine the parametric form of

each selected covariate, which in this case is either linear or sigmoid function.

We set p = 50, βj = 3, αj = j + 1, 1 ≤ j ≤ 3, βj = 1, 4 ≤ j ≤ 6, βj = 0, j > 6,

and took ϵi ∼ N (0, 1). The SNR of this example was about 4:1.

We used cross-validation to select the tuning parameter λ in the nonnega-

tive garrote and each of the above simulation settings was repeated 100 runs.

The true positives (TP), false positives (FP) and prediction errors (PE) of the

first example are summarized in Table 1. The prediction error was calculated

on an independent test dataset of size n/2. The method c-NLIS-NNG in Table

1 refers to our proposed method with the direct cut-off screening scheme, where

the top d covariates with the smallest marginal RSS are selected. Here we set
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Table 2. Median of parameter estimates with median absolute deviation
(MAD) in parentheses for simulation setting S1 using the method c-NLIS-
NNG.

Parameters p = 50 p = 200 p =1,000
β1 = 3 3.1195 (0.5488) 2.7985 (0.4935) 3.0162 (0.5555)
β2 = 3 3.0299 (0.3982) 3.0381 (0.3947) 2.8314 (0.3595)
β3 = 3 3.0567 (0.3249) 2.9814 (0.2179) 2.9052 (0.2567)
β4 = 3 3.0495 (0.2105) 3.0743 (0.2385) 2.9783 (0.2343)
α1 = 1.5 1.5039 (0.4945) 1.6768 (0.5351) 1.3106 (0.3106)
α2 = 2.4 2.3375 (0.6541) 2.2749 (0.4777) 2.5577 (0.5984)
α3 = 3.3 3.4061 (0.7139) 3.3341 (0.6510) 3.5423 (0.7391)
α4 = 4.2 4.3842 (0.6158) 4.0815 (0.6841) 4.1484 (0.8510)

Table 3. Median of parameter estimates with median absolute deviation
(MAD) in parentheses for simulation setting S2 using the method c-NLIS-
NNG.

Parameters p = 50 p = 200 Parameters p = 50 p = 200
β1 = 3 3.1313 (0.7505) 2.8141 (0.7785) α1 = 1.5 1.5785 (0.5785) 1.6189 (0.6189)
β2 = 3 3.1759 (0.8522) 2.9269 (0.7809) α2 = 1.8 1.7264 (0.7208) 2.0048 (0.9166)
β3 = 3 3.1636 (0.5707) 2.8909 (0.6961) α3 = 2.1 1.9644 (0.7856) 2.4203 (1.1869)
β4 = 3 2.7876 (0.4590) 2.9831 (0.7133) α4 = 2.4 2.483 (1.1055) 2.6863 (1.0092)
β5 = 3 3.0042 (0.5454) 3.1175 (0.6674) α5 = 2.7 2.7308 (0.9203) 2.8353 (1.1193)
β6 = 3 3.004 (0.3352) 2.9959 (0.5895) α6 = 3.0 3.1168 (0.9187) 3.3602 (1.3157)
β7 = 3 3.0353 (0.4776) 3.1148 (0.6541) α7 = 3.3 3.6671 (1.0256) 3.0564 (1.3226)
β8 = 3 2.9735 (0.4068) 3.1066 (0.3664) α8 = 3.6 3.6248 (1.0440) 3.5123 (1.3032)
β9 = 3 3.0312 (0.4187) 3.112 (0.4006) α9 = 3.9 3.8169 (1.1831) 3.9751 (1.0249)
β10 = 3 3.1164 (0.4113) 2.9493 (0.4248) α10 = 4.2 4.6199 (0.3801) 4.6018 (0.3982)

d = 1 because it gives the smallest false selection rate. The method p-NLIS-NNG

refers to the permutation-based screening scheme, which selects the covariates

with RSS smaller than a data-driven threshold ξn estimated from the random

permutation. We also compared the proposed method with the iterative nonpara-

metric independence screening (INIS) method developed by Fan, Feng, and Song

(2011). The INIS method was designed for the nonparametric additive model.

It can be applied to the variable selection in the nonlinear additive model (1.2)

where the nonlinear functions fj ’s are assumed to be unknown and estimated

nonparametrically. As suggested by Fan, Feng, and Song (2011), we use the

greedy modification of the INIS algorithm (g-INIS) where only one covariate is

recruited in each screening step.

For scenario S1, all three methods had comparable performances in terms of

selecting the true variables, but the numbers of false positives of both p-NLIS-

NNG and g-INIS were larger than that of c-NLIS-NNG. For the more challenging

scenario S2, c-NLIS-NNG and p-NLIS-NNG both performed well in selecting the
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Table 4. (a) Average values of the numbers of true positives (TP) and false
positives (FP) and the medians of the mean squared errors (MSE) for the
second example with both linear and nonlinear components. Robust stan-
dard deviations are given in parentheses. (b) Median of parameter estimates
with median absolute deviation (MAD) in parentheses for the second exam-
ple with both linear and nonlinear components.

TP FP MSE
Combined 6.00 (0.00) 0.17 (0.40) 0.6564 (0.0994)
Nonlinear 2.37 (0.71) 0.76 (0.78)
Linear 2.26 (0.77) 0.78 (0.79)

True Estimate True Estimate True Estimate
β1 = 3 3.0989 (0.4574) β4 = 1 0.9952 (0.0981) α1 = 2 1.9741 (0.5687)
β2 = 3 2.9050 (0.3134) β5 = 1 1.0009 (0.0607) α2 = 3 3.2921 (0.7273)
β3 = 3 2.9623 (0.2646) β6 = 1 0.9709 (0.0706) α3 = 4 4.2079 (0.9409)

true variables. However, g-INIS tended to miss about two important variables

when p = 50 and miss about half of the important variables when p = 200. From

the perspective of the prediction error, c-NLIS-NNG outperformed the other two

methods in all cases. In Tables 2 and 3, we report the parameter estimations

of the method c-NLIS-NNG conditioned on the parameters being selected. We

conclude from this simulation study that ignoring the information of knowing

the nonlinear functions fj and estimating them nonparametrically can lead to

inefficient predictions and sometimes even seriously biased variable selection re-

sults. This simulation also indicates that the direct cut-off screening scheme

works better than the permutation-based screening scheme in keeping down the

false positives. We used the direct cut-off screening for the data application in

Section 5.

For the second example with both linear and nonlinear components, we can

see from Table 4 (a) that the selected models by our method always contain all the

nonzero components. The average numbers of true positives and false positives

under the nonlinear and linear categories indicate both the selection accuracy as

well as the accuracy of determining the corresponding parametric forms. Table

4 (b) displays the parameter estimations conditioned on the parameters being

selected.

For the more challenging scenarios, S3 and S4, our method tends to miss

some important covariates, but the selection accuracy is still within the rea-

sonable range. For Example 2 with both linear and nonlinear components, the

selected models by our method always contain all the nonzero components. The

average numbers of true positives and false positives under the nonlinear and

linear categories indicate both the selection accuracy as well as the accuracy of
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determining the corresponding parametric forms. Tables 2 and 3 display the

parameter estimations conditioning on that the parameters are selected.

5. Application to Identify Gene Regulations

The regulation of gene expressions depends on the recognition of specific promoter

sequences by transcriptional regulatory proteins and it often occurs through the

coordinated action of multiple transcriptional regulators. Chen et al. (2004) used

the nonlinear additive model (1.2) to model the transcription rate of a target gene

as a combination of a set of regulatory functions from relevant regulators. Here

the response Y is the transcription rate of the target gene; the covariate Xj is the

gene expression of the j-th regulator; the intercept β0 is the basal expression of

the target gene; and the coefficient βj is the regulatory capability from the j-th

regulator. The regulatory function of the j-th regulator is a sigmoid function:

fj{Xj(t), αj} =
1

1 + exp{−αj [Xj(t)−Mj ]}
, (5.1)

where αj is the transition rate and Mj is the mean expression level of regulator j.

The goal is to select the important regulators from the potential set of regulators

with βj ̸= 0.

We illustrate our proposed method using the dataset reported by Rabani

et al. (2011). Using the short metabolic labeling of RNA with 4-thiouridine (4sU),

the authors were able to distinguish recently transcribed RNA from the overall

RNA and therefore obtained direct measurements of RNA transcription rate.

The expression of RNA-total and RNA-4sU were measured for 254 representative

signature genes during the response of mouse dendritic cells to lipopolysaccharide

(LPS). There are 13 measurements for each gene, obtained at 15-min intervals

over the first 3 hours after LPS stimulation. We focused on 44 genes that have

been identified to have varying degradation rates and were interested in finding

genes that related to these genes using model (1.2). The response is the RNA-4sU

expression of a gene from these 44 genes and the predictors are the RNA-total

expressions of 254 signature genes. The data were normalized by the mean of

the 8 control genes (Ppp2r1a, Ndufs5, Psma7, Tomm7, Psmb4, Ndufa7, Eif4h,

Capza1) and then standardized to have mean 0 and variance 1. So Mj = 0 in

equation (5.1). We also centered the sigmoid function (5.1) as in the simulation

studies so there is no intercept in model (1.2).

We applied the proposed method to this dataset, where n = 13 and p = 254.

The numbers of selected predictors for the 44 genes were between 1 and 3. Figure

1 displays the model fits for 6 randomly chosen genes. The selected regulators

for these 6 genes and the corresponding parameter estimates and leave-one-out

cross validation prediction errors are listed in Table 5. We found some of our
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Table 5. Selected regulators and the corresponding parameter estimates and
leave-one-out cross validation prediction errors (CVPE) for six randomly
chosen genes.

Target genes Regulators (β̂j , α̂j) CVPE

Il6 Il17ra (2.0400, 1.1731) Dusp2 (4.1435, 0.7378) 0.3314
Il7r Cebpb (-2.5906, 3.2332) Hmga1 (2.1319, 2.1482) 1.3638
Zfp36 Zfp36 (-0.3415, 1.6778) Btg2 (9.3860, 0.4893) 0.0410
Icosl Icosl (6.8418, 1.8038) tgif1 (-3.0583, 3.3271) 0.2570
Jun Btg2 (3.3999, 1.3200) Rilpl1 (-0.4657, 3.7681) 0.2509
Ifnb1 Nr4a1 (-2.5196, 2.4291) Myd116 (8.2476, 1.0578) 0.0929

data-driven implications of gene regulations consistent with previous biological

findings. For example, Zfp36 is a known regulator of RNA stability that desta-

bilizes its mRNA targets by binding AU-rich elements in their 3’UTR and it is

known to autoregulate the stability of its own mRNA (Lai et al. (2006)), which

is in line with with our finding that Zfp36 negatively regulates itself. Sadik et al.

(2011) found in their studies that the expression of several pro-inflammatory

mediators, including Il6 were decreased in Il17ra−/− mice (mice lacking Il17ra)

compared to wild-type mice, consistent with our result that Il17ra positively reg-

ulates Il6. We also identified some interesting genes, like Cebpb and Icosl, both

of which are important regulators in immune and anti-inflammatory processes.

Evidently our method can provide biological investigators with a targeted list of

genes, which could be very useful in subsequent studies.

6. Discussion

In the mstatistical literature, the commonly adopted approach to nonlin-

earity is through nonparametric modeling. However, the parametric approach

should not be neglected. The parameters in the nonlinear regression model can

offer important biological implications. For example, the transition rate αj in the

sigmoid function (5.1) describes how fast the effect of a gene saturates. For small

αj , the regulatory effect is close to linear, while for large αj , function (5.1) is close

to a step function, indicating that a small deviation from the mean expression

value of the gene leads to a large effect on the response, but this effect quickly

stabilizes as the deviation increases. In practice, one can refine the parameter

estimates using nonlinear least squares once the important covariates are deter-

mined, given the estimates from the nonnegative garrote as initial values. The

inference of the selected model, such as the confidence intervals of the parameter

estimates, can be carried out following the theories of nonlinear regression models

(Jennrich (1969); Malinvaud (1970); Wu (1981)).

In our nonlinear regression model (1.2), the nonlinear functions f are as-

sumed to be known, which requires some prior knowledge about the relations
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Figure 1. Standardized measurements (star) overlaid with the model fits
(solid line) for six randomly chosen genes.

between the covariates and the response. Here we chose the sigmoid function

that is widely used in gene regulatory networks, to illustrate our method. How-

ever, this is a general methodology that is also applicable to other nonlinear

functions, such as the hill function and the gamma function. An important ex-

tension of our method is to include interactions of the covariates in the regression

model. Another interesting problem is to relax the additive assumption in model

(1.2) and allow more complicated nonlinear relationships. These topics are to be

studied in the future.
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