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Abstract: We generalize the cumulative slicing estimator to dimension reduction

where the predictors are subject to measurement errors. Unlike existing method-

ologies, our proposal involves neither nonparametric smoothing in estimation nor

normality assumption on the predictors or measurement errors. We establish strong

consistency and asymptotic normality of the resultant estimators, allowing that

the predictor dimension diverges with the sample size. Comprehensive simulations

have been carried out to evaluate the performance of our proposal and to compare

it with existing methods. A dataset is analyzed to further illustrate the proposed

methodology.
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1. Introduction

When predictors in regressions are observed with measurement errors, statis-

tical analysis that ignores the measurement errors can cause substantial estima-

tion bias. Regression models with semiparametric structures suffer from several

additional issues; for instance, Carroll and Li (1992) pointed out that it is com-

putationally demanding to evaluate the likelihood function of semiparametric

regressions. Such issues are more serious when the predictor dimension is high.

It is thus beneficial to develop some efficient dimension reduction methods for

high-dimensional semiparametric regressions, particularly when the predictors

are measured with errors. Toward this end, Carroll and Li (1992) investigated

the semiparametric model Y = ℓ(BτX, ε), where the predictors are contaminated

with measurement errors as

W = γ + ΓX + δ. (1.1)

Here, X = (X1, . . . , Xp)
τ is the p-dimensional predictor vector, B is an unknown

p×K matrix to be estimated from the observed data, τ is the transpose operator,

ℓ is an unknown function, and ε is assumed to be independent of X. In (1.1),

γ is an r-dimensional nonrandom vector, Γ is an r × p nonrandom matrix with
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r ≥ p, and δ is an r-dimensional random vector independent of (X,Y ). Without

loss of generality we take γ = 0 and E(X) = E(δ) = 0 throughout. From Cook

(1998a), we know that the relationship between Y and X is equivalent to the

conditional independence statement

Y⊥⊥X | BτX, (1.2)

where ⊥⊥ denotes statistical independence, B ∈ Rp×K , K ≤ p. Clearly B is

not unique, because any orthogonal transformation of B satisfies this condi-

tional independence as well. Therefore, we are concerned with the column space

of B, often referred to as the dimension reduction subspace and denoted by

S(B). Observing that any matrix whose column space contains S(B) also satis-

fies (1.2), Cook (1998a) defined the central subspace (CS) as the intersection of

all dimensional reduction subspaces satisfying (1.2) if itself is also a dimension

reduction subspace. Following the convention in sufficient dimension reduction

literature, we denote the CS by SY |X . With a slight abuse of notation, we take

SY |X = S(B). Cook (1998a) provides a detailed account of useful ideas and

results toward identifying the CS.

To investigate (1.2) with measurement error structure (1.1), Carroll and Li

(1992) proposed to use the surrogate predictors

U
def
= LW, where L

def
= cov(X,W )Σ−1

W and ΣW
def
= cov(W,W ). (1.3)

In spirit, the surrogate predictors U form the least squares prediction of X when

W is given. The slope vector through regressing the coordinates of X against W

constitutes the rows of the linear transformation L. Carroll and Li (1992) pointed

out that ordinary least squares (OLS) and sliced inverse regression (SIR) can

produce consistent estimators of SY |X . Lue (2004) developed a modified principal

Hessian direction (pHd) method to estimate the CS. Li and Yin (2007) established

a general invariance law between the surrogate and the ordinary dimensional

reduction subspaces:

Y⊥⊥X | BτX if and only if Y⊥⊥U | BτU (1.4)

when X and δ are jointly multivariate normal. Accordingly, all inverse regres-

sion based methods using (X,Y ) can be readily adapted to the methods using

(U, Y ). In regression modeling, this equivalence implies that, when X is nor-

mally distributed, we can employ the regression calibration method (see, e.g.,

Carroll et al. (2006)) to deal with semiparametric regressions. If X or δ is not

normally distributed, whether or not the invariance law holds true remains an

open problem, although Li and Yin (2007) suggested an approximation based

on the results of Hall and Li (1993). The adaptation of the OLS and the pHd
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(Lue (2004)) is probably easy to implement, yet both the OLS and the pHd are
in spirit targeting the central mean subspace (CMS; Cook and Li (2002)) rather
than the CS. In addition, pHd requires the constant variance condition, which
is more stringent than the linearity condition and may not be true if X deviates
from multivariate normality.

Here we first establish connection between the ordinary CS, SY |X , and the
surrogate CS, SY |U , when X satisfies the linearity condition, then elaborate the
notion of cumulative slicing estimation (Zhu, Zhu, and Feng (2010)) to recover
SY |X . Compared with the sliced inverse regression in Carroll and Li (1992), cu-
mulative slicing estimation requires no nonparametric smoothing in estimation.
We establish the strong consistency and asymptotic normality of our proposed
estimators, allowing the predictor dimension p to diverge to infinity as the sample
size n grows. In particular, we show that strong consistency and asymptotic nor-
mality hold true when the predictor dimension p = o(

√
n/ log n) and p = o(n1/3),

respectively. It is worth mentioning that, although investigation of such results
is not the focus of this paper, this paper provides some insights into estimating
the CS if some variable selection techniques have been adopted to choose im-
portant ones from ultra-high dimensional candidate predictors. Specifically, we
can obtain consistent estimators of the CS as long as the number of important
predictors is of order o(

√
n/ log n).

The remainder of this paper is structured as follows. In Section 2, we adapt
the notion of cumulative slicing estimation to accommodate measurement error
regressions, and justify its theoretical underpinnings for the surrogate dimen-
sional reduction problems at the population level. We then discuss the estima-
tion procedure at the sample level and derive some relevant asymptotics. We
report results of several simulation studies in Section 3 and further illustrate our
proposed methodology through an application to a dataset in Section 4. In Sec-
tion 5, we discuss several extensions of our proposal. This paper concludes with
a brief discussion in Section 6. All technical details are in the Appendix.

2. Methodology and Asymptotic Properties

2.1. Rationale of the method

We assume here that the predictors satisfy the linearity condition (Li (1991)):

E(X | BτX) = P τ
B(ΣX)X, (2.1)

where ΣX
def
= cov(X,X) denotes the covariance matrix of X, and PB(ΣX)

def
=

B(BτΣXB)−1BτΣX is the projection operator in the ΣX inner product of B.
Under (1.2), (2.1), and the adjoint property of conditional expectation, Zhu,
Zhu, and Feng (2010) obtained that

Λ(y)
def
= cov(1{Y ≤ y}, X)
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= E
[
1{Y ≤ y}E(X | Y,BτX)

]
= E

[
1{Y ≤ y}E(X | BτX)

]
= P τ

B(ΣX)cov(1{Y ≤ y}, X), (2.2)

indicating that Σ−1
X Λ(y) lies in the CS. It can be proved without much difficulty

that span{Σ−1
X Λ(y), y ∈ R} = span{Λ} ⊆ SY |X , where

Λ
def
= Σ−1

X E[Λ(Ỹ )Λτ (Ỹ )] (2.3)

is a kernel matrix, and Ỹ is an independent copy of Y . Such an observation

implies that the spectral decomposition of Λ helps to infer about SY |X through

the eigenvectors associated with the nonzero eigenvalues of Λ. In effect, (2.2) and

(2.3) make the core of the cumulative mean estimation (CUME; Zhu, Zhu, and

Feng (2010)). The advantage of the CUME is that it uses a determining class of

unconditional covariances cov(1{Y ≤ ·}, X), and it is a simple moment method

without nonparametric estimation.

In semiparametric regression with measurement errors, the predictors X at

(1.2) cannot be observed precisely, but rather via (1.1). Consequently, (2.3)

cannot be applied directly to recover SY |X . We expect to utilize the surrogate

prediction of X based on (1.1) to identify SY |X . Recall the definition of U and L

in (1.3). A proposition establishes the connection between the seed vector using

the underlying unobservable X and the seed vector using the surrogate predictor

vector U .

Proposition 1. Suppose δ⊥⊥(X,Y ) at (1.1), and that ΣX
def
= cov(X,X), ΣU

def
=

cov(U,U), and ΣW
def
= cov(W,W ) are all positive-definite matrices. If M(y)

def
=

cov(1{Y ≤ y}, U) and Λ(y)
def
= cov(1{Y ≤ y}, X), then

Σ−1
U M(y) = Σ−1

X Λ(y). (2.4)

Relation (2.4) in Proposition 1 holds without the linearity condition. How-

ever, this condition is still needed to ensure that the columns of Σ−1
U M(y) and

Σ−1
X Λ(y) are vectors in the central subspace. Proposition 1 also shows that

span{Σ−1
U M(y), y ∈ R} = span{Σ−1

X Λ(y), y ∈ R} = span{Λ}. Thus, to recover

SY |X , it suffices to use the equivalent kernel matrix

M
def
= Σ−1

U E[M(Ỹ )M τ (Ỹ )]. (2.5)

Corollary 1. Under the conditions in Proposition 1,

S(M) = S(Λ). (2.6)
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An immediate consequence of Corollary 1 is that, with the linearity condition

(2.1), S(Λ) = S(M) ⊆ (SY |X ∩ SY |U ). Thus, (2.6) implies that, under the

linearity condition, we can recover at least a subspace of the intersection SY |X ∩
SY |U . This allows us to employ a spectral decomposition directly on the matrix

M to infer about SY |X : i.e., b1, . . . , bK are the eigenvectors of M corresponding

to its K nonzero eigenvalues, then S(b1, . . . , bK) can be used to estimate SY |X .

2.2. Estimation procedure

We discuss how to estimate the CS of measurement error regressions at the

sample level, assuming L is known or unknown. When L is unknown, we present

two methods to estimate it.

2.2.1. L is known

Based on (1.3), M(y) in Proposition 1 can be written as M(y) = LV (y),

where V (y)
def
= cov(1{Y ≤ y},W ). We take

V
def
= E[V (Ỹ )V τ (Ỹ )]. (2.7)

Suppose that n observations {(wi, yi), i = 1, . . . , n} are available, and our objec-

tive is to estimate, using the (wi, yi)’s, the kernel matrix V and then its eigen-

values and corresponding eigenvectors. Let En(·) be the average over all sample

points, so En[f(X,Y )] = n−1
∑n

i=1 f(xi, yi). An estimator of V (y) for any given

y, denoted by V n(y), is

V n(y)
def
= n−1

n∑
i=1

[wi − En(W )]1{yi ≤ y}.

Hence, an estimator of V , written as V n, is

V n
def
= En[V n(Y )V τ

n(Y )]. (2.8)

Accordingly, we can estimate M(y) and M with

Mn(y)
def
= LV n(y), and Mn

def
= LEn[V n(Y )V τ

n(Y )]Lτ . (2.9)

We can estimate ΣW using ΣW,n = n−1
∑n

i=1[wi − En(W )][wi − En(W )]τ and

ΣU using ΣU,n = LΣW,nL
τ . Let b̂1, . . . , b̂K be the K principal eigenvectors of

Σ−1
U,nMn. Then, S (̂b1, . . . , b̂K) can be used to estimate SY |X .

2.2.2. L is unknown

When L is unknown, there are two ways to estimate it depending upon

availability: using validation data, or replication data. Consider a validation
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dataset (x′1, w
′
1), . . . , (x

′
m, w′

m) as an external sample, and assume the size of m

is much smaller than n. Using this auxiliary sample to estimate L through least

squares, we have

L(1)
m

def
= Σ(1)XW,mΣ−1

(1)W,m, (2.10)

where

Σ(1)XW,m
def
= m−1

m∑
i=1

[x′i − Em(X ′)][w′
i − Em(W ′)]τ and

Σ(1)W,m
def
= m−1

m∑
i=1

[w′
i −Em(W ′)][w′

i − Em(W ′)]τ .

Next we turn to replication data. Here Γ = Ip and W is an unbiased surro-

gate for X, as considered by Carroll and Li (1992), Ip is the p×p identity matrix.

Suppose (x′1, w
′
1j), . . . , (x

′
m, w′

mj) are generated from

w′
ij = γ + x′i + δij , j = 1, 2, i = 1, . . . ,m, (2.11)

where δij ’s are independent and identically distributed, and are independent of

(wij , yi). From (2.11),

var(w′
i1 − w′

i2) = 2Σδ, var(w′
i1 + w′

i2) = 4ΣX + 2Σδ.

Thus we can use {(x′1, w′
1j), . . . , (x

′
m, w′

mj)} to estimate Σδ and ΣW by

Σδ,m
def
= (2m)−1

m∑
i=1

(w′
i1 − w′

i2)(w
′
i1 − w′

i2)
τ , and

Σ(2)W,m
def
= (4m)−1

m∑
i=1

[
(w̃′

i1 + w̃′
i2)(w̃

′
i1 + w̃′

i2)
τ + (w̃′

i1 − w̃′
i2)(w̃

′
i1 − w̃′

i2)
τ
]
,

where w̃′
ij

def
= w′

ij − Em(W ′
j), i = 1, . . . ,m, j = 1, 2. Because L = ΣXWΣ−1

W =

Ip − ΣδΣ
−1
W , take

L(2)
m

def
= Ip − Σδ,mΣ−1

(2)W,m. (2.12)

With a consistent estimator of L defined in either (2.10) when the validation

data are used, or in (2.12) when the replication data are used, the corresponding

estimators of M(y) and M are

M∗
mn(y)

def
= L(j)

m V n(y) and M∗
mn

def
= L(j)

m En[V n(Y )V τ
n(Y )]L(j)τ

m , (2.13)

where j = 1 is for the validation data case and j = 2 is for the replica-

tion data case. We can now obtain the two estimators of ΣU , denoted by
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ΣU,mn = L
(j)
m ΣW,nL

(j)τ
m , j = 1, 2. Let b̂∗1, . . . , b̂

∗
K be the K principal eigenvec-

tors of Σ−1
U,mnM

∗
mn. Then, S (̂b∗1, . . . , b̂∗K) can be used to estimate SY |X .

2.3. Asymptotic results

Theorem 1 gives the strong consistency of the kernel matrices of the CUME

method in estimating the CS of measurement error regressions.

Theorem 1. In addition to the linearity condition, we assume the following.

(A1) max
1≤i≤p

E|X4
i | < ∞ and max

1≤i≤p
E|δ4i | < ∞ hold uniformly for p.

(A2) For largest eigenvalue of LLτ and ΣW , λmax(LL
τ ) < +∞, λmax(ΣW ) <

+∞ uniformly for p.

(A3) ΣX and ΣU are positive definite matrices uniformly for all p.

Then ∥Σ−1
U,nMn − Σ−1

U M∥ = o(p logn/
√
n) almost surely when L is known, and

∥Σ−1
U,mnM

∗
mn − Σ−1

U M∥ = o(p logm/
√
m) almost surely when L is unknown and

needs to be estimated from the validation or replication data.

Strong consistency thus holds true even when p goes to infinity at a rate of

o(
√
n/ log n).

Theorem 2. In addition to the conditions in Theorem 1, we assume the follow-

ing.

(A4) max
1≤i≤p

E|X8
i | < ∞ and max

1≤i≤p
E|δ8i | < ∞ uniformly for p.

(A5) var(eτΣ−1
U S1bi) = λ−2

i eτΣ−1
U E(S1bib

τ
i S

τ
1 )Σ

−1
U e → Gi, where Gi is a positive

constant, i = 1, . . . ,K, and S1 is defined in (A.8) in the Appendix.

For e a unit length vector orthogonal to SY |X , L is known, and p = o(n1/3),

√
neτ b̂i → N(0, Gi), i = 1, . . . ,K.

If m is the size of the validation or replicated dataset with m < n, L is unknown,

and p = o(m1/3), then
√
meτ b̂∗i → N(0, Gi), i = 1, . . . ,K.

2.4. Dimension determination

Zhu, Zhu, and Feng (2010) stated that, as the predictor dimension p diverges

with the sample size n, the usual χ2-sequential test statistic (Li (1991) and Cook

(1998a)) may not be proper because the degree of freedom of the χ2-sequential
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test also diverges. Following Zhu, Miao, and Peng (2006), we proposed a BIC-
type criterion to determinate K:

K̂
def
= arg min

1≤k≤p
{G(k)}, (2.14)

where

G(k)
def
=

k∑
i=1

λ̂2
i

/ p∑
i=1

λ̂2
i − Cn

k(k + 1)

2
.

Here k(k + 1)/2 is the number of free parameters when the target matrix is of
rank k. The λ̂is are the sample eigenvalues of Σ−1

U,nMn or Σ−1
U,mnM

∗
mn. Zhu, Zhu,

and Feng (2010) suggested Cn = 2n3/4. How to choose an optimal penalty for Cn

in a data-driven manner is a challenging issue, particularly when p is divergent.

3. Numerical Studies

In this section we report on simulations to evaluate the performance of our
proposed method and to compare it with existing competitors. To measure es-

timation accuracy, we adopt the trace correlation criterion proposed by Férre
(1998): R2(K) = trace(PBPB̂

)/K, where B is a p × K matrix spanning SY |X ,

B̂ is a p ×K matrix whose columns are the eigenvectors associated with the K
nonzero eigenvalues of Σ−1

U,nMn or Σ−1
U,mnM

∗
mn, and PB and P

B̂
are the respective

projection operators in the standard inner product of B and B̂. The closer R2(K)

is to 1, the better the performance of the K nonzero eigenvalues of Σ−1
U,nMn or

Σ−1
U,mnM

∗
mn in estimating SY |X .

We compare our method with SIR (Carroll and Li (1992)), pHd (Lue (2004))
and the CR proposed in Li and Yin (2007), all of which utilize the surrogate vari-
able U instead of X. For SIR, different numbers of slices in the estimators were
chosen, H at 5 and 10. For CR, the cutting number c was taken to be 0.5. To ex-

amine the performance of our method in high-dimensional cases with p associated
with the sample size, we considered sample sizes with (n, p) = (100, 19), (225, 29),
(400, 39), (625, 49). Six models were adopted:

Y =X1 −X2 +X3 + 4ε, (3.1)

Y = expX1−X2+4ε, (3.2)

Y = sin(X1 −X2 + 1.5ε), (3.3)

Y = log(|X1 + 1|) + ε, (3.4)

Y =X1(1 +X2) + 0.5ε, (3.5)

Y =X2/[0.5 + (1.5 +X1)
2] + ε. (3.6)

In these models, X = (X1, X2, . . . , Xp)
τ is independent of ε. We want to

estimate SY |X . In (3.1), K = 1 and SY |X = span{(1,−1, 1, 0, 0, . . . , 0)τ};
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in (3.2) and (3.3), K = 1 and SY |X = span{(1,−1, 0, 0, 0, . . . , 0)τ}; in (3.4),

K = 1 and SY |X = span{(1, 0, 0, 0, 0, . . . , 0)τ}; in (3.5) and (3.6), K = 2 and

SY |X = span{(1, 0, 0, . . . , 0)τ , (0, 1, 0, 0, . . . , 0)τ}. The measurement errors in

(1.1) are set in each example.

Example 1. We assume that the link L in known. The predictors Xij were

generated from the t-distribution t(6), i = 1, . . . n, j = 1 . . . p, and the ε were

drawn from uniform distribution over the interval [-0.2, 0.2]. Because X contains

measurement errors in the manner of model (1.1), we took Γ as the p× p matrix

with diagonal elements 1, and off-diagonal elements 0.5, and δi ∼ Np(0, 0.3
2×Ip),

i = 1, . . . n.

By invoking (1.3), we have

L = Γτ
(
ΓΓτ +

0.32

σ2
t(6)

× Ip

)−1
,

where σ2
t(6) stands for the variance of the t-distribution with six degrees of free-

dom. With this known L, we estimated SY |X following the routines suggested

in Section 2.2.1. We conducted 200 simulation replications. The averages and

standard deviations of the R2(K) values are reported in Table 1.

Models (3.1) and (3.2) have been shown to be favorable to SIR, and SIR

again showed favorably for (3.1) and (3.2) with a transformation of Y . However,

our method is superior to SIR in models (3.3)−(3.6), and is slightly better than

CR in (3.1)-(3.4). In (3.5), the CR method is the winner over its competitors;

further, the pHd method produces much lower R2(K) values than either the SIR

or our method.

Example 2. In this example, we took validation data to be available. We

generated X, δ, ε and Γ as in Example 1, but with the sample size m of the

validation data much smaller. In our simulations, we chose m = [n/2]. We

first employed the validation data to estimate L
(1)
m by (2.10), then used (2.13)

to recover SY |X . The results for the means and the standard deviations of the

R2(K) values, obtained from 200 simulation replications, are reported in Table 2.

In this example, SIR performs well for (3.1) and (3.2), while our method

works well for the other models. The pHd exhibits poor performance here, in line

with Cook’s (1998b) observations that it is probably not efficient in symmetric

models. All three methods in this example exhibit similar performance to those

in Example 1, but less well given the need to estimate the unknown L.

Example 3. In this example the link L is estimated using replication data.

Following Carroll and Li (1992), we generated the data from (2.11) by taking γ =
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Table 1. With a known link L in Example 1. The means and standard
deviations of the R2(K) values.

SIR pHd CR our method
n = 100, p = 19

H → 5 10
model(3.1) 0.8613 ± 0.0436 0.8733 ± 0.0431 0.1547 ± 0.1248 0.8431 ± 0.0467 0.8598 ± 0.0407
model(3.2) 0.8560 ± 0.0508 0.8714 ± 0.0445 0.2936 ± 0.1652 0.8441 ± 0.0494 0.8545 ± 0.0487
model(3.3) 0.7489 ± 0.1459 0.7502 ± 0.1422 0.0356 ± 0.0497 0.7641 ± 0.1201 0.7745 ± 0.1112
model(3.4) 0.6271 ± 0.2122 0.6171 ± 0.2306 0.0872 ± 0.1684 0.6277 ± 0.1610 0.6698 ± 0.1430
model(3.5) 0.4557 ± 0.1191 0.4372 ± 0.1157 0.3666 ± 0.1205 0.5213 ± 0.1007 0.4967 ± 0.1101
model(3.6) 0.5955 ± 0.1028 0.5807 ± 0.1025 0.2253 ± 0.1066 0.4955 ± 0.1201 0.6738 ± 0.0894

n = 225, p = 29
H → 5 10

model(3.1) 0.9046 ± 0.0266 0.9009 ± 0.0238 0.1809 ± 0.1369 0.8742 ± 0.0301 0.8990 ± 0.0243
model(3.2) 0.9065 ± 0.0310 0.9128 ± 0.0247 0.2634 ± 0.1315 0.8952 ± 0.0288 0.9058 ± 0.0227
model(3.3) 0.8348 ± 0.0682 0.8444 ± 0.0602 0.0305 ± 0.0505 0.8477 ± 0.0620 0.8563 ± 0.0580
model(3.4) 0.7562 ± 0.1040 0.7591 ± 0.1005 0.0918 ± 0.2297 0.7445 ± 0.0987 0.7813 ± 0.0702
model(3.5) 0.5422 ± 0.1118 0.5412 ± 0.1113 0.4329 ± 0.1185 0.6524 ± 0.0743 0.6307 ± 0.0811
model(3.6) 0.7212 ± 0.0642 0.7215 ± 0.0622 0.2303 ± 0.0948 0.5122 ± 0.0899 0.7588 ± 0.0491

n = 400, p = 39
H → 5 10

model(3.1) 0.9324 ± 0.0166 0.9244 ± 0.0143 0.1646 ± 0.1178 0.9132 ± 0.0201 0.9206 ± 0.0138
model(3.2) 0.9313 ± 0.0165 0.9317 ± 0.0161 0.2826 ± 0.1184 0.9195 ± 0.0181 0.9295 ± 0.0143
model(3.3) 0.8678 ± 0.0427 0.8821 ± 0.0367 0.0223 ± 0.0427 0.8700 ± 0.0421 0.8859 ± 0.0347
model(3.4) 0.8240 ± 0.0610 0.8239 ± 0.0650 0.0893 ± 0.2324 0.7723 ± 0.0711 0.8175 ± 0.0506
model(3.5) 0.6371 ± 0.0715 0.6459 ± 0.0912 0.4983 ± 0.1037 0.7134 ± 0.0561 0.6929 ± 0.0616
model(3.6) 0.7752 ± 0.0398 0.7979 ± 0.0463 0.2661 ± 0.0916 0.5799 ± 0.0654 0.8017 ± 0.0366

n = 625, p = 49
H → 5 10

model(3.1) 0.9464 ± 0.0096 0.9551 ± 0.0104 0.1745 ± 0.1153 0.9326 ± 0.0132 0.9466 ± 0.0098
model(3.2) 0.9441 ± 0.0120 0.9439 ± 0.0114 0.3029 ± 0.1175 0.9276 ± 0.0141 0.9376 ± 0.0111
model(3.3) 0.9003 ± 0.0282 0.9015 ± 0.0262 0.0183 ± 0.0289 0.8923 ± 0.0291 0.9046 ± 0.0233
model(3.4) 0.8526 ± 0.0502 0.8580 ± 0.0495 0.2064 ± 0.3319 0.8188 ± 0.0497 0.8588 ± 0.0433
model(3.5) 0.6969 ± 0.0578 0.7228 ± 0.0567 0.5558 ± 0.0945 0.7577 ± 0.0366 0.7384 ± 0.0494
model(3.6) 0.8124 ± 0.0369 0.8342 ± 0.0323 0.2917 ± 0.0950 0.6066 ± 0.0539 0.8366 ± 0.0299

0, Γ = Ip, so wij = xi + δij , j = 1, 2, i = 1, . . . ,m. Here, xij was generated from

the t-distribution t(6), i = 1, . . . ,m, j = 1, . . . , p, δij was from Np(0, 0.3
2 × Ip).

i = 1, . . . ,m, j = 1, 2, and ε was from the uniform distribution over [-0.2,0.2].

The replication sample size was m = [n/2]. We obtained L
(2)
m with (2.12), and

estimated SY |X by (2.13). We investigated the performance of SIR, pHd, and

our method. The averages of the 200 replications of the R2(K) values and the

corresponding standard deviations are reported in Table 3.

Our conclusions are similar to those for Example 2. As n and m grow, the

performance of SIR and our method improves, although our method exhibits

superior performance for (3.3)-(3.6) and SIR works better for (3.1)−(3.2). In

(3.5), the CR method performs quite well when both n and m are large.

The three examples convey similar messages: SIR works well for the linear

and transformed linear models, while our method outperforms its competitors in

some other complicated nonlinear models. Our method is comparable to SIR in

(3.1)−(3.2) and to CR in (3.5). This suggests that our proposal is indeed worthy
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Table 2. We estimated L with validation data in Example 2 and give the
means and standard deviations of R2(K) values.

SIR pHd CR our method
n = 100,m = 50, p = 19

H → 5 10
model(3.1) 0.6989 ± 0.1026 0.7253 ± 0.0869 0.1328 ± 0.1176 0.6990 ± 0.0993 0.7190 ± 0.0967
model(3.2) 0.7145 ± 0.0954 0.7062 ± 0.0988 0.2096 ± 0.1533 0.6823 ± 0.1290 0.7077 ± 0.1023
model(3.3) 0.6159 ± 0.1565 0.5882 ± 0.1515 0.0445 ± 0.0621 0.6123 ± 0.1411 0.6313 ± 0.1314
model(3.4) 0.5264 ± 0.1668 0.5145 ± 0.2109 0.0835 ± 0.1702 0.4923 ± 0.1689 0.5715 ± 0.1473
model(3.5) 0.3904 ± 0.1229 0.3726 ± 0.1163 0.3368 ± 0.1189 0.4756 ± 0.0923 0.4406 ± 0.1028
model(3.6) 0.5169 ± 0.1051 0.5322 ± 0.1073 0.2217 ± 0.1028 0.4239 ± 0.1106 0.5811 ± 0.0855

n = 225,m = 112, p = 29
H → 5 10

model(3.1) 0.8409 ± 0.0389 0.8464 ± 0.0423 0.1513 ± 0.1191 0.8298 ± 0.0513 0.8355 ± 0.0487
model(3.2) 0.8277 ± 0.0457 0.8356 ± 0.0394 0.2422 ± 0.1242 0.8131 ± 0.0617 0.8325 ± 0.0511
model(3.3) 0.7513 ± 0.0824 0.7578 ± 0.0710 0.0278 ± 0.0385 0.7607 ± 0.0734 0.7703 ± 0.0679
model(3.4) 0.7167 ± 0.0937 0.7000 ± 0.0864 0.0797 ± 0.1814 0.6945 ± 0.0911 0.7275 ± 0.0824
model(3.5) 0.5158 ± 0.0896 0.5113 ± 0.1005 0.4061 ± 0.1126 0.5756 ± 0.0744 0.5502 ± 0.0859
model(3.6) 0.6634 ± 0.0723 0.6766 ± 0.0696 0.2383 ± 0.0918 0.5433 ± 0.0772 0.6915 ± 0.0646

n = 400,m = 200, p = 39
H → 5 10

model(3.1) 0.8771 ± 0.0295 0.8867 ± 0.0247 0.1316 ± 0.1114 0.8600 ± 0.0379 0.8679 ± 0.0279
model(3.2) 0.8725 ± 0.0298 0.8620 ± 0.0301 0.2885 ± 0.1168 0.8270 ± 0.0334 0.8569 ± 0.0301
model(3.3) 0.8275 ± 0.0535 0.8248 ± 0.0524 0.0246 ± 0.0335 0.8055 ± 0.0489 0.8324 ± 0.0467
model(3.4) 0.7717 ± 0.0686 0.7775 ± 0.0664 0.1205 ± 0.2596 0.7461 ± 0.0609 0.7864 ± 0.0574
model(3.5) 0.6063 ± 0.0825 0.6176 ± 0.0905 0.4650 ± 0.1093 0.6734 ± 0.0540 0.6505 ± 0.0628
model(3.6) 0.7411 ± 0.0468 0.7530 ± 0.0455 0.2574 ± 0.0884 0.5876 ± 0.0563 0.7643 ± 0.0487

n = 625,m = 312, p = 49
H → 5 10

model(3.1) 0.9041 ± 0.0214 0.9049 ± 0.0192 0.1422 ± 0.0961 0.8887 ± 0.0275 0.8997 ± 0.0201
model(3.2) 0.9017 ± 0.0214 0.9239 ± 0.0222 0.2861 ± 0.0995 0.8882 ± 0.0275 0.9178 ± 0.0203
model(3.3) 0.8600 ± 0.0398 0.8616 ± 0.0375 0.0150 ± 0.0191 0.8467 ± 0.0311 0.8632 ± 0.0308
model(3.4) 0.8210 ± 0.0549 0.8281 ± 0.0453 0.1754 ± 0.3037 0.8089 ± 0.0422 0.8301 ± 0.0388
model(3.5) 0.6737 ± 0.0601 0.6854 ± 0.0631 0.5149 ± 0.1081 0.7233 ± 0.0473 0.6999 ± 0.0538
model(3.6) 0.7862 ± 0.0341 0.8024 ± 0.0329 0.2939 ± 0.0905 0.6123 ± 0.0454 0.8045 ± 0.0317

of recommendation.

4. Application to Cardiovascular Disease Factors Two-Township Study

We applied our method to the Cardiovascular Disease Factors Two-Township

Study carried out in Taiwan to investigate the risk factors for a high cholesterol

level. The dataset was collected by Pan et al. (1997) and was used in Lue (2004).

It includes six factors: Age (W1), waist measurement (W2), hip measurement

(W3), triglycedrine level (W4), BMI measurement (W5) and WHR measurement

(W6). Of these variables, age is observed precisely while the other five are mea-

sured with errors. All subjects have three replicates, each with the same size of

1,941. Each subject’s cholesterol level (Y ) was measured at the third examina-

tion. We are interested in investigating whether all six factors have an impact

on subject’s cholesterol level (Y ). Following Lue (2004), we used the first two

replicates of the five factors with measurement errors to obtain an estimator of L,

denoted by L̂
(2)
m . We corrected the five factors in the third replicate by L̂

(2)
m and

then combined age (W1) in the third examination with the transformed variables

L̂
(2)
m (W2, . . . ,W6)

τ to obtain the surrogate variable Û . With the BIC-type cri-



1352 JUN ZHANG, LIPING ZHU AND LIXING ZHU

Table 3. We estimated L with replication data in Example 3 and give the
means and standard deviations of R2(K) values.

SIR pHd CR our method
n = 100,m = 50, p = 19

H → 5 10
model(3.1) 0.8794 ± 0.0437 0.9021 ± 0.0379 0.1660 ± 0.1431 0.8851 ± 0.0458 0.8941 ± 0.0427
model(3.2) 0.8776 ± 0.0491 0.8842 ± 0.0397 0.2778 ± 0.1536 0.8521 ± 0.0556 0.8755 ± 0.0439
model(3.3) 0.7891 ± 0.1259 0.7721 ± 0.1473 0.0496 ± 0.0721 0.7700 ± 0.1078 0.7945 ± 0.1230
model(3.4) 0.6848 ± 0.1749 0.6789 ± 0.2126 0.0806 ± 0.1783 0.6878 ± 0.1092 0.7072 ± 0.1316
model(3.5) 0.4962 ± 0.1363 0.4400 ± 0.1488 0.4303 ± 0.1340 0.5534 ± 0.0899 0.5393 ± 0.1047
model(3.6) 0.6472 ± 0.1008 0.6493 ± 0.1137 0.2632 ± 0.1007 0.5023 ± 0.0877 0.7014 ± 0.0835

n = 225,m = 112, p = 29
H → 5 10

model(3.1) 0.9374 ± 0.0198 0.9212 ± 0.0143 0.1542 ± 0.1201 0.9167 ± 0.0201 0.9267 ± 0.0196
model(3.2) 0.9297 ± 0.0221 0.9172 ± 0.0166 0.3091 ± 0.1412 0.8801 ± 0.0389 0.9107 ± 0.0245
model(3.3) 0.8561 ± 0.0608 0.8521 ± 0.0804 0.0259 ± 0.0548 0.8453 ± 0.0412 0.8704 ± 0.0570
model(3.4) 0.7979 ± 0.0944 0.8066 ± 0.1134 0.1329 ± 0.2719 0.7765 ± 0.0813 0.8101 ± 0.0749
model(3.5) 0.6001 ± 0.1089 0.6176 ± 0.0998 0.4770 ± 0.1291 0.6856 ± 0.0834 0.6555 ± 0.0948
model(3.6) 0.7688 ± 0.0590 0.7718 ± 0.0628 0.2784 ± 0.0991 0.6134 ± 0.0676 0.8006 ± 0.0484

n = 400,m = 200, p = 39
H → 5 10

model(3.1) 0.9525 ± 0.0126 0.9630 ± 0.0100 0.1742 ± 0.1161 0.9328 ± 0.0144 0.9523 ± 0.0128
model(3.2) 0.9507 ± 0.0146 0.9433 ± 0.0158 0.3262 ± 0.1249 0.9217 ± 0.0134 0.9432 ± 0.0119
model(3.3) 0.9040 ± 0.0343 0.8992 ± 0.0416 0.0168 ± 0.0327 0.8832 ± 0.0319 0.9074 ± 0.0324
model(3.4) 0.8592 ± 0.0545 0.8584 ± 0.0531 0.2721 ± 0.3616 0.8133 ± 0.0521 0.8591 ± 0.0430
model(3.5) 0.6898 ± 0.0702 0.7039 ± 0.0772 0.5599 ± 0.1156 0.7445 ± 0.0498 0.7275 ± 0.0618
model(3.6) 0.8179 ± 0.0419 0.8244 ± 0.0427 0.3179 ± 0.0948 0.6455 ± 0.0445 0.8430 ± 0.0387

n = 625,m = 312, p = 49
H → 5 10

model(3.1) 0.9632 ± 0.0079 0.9598 ± 0.0072 0.1928 ± 0.1062 0.9401 ± 0.0085 0.9449 ± 0.0079
model(3.2) 0.9595 ± 0.0105 0.9588 ± 0.0089 0.3401 ± 0.1145 0.9389 ± 0.0121 0.9489 ± 0.0089
model(3.3) 0.9217 ± 0.0246 0.9224 ± 0.0236 0.0138 ± 0.0194 0.9004 ± 0.0187 0.9228 ± 0.0216
model(3.4) 0.8739 ± 0.0414 0.8855 ± 0.0403 0.3370 ± 0.3937 0.8654 ± 0.0423 0.8857 ± 0.0368
model(3.5) 0.7301 ± 0.0574 0.7554 ± 0.0570 0.6136 ± 0.1042 0.7823 ± 0.0396 0.7615 ± 0.0448
model(3.6) 0.8455 ± 0.0309 0.8628 ± 0.0276 0.3476 ± 0.1070 0.6676 ± 0.0348 0.8652 ± 0.0272

terion introduced in Section 2.4, we inferred that SY |X is one-dimensional. Our

method gives

β̂ = (0.1977,−0.5201, 0.7358,−0.0203, 0.3844,−0.0283)τ ,

possibly indicating that the hip measurement has the dominant effect. Using the

same dataset, we also tried out the SIR with 10 slices to estimate the direction

(Carroll and Li (1992)). The estimated direction is

β̂sir = (0.2097,−0.4940, 0.7454,−0.0827, 0.3856,−0.0286)τ ,

which agrees with our observation that hip measurement plays the dominant role.

The angle between the two estimated directions obtained with the two methods

is almost 0, as the cosine value of angle β̂τ β̂sir = 0.9976. Thus, for this dataset,

our method and SIR agree that a subject’s hip measurement has a potential

influence on their cholesterol levels.
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5. Some Extensions

There are several ways to extend the methodology to handle measurement

error regressions. For example, an anonymous referee observed that, to identify

the CS, the indicator function 1{Y ≤ y} in (2.2) can be replaced with any

measurable function fy(Y ), for y ∈ R. In parallel to (2.2), we can show that

Λ̃(y)
def
= cov(fy(Y ), X)

= P τ
B(ΣX)cov(fy(Y ), X), (5.1)

indicating that, for an arbitrary measurable function fy(Y ), Σ−1
X Λ̃(y) ⊆ SY |X ,

Λ̃
def
= Σ−1

X E[Λ̃(Ỹ )Λ̃τ (Ỹ )] can be used to infer about SY |X through using the

eigenvectors associated with the nonzero eigenvalues of Λ̃. This modification

indeed generalizes the scope of cumulative slicing estimation, which corresponds

to the CUME method here if we choose fy(Y ) = 1{Y ≤ y}, and the ordinary

least squares (OLS) procedure in Carroll and Li (1992) if we choose fy(Y ) = Y .

Let M̃(y)
def
= cov(U, fy(Y )) for an arbitrary measurable function fy(Y ). Following

(5.1) and similar arguments for proving Proposition 1, we can show that

Σ−1
U M̃(y) = Σ−1

X Λ̃(y). (5.2)

This enables us to design some other dimension reduction methods to analyze

measurement error data.

Another way of generalizing the CUME method is to consider using the

second moment of X given Y . Observing that cov(1{Y ≤ y}, X) = cov(1{Y ≤
y}, E(X | Y )), Zhu, Zhu, and Feng (2010) pointed out that the CUME method

fails if E(X | Y ) degenerates. They proposed cumulative variance estimation

(CUVE) and cumulative directional regression (CUDR). In the measurement

error regressions, we can extend the CUME method. Zhu, Zhu, and Feng (2010)

noticed that the CUME method replaces E(X | Y ) in SIR with E[X1{Y ≤ y}],
and then proposed CUVE by replacing var(X | Y ) by var[X1{Y ≤ y}]. Assuming

(2.1) and the constant variance condition

var(X | BτX) = ΣX − ΣXB(BτΣXB)−1BτΣX , (5.3)

we now propose the kernel matrix of the CUVE for measurement error problem.

Let V (y)
def
= var[U1{Y ≤ y}]− F (y)LΣWLτ and

M∗ def
= Σ−1

U E[V (Ỹ )V τ (Ỹ )],

where Ỹ is an independent copy of Y .

Theorem 3. Assume (2.1) and (5.3). Then S(M∗) ⊆ SY |X .
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Following Zhu, Zhu, and Feng (2010), we can further develop an extension of

the cumulative directional regression (CUDR) method under the measurement

error setting. The directional regression (DR) method was proposed by Li and

Wang (2007) using E[(X−X̃)(X−X̃)τ | Y, Ỹ ] to infer about SY |X , where (X̃, Ỹ )

is an independent copy of (X,Y ). Zhu, Zhu, and Feng (2010) extended the DR

idea and proposed CUDR method by using E[(X− X̃)(X− X̃)τ1{Y ≤ y}1{Ỹ ≤
ỹ}]− 2F (ỹ)F (y)ΣX . Inspired by this, let

R(y, ỹ)
def
= E[(U − Ũ)(U − Ũ)τ1{Y ≤ y}1{Ỹ ≤ ỹ}]− 2F (y)F (ỹ)LΣWLτ ,

where (Ũ , Ỹ ) is an independent copy of (U, Y ). Moreover, let

M∗∗ def
= Σ−1

U E[R(Y, Ỹ )Rτ (Y, Ỹ )].

Theorem 4. Assume (2.1) and (5.3). Then S(M∗∗) ⊆ SY |X .

With Theorems 3 and 4, we can estimate SY |X as in Section 2. Details are

omitted here.

6. Concluding Remarks

In this paper, we have studied sufficient dimension reduction when the pre-

dictors in semiparametric regressions are measured with errors. Our method

enhances the estimation efficiency in comparison with existing methods. The

resultant estimators are consistent when the predictor dimension p diverges with

the sample size n at a rate of at most p = o(n1/2/ log n). This inspires us to

consider the variable selection issue: When the predictor dimension is very large,

how can important variables be selected, and to what extent can the predictor

dimension p be brought down to a value much smaller than n while retaining

the estimation consistency? There are such variable selection procedures, as the

Dantzig selector (Candés and Tao (2007)), the LASSO (Tibshirani, R. (1996)),

the SCAD (Fan and Li (2001)) and the SIS (Fan and Lv (2008)), etc. It may

be feasible to combine one of these approaches with that proposed herein if an

objective function is properly defined. Research along this line is warranted.
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Appendix

Proof of Proposition 1. We first observe that

L = cov(X,W )Σ−1
W = cov(X,ΓX + δ)Σ−1

W = ΣXΓτΣ−1
W and

ΣU = cov(LW ) = Lcov(W )Lτ = cov(X,W )Σ−1
W cov(X,W )τ

= ΣXΓτΣ−1
W ΓΣX = LΓΣX . (A.1)

Consequently,

cov(1{Y ≤ y}, U) = LΓcov(1{Y ≤ y}, X) + Lcov(1{Y ≤ y}, δ)
= LΓΣXΣ−1

X cov(1{Y ≤ y}, X) = ΣUΣ
−1
X cov(1{Y ≤ y}, X),

which yields the desired conclusion.

Proof of Theorem 1. Note that

Σ−1
U,nMn−Σ−1

U M=Σ−1
U (ΣU−ΣU,n)Σ

−1
U,nL(V n−V )Lτ+Σ−1

U (ΣU−ΣU,n)Σ
−1
U,nLV Lτ

+Σ−1
U L(V n − V )Lτ .

To prove Theorem 1, it suffices to investigate the convergence rate of ∥V̂ n − V ∥
and ∥ΣW,n − ΣW ∥, where ∥A∥ is the Frobenius norm of A. We split the proof

into three main steps and several sub-steps.

Step 1. We show that

∥V n − V ∥ = o
(p log n√

n

)
, almost surely.

Note that V n can be recast as a U -statistic:

V n =
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

h(wi, yi, wj , yj , wk, yk),

with the kernel

h(w1, y1, w2, y2, w3, y3)

=
1

6

[
(w1w

τ
2+w2w

τ
1)1{y1≤y3}1{y2≤y3}+(w1w

τ
3+w3w

τ
1)1{y1≤y2}1{y3≤y2}

+(w2w
τ
3 + w3w

τ
2)1{y2 ≤ y1}1{y3 ≤ y1}

]
.
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We approximate V n with its Hájek projection (Serfling (1980)),

V̂ n =
n∑

i=1

E(V n | wi, yi)− (n− 1)E(V n).

Step 1.1. We show that

∥V n − V̂ n∥ = o
(p logn

n

)
almost surely, (A.2)

because V n − V̂ n is itself a U -statistic that has the form

V n − V̂ n =
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

H(wi, yi, wj , yj , wk, yk),

with the symmetric kernel

H(w1, y1, w2, y2, w3, y3) = h(w1, y1, w2, y2, w3, y3)

−h1(w1, y1)− h1(w2, y2)− h1(w3, y3)− E(V n),

where h1(wi, yi) = E[h(W1, Y1,W2, Y2,W3, Y3) | Wi = wi, Yi = yi] − E(V n).

Using Lemma A in Section 5.2.1 of Serfling (1980, p.183), we have

var(V n − V̂ n) =
18ζ2

n(n− 1)
,

where ζ2 = var[H(W1, Y1,W2, Y2,W3, Y3)] because V n − V̂ n is a degenerated

U -statistic. Next, we calculate the order of ∥ζ2∥. Note that EV n = EV̂ n,

ζ2 = var[H(W1, Y1,W2, Y2,W3, Y3)]

= E[vec(H(W1, Y1,W2, Y2,W3, Y3))vec
τ (H(W1, Y1,W2, Y2,W3, Y3))].

Therefore,

∥ζ2∥ =
∥∥E[vec(H(W1, Y1,W2, Y2,W3, Y3))vec

τ (H(W1, Y1,W2, Y2,W3, Y3))]
∥∥

≤
∥∥E[vecτ (h(W1, Y1,W2, Y2,W3, Y3)− E(V n))

vec(h(W1, Y1,W2, Y2,W3, Y3)− E(V n))]
∥∥

+9
∥∥E[vecτ (h1(W1, Y1)vec(h1(W1, Y1)]

∥∥.
Using the assumption that max

1≤i≤p
E(W 4

i ) < ∞ uniformly in p, we can show without

difficulty that ∥ζ2∥ ≤ Cp
∑p

i=1E(W 4
i ) = O(p2), which ensures that

∥∥var(V n − V̂ n)
∥∥ = O

( p2

n2

)
.
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Take λn = (p log n/n)−1. It suffices to prove that, for any ε > 0,

P (lim supλn∥V n − V̂ n∥ > ε) = 0.

Let ε > 0 be given by the Borel-Cantelli lemma. As λn is nondecreasing for a

large n, it suffices to show that
∞∑
k=0

P
(
λ2k+1 max

2k≤n≤2k+1
∥V n − V̂ n∥ ≥ ε

)
< ∞. (A.3)

Observe that V n − V̂ n is a reverse martingale. By applying the standard result

in Loeve (1978, Sec. 32), we have

P
(
sup
j≥n

∥V j − V̂ j∥ > ε
)
≤ ε−2E∥V n − V̂ n∥2.

The right-hand side of the k-th term of (A.3) can thus be bounded by

ε−2λ2
2k+1E∥V 2k − V̂ 2k∥2 = ε−2p−2

2k+12
2(k+1)(log 22(k+1))−2O

(p2
2k

22k

)
= O((k + 1)−2).

The series is convergent. Thus the Borel-Cantelli lemma yields

∥V n − V̂ n∥ = o
(p log n

n

)
, almost surely.

Step 1.2. We show that

∥V̂ n − V ∥ = o
(p log n√

n

)
almost surely. (A.4)

Note that V̂ n − V = 3n−1
∑n

i=1 h1(wi, yi), where

h1(w1, y1) = E(h(w1, y1, w2, y2, w3, y3) | w1, y1)− E(V n)

= 6−1
{
E[(w1w

τ
2 + w2w

τ
1)1{y1 ≤ y3}1{y2 ≤ y3} | w1, y1]− 2E(V n)

}
+6−1

{
E[(w1w

τ
3 + w3w

τ
1)1{y1 ≤ y2}1{Y3 ≤ y2} | w1, y1]− 2E(V n)

}
+6−1

{
E[(w2w

τ
3 + w3w

τ
2)1{y2 ≤ y1}1{y3 ≤ y1} | w1, y1]− 2E(V n)

}
def
= I1(w1, y1) + I2(w1, y1) + I3(w1, y1).

After some algebraic calculation, we derive

I1(w1, y1) = I2(w1, y1) = 6−1
{
w1E[1{y1 ≤ y3}V τ (y3) | (w1, y1)]

+E[1{y1 ≤ y3}V (y3) | (w1, y1)]w
τ
1 − 2E(V n)

}
and

I3(w1, y1) = 3−1
{
V (y1)V

τ (y1)−E(V n)
}
.
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Recall that EX = Eδ = 0, and thus E(W ) = 0. Note that V̂ n − V is ap-

proximated with an average of independent and identically distributed random

variables. By Theorem 2.3.2 in Section 2.3 of Stout (1974, p.20), we have∥∥∥3n−1
n∑

i=1

Ij(wi, yi)
∥∥∥ = o

(p log n√
n

)
, j = 1, 2, 3.

Now the result of (A.4) is verified, and (A.2) follows from the triangle inequality.

Step 2. We show that

∥ΣW,n − ΣW ∥ = o
(p log n√

n

)
almost surely.

Using similar arguments to those in Step 1.2, and invoking the assumption that

λmax(LL
τ ) < +∞ uniformly in p, we can show that

∥ΣW,n − ΣW ∥ = o
(p log n√

n

)
almost surely and

∥ΣU,n − ΣU∥ = ∥L(ΣW,n − ΣW )Lτ∥ = o
(p log n√

n

)
almost surely.

Step 3. We prove that

∥L(i)
m − L∥ = o

(p logm√
m

)
, i = 1, 2, almost surely.

Using similar arguments to those in Step 1.2, we obtain

∥Σδ,m − Σδ∥ = o
(p logm√

m

)
, almost surely;

∥Σ(i)XW,n − ΣXW ∥ = o
(p logm√

m

)
, i = 1, 2, almost surely; and

∥Σ(i)W,n − ΣW ∥ = o
(p logm√

m

)
, i = 1, 2, almost surely. (A.5)

We can now turn to the asymptotic properties of L
(i)
m , i = 1, 2, respectively:

∥L(1)
m − L∥ = ∥Σ(1)XW,mΣ−1

(1)W,m − ΣXWΣ−1
W ∥

≤ ∥(Σ(1)XW,m − ΣXW )Σ−1
(1)W,m(ΣW − Σ(1)W,m)Σ−1

W ∥

+∥(Σ(1)XW,m − ΣXW )Σ−1
W ∥+ ∥ΣXWΣ−1

(1)W,m(ΣW − Σ(1)W,m)Σ−1
W ∥.

∥L(2)
m − L∥ = ∥Σδ,mΣ−1

(2)W,m − ΣδΣ
−1
W ∥

≤ ∥(Σδ,m − Σδ)Σ
−1
(2)W,m(ΣW − Σ(2)W,m)Σ−1

W ∥+ ∥(Σδ,m − Σδ)Σ
−1
W ∥

+∥ΣδΣ
−1
(2)W,m(ΣW − Σ(2)W,m)Σ−1

W ∥.
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With the assumptions that λmax(LL
τ ) < +∞ and λmax(Σδ) < +∞, λmax(Σ

−1
W ) <

+∞ uniformly in p, together with (A.5), we find that both ∥L(1)
m − L∥ and

∥L(2)
m − L∥ have the rate o(p logm/

√
m) almost surely.

The almost sure convergence of ∥Σ−1
U,mnM

∗
mn − Σ−1

U M∥ = o(p logm/
√
m)

follows from the three foregoing steps.

Proof of Theorem 2. Without loss of generality, we assume that bτiΣUbi = 1

for all i. Because we assume that e is orthogonal to SY |X , by Proposition 1 we

have eτΣ−1
U M = 0, and thus eτ bi = 0.

Step 1. When L is known, we can first calculate the eigenvectors for the eigen-

value decomposition of Mn with respect to ΣU,n: Mnb̂i = λ̂iΣU,nb̂i with the

constraint b̂τiΣU,nb̂i = 1.

eτ b̂i = λ̂−1
i eτΣ−1

U,nMnb̂i = λ̂−1
i eτ

(
Σ−1
U,nMn − Σ−1

U M
)
b̂i

= λ̂−1
i eτ

(
Σ−1
U,nMn − Σ−1

U M
)
bi + λ̂−1

i eτ
(
Σ−1
U,nMn − Σ−1

U M
) (

b̂i − bi
)

=
λi − λ̂i

λ̂iλi

eτ
(
Σ−1
U,nMn − Σ−1

U M
)
bi +

1

λ̂i

eτ
(
Σ−1
U,nMn − Σ−1

U M
) (

b̂i − bi
)

+λ̂−1
i eτ

(
Σ−1
U,nMn − Σ−1

U M
)
bi

def
= J1 + J2 + J3.

We then show that for J1 = oP (1/
√
n), J2 = oP (1/

√
n), and J3 is asymptotically

normal. We split this step into three sub-steps, as follows.

Step 1.1. We show that J1 = oP (1/
√
n). Towards this end, we prove that

∥Σ−1
U,nMn − Σ−1

U M∥ is of order OP (p/n). Because E(U) = 0, the following weak

convergence can be derived from Step 1 in the proof of Theorem 1 as

∥ΣU,n − ΣU − T1∥ =
∥∥∥n−2

n∑
i=1

Ui

n∑
i=1

U τ
i

∥∥∥ = OP (
p

n
),

∥Mn −M − T2∥ = ∥L(V n − V̂ n)L
τ∥ = OP (

p

n
),

where T1
def
= 1

n

∑n
i=1 UiU

τ
i −ΣU and T2

def
= L(V̂ n −V )Lτ . Because both T1 and T2

are sums of the i.i.d. random variables, we have

∥(Σ−1
U,nMn − Σ−1

U M)− Σ−1
U T1Σ

−1
U M +Σ−1

U T2∥ = OP (
p

n
). (A.6)

From (A.6), we observe that Σ−1
U,nMn−Σ−1

U M can be replaced by Σ−1
U T1Σ

−1
U M−

Σ−1
U T2+OP (p/n). Using similar arguments as those used to prove Corollary 1 in
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Zhu, Miao, and Peng (2006), we obtain

p∑
i=1

|λi − λ̂i| ≤
∥∥Σ−1

U,nMn − Σ−1
U M

∥∥. (A.7)

Theorem 1 and (A.7) entail that |λi− λ̂i| = oP (1). Furthermore, invoking eT bi =

0, we have

√
nJ1 =

λi − λ̂i

λ̂iλi

√
neτ

(
Σ−1
U,nMn − Σ−1

U M
)
bi

=
λi − λ̂i

λ̂iλi

√
neτ

(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
+OP (

p

n
)eτ bi

=
√
neτ

(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
oP (1) + oP (1).

From the Linderberg-Feller Central Limit Theorem, we obtain that√
n
(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
= OP (1) and

√
nJ1 = oP (1).

Step 1.2. We prove
√
nJ2 = oP (1). Corollary 1 of Zhu, Miao, and Peng (2006)

proved that ∥b̂i−bi∥ = oP (1). With eτe = 1, ∥eτ (̂bi−bi)∥ = oP (1). Consequently,

√
nJ2 = λ̂−1

i

√
neτ

(
Σ−1
U,nMn − Σ−1

U M
) (

b̂i − bi
)

=
1

λi + oP (1)

√
neτ

(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
oP (1) +OP (

p√
n
)oP (1).

Using similar arguments, we have
√
nJ2 = oP (1) for p = o(n1/2).

Step 1.3. For the asymptotic distribution of
√
nJ3.

√
nJ3 = λ−1

i

√
neτ

(
Σ−1
U,nMn − Σ−1

U M
)
bi

= λ−1
i

√
neτ

(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
bi +OP (p/n)e

τ bi

= λ−1
i

√
neτ

(
Σ−1
U T1Σ

−1
U M − Σ−1

U T2

)
bi + oP (1)

=
eτΣ−1

U

λi
√
n

n∑
j=1

{
(UjU

τ
j −ΣU )Σ

−1
U M−6LI1(wj , yj)L

τ−3LI3(wj , yj)L
τ
}
bi

+oP (1)

def
=

1√
n

n∑
j=1

eτΣ−1
U Sjbi + oP (1),

where

Sj = λ−1
i

{
(UjU

τ
j − ΣU )Σ

−1
U M − 6LI1(wj , yj)L

τ − 3LI3(wj , yj)L
τ
}

(A.8)

and I1(wj , yj) and I3(wj , yj) are those in (A.5) of Step 1.2.
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The asymptotic distribution can be obtained by checking the Linderberg-

Feller conditions. Specifically, for any given ε > 0,

n−1
n∑

j=1

E|eτΣ−1
U Sjbi|2I(|eτΣ−1

U Sjbi| >
√
nε)

= E|eτΣ−1
U Sjbi|2I(|eτΣ−1

U Sjbi| >
√
nε)

≤
{
E(eτΣ−1

U Sjbi)
4
}1/2

P (|eτΣ−1
U Sjbi| >

√
nε)

=
{
E(bτi S

τ
j Σ

−1
U eeτΣ−1

U Sjbi)
2
}1/2

P (|eτΣ−1
U Sjbi| >

√
nε)

≤
{
λ2
max(Σ

−1
U eeτΣ−1

U )E(bτi S
τ
j Sjbi)

2
}1/2

P (|eτΣ−1
U Sjbi| >

√
nε)

≤ O(p3/2)λ−1
min(ΣU )λmax(LL

τ ) max
1≤i≤p

E|Wi|8(bτi bi)2P (|eτΣ−1
U Sjbi| >

√
nε).

Note that 1 = bτiΣUbi ≥ λmin(ΣU )b
τ
i bi, and the assumption is that ΣU are

positive-definite matrices uniformly in p. We also know that bτi bi are uniformly

O(1) in p. Furthermore, max
1≤i≤p

E(|Wi|8) < ∞ and λmax(LL
τ ) < ∞ uniformly for

p. Appealing to the Markov inequality that entails P (|eτΣ−1
U Sjbi| >

√
nε) ≤

E|eτΣ−1
U Sjbi|/

√
nε, we derive

n−1
n∑

j=1

E|eτΣ−1
U Sjbi|2I(|eτΣ−1

U Sjbi| >
√
nε) = O(p3/2/

√
n). (A.9)

When p = o(n1/3), (A.9) is oP (1). Together with (A5) that var(eτΣ−1
U S1bi) → Gi,

we prove that {eτΣ−1
U Sjbi, j = 1, . . . , n} satisfies the conditions of the Linderberg-

Feller Central Limit Theorem.

Step 2. When L is unknown and estimated by either validation or replicated

data with a sample size of m ≤ n, we can show with little difficulty that

∥ΣU,mn − ΣU,n∥ ≤ ∥(L(i)
m − L)ΣW,n(L

(i)
m − L)τ∥+ 2∥(L(i)

m − L)(ΣW,n − ΣW )Lτ∥

+2∥(L(i)
m − L)ΣWLτ∥ = OP (

p

m
),

∥M∗
mn −Mn∥ ≤ ∥(L(i)

m − L)V n(L
(i)
m − L)τ∥+ 2∥(L(i)

m − L)(V n − V )Lτ∥

+2∥(L(i)
m − L)V Lτ∥ = OP (

p

m
).

Therefore,

∥ΣU,mn − ΣU − T1∥ ≤ ∥ΣU,mn − ΣU,n∥+ ∥ΣU,n − ΣU − T1∥ = OP (
p

m
).

∥M∗
mn −M − T2∥ ≤ ∥M∗

mn −Mn∥+ ∥Mn −M − T2∥ = OP (
p

m
).
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∥(Σ−1
U,mnM

∗
n − Σ−1

U M)− Σ−1
U T1Σ

−1
U M +Σ−1

U T2∥ = OP (
p

m
).

The rest of the proof of the second part of Theorem 2 is similar to Step 1. We

omit the details here and emphasize that the optimal rate we can achieve is

p = o(m1/3).

Proof of Theorems 3 and 4. Note that U = LW = LΓX+Lδ and δ⊥⊥(X,Y ).

We have

var[UI{Y ≤ y}] = var[LΓXI{Y ≤ y}+ LδI{Y ≤ y}]
= LΓvar[XI{Y ≤ y}]ΓτLτ + LΣδL

τF (y)

= LΓ {var[XI{Y ≤ y}]− ΣXF (y)}ΓτLτ + L (ΓΣXΓτ +ΣU )L
τF (y)

= LΓ {var[XI{Y ≤ y}]− ΣXF (y)}ΓτLτ + LΣWLτF (y).

The last equality follows from the fact that ΣW = ΓΣXΓτ + Σδ. Following

the arguments for Theorem 4 of Zhu, Zhu, and Feng (2010) using the lin-

earity and constant variance conditions, we can prove without much difficulty

that Σ−1
X {var[XI{Y ≤ Y }]− ΣXF (y)} ⊆ SY |X . With (A.1), we have Σ−1

U Λ∗ =

Σ−1
X {var[XI{Y ≤ Y }]− ΣXF (y)}ΓτLτ ⊆ SY |X .

The proof of Theorem 4 can be completed similarly, we omit the details.
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