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Abstract: In this paper we propose optimal tests for circular reflective symme-

try about a fixed median direction. The distributions against which optimality

is achieved are the k-sine-skewed distributions of Umbach and Jammalamadaka

(2009). We first show that sequences of k-sine-skewed models are locally and

asymptotically normal in the vicinity of reflective symmetry. Following the Le Cam

methodology, we construct optimal (in the maximin sense) parametric tests for re-

flective symmetry, which we render semi-parametric by a studentization argument.

These asymptotically distribution-free tests happen to be uniformly optimal (under

any reference density) and are moreover of a simple and intuitive form. They fur-

thermore exhibit nice small sample properties, as we show through a Monte Carlo

simulation study. Our new tests also allow us to re-visit the famous red wood ants

data set of Jander (1957). The choice of k-sine-skewed alternatives, which are the

circular analogues of the Azzalini-type linear skew-symmetric distributions, per-

mits us a Fisher singularity analysis à la Hallin and Ley (2012) with the result that

only the prominent sine-skewed von Mises distribution suffers from these inferential

drawbacks. We conclude the paper by discussing the unspecified location case.

Key words and phrases: Circular statistics, Fisher information singularity, skewed

distributions, tests for symmetry.

1. Introduction

Symmetry is a fundamental and ubiquitous structural assumption in statis-

tics, underpinning most classical inferential methods, be it for univariate data on

the real line or for circular data. Its acceptance generally simplifies the statisti-

cian’s task, both in the elaboration of new theoretical tools and in the analysis

of a given set of observations. For instance, the classical models for circular

data, such as the von Mises, cardioid, wrapped normal, or wrapped Cauchy dis-

tributions (see Mardia and Jupp (2000, Sec. 3.5)) are all symmetric about their

unique mode. This form of symmetry on the circle is called reflective symmetry.

However, quoting Mardia (1972, p.10), “symmetrical distributions on the cir-

cle are comparatively rare”, and recent years have seen an increasing interest in
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non-symmetric models (see, e.g., Umbach and Jammalamadaka (2009), Kato and

Jones (2010), Abe and Pewsey (2011) or Jones and Pewsey (2012)). It is then all

the more important to be able to test whether the hypothesis of symmetry holds

or not to know whether the classical or the modern models should be used. Since

circular distributions are encountered in several domains of scientific investiga-

tion, with particular emphasis on the analysis of phases of periodic phenomena

(physics, biology, etc.) and on directions (animal movements as a response to

some stimulus, pigeon homing, earth sciences, etc.), practical examples needing

tests for circular symmetry are common. In this paper, we are interested in those

settings where the experimental setup suggests a specific direction about which

to test symmetry, e.g. in animal orientation problems.

While testing for symmetry about a fixed center (the median) is a classical

issue on the real line and has generated an important number of publications,

the situation is quite different in the circular case. Indeed, the null hypothesis

of circular reflective symmetry is relatively unexplored in the literature. There

exist essentially three proposals for such tests (not to be confused with the tests

for ℓ-fold symmetry on the circle, see Jupp and Spurr (1983) or Mardia and Jupp

(2000, p.146)):

• Schach (1969) constructs locally optimal linear rank tests against rotation al-

ternatives, the circular analogue of a linear shift alternative. His construction

comprises the circular sign and Wilcoxon tests.

• Universally consistent tests from the linear setting have been adapted to the

circular case (such as the runs tests, see Pewsey (2004)).

• A “true” test for circular symmetry has been studied in Pewsey (2004) by

having recourse to the second sine moment about the fixed median direction,

a classical measure of circular skewness, see Batschelet (1965).

The scarcity of existing tests for circular symmetry might at first sight seem

puzzling as one may be tempted to say that all tests for (linear) univariate sym-

metry should be adaptable to the circular setup (such as done for runs tests),

replacing the real line by [−π, π). However, this translation from one setup to

the other is not straightforward, due to several facts including that the points at

π and −π coincide as periodicity is an essential feature of circular distributions.

Moreover, when observations are distributed on a large arc of the circle, it is

likely that adapted tests suffer from a loss of power (Pewsey (2004)). It also

seems unlikely that optimal tests on the real line would retain their optimality

features on the circle, nothing a priori ensures that they behave well against

the complicated wrapped versions of the univariate skew distributions they were

designed for. Thus, except against rotation alternatives, there exist no optimal

tests for reflective symmetry.
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Our aim in the present paper is to fill this gap by proposing tests for circular

reflective symmetry about a fixed center that behave very well against certain

(general) skew alternatives. More specifically, we build locally and asymptoti-

cally optimal (in the maximin sense) tests for symmetry against k-sine-skewed

alternatives (Umbach and Jammalamadaka (2009), Abe and Pewsey (2011)), a

broad class of recently proposed skew circular distributions that has received

an increasing interest over the past few years (see Section 2 for a description).

These skew distributions are obtained by perturbation of a base symmetric dis-

tribution via a factor involving sines and a parameter to regulate skewness. The

motivations for this choice are mainly twofold: they are circular analogues of the

skew-symmetric distributions on the real line (see Azzalini and Capitanio (2003)

or Wang, Boyer, and Genton (2004)) inspired by the skew-normal distribution

proposed in the seminal paper Azzalini (1985), and the resulting test statistics

are based on the (trigonometric) sine moments. We thus provide these classical

measures of circular skewness as well as the test of Pewsey (2004) with so far

not known optimality properties. Our findings also enable us to discuss Fisher

singularity issues exactly as in the linear case.

The backbone of our approach is the Le Cam methodology which, although

of linear nature, lends itself well for a transcription to circular settings (and

even, with much more complications, to data living on unit hyperspheres in

higher dimensions, see Ley et al. (2013)) In a first stage, we obtain optimal

parametric tests, and then, by means of studentization arguments, we turn them

into semi-parametric ones, valid under the entire null hypothesis of symmetry

and uniformly optimal under any given symmetric base distribution. We hence

derive, as Schach (1969), a family of fully efficient semi-parametric tests which, in

our case, are always optimal. For a given density, our tests behave asymptotically

like the likelihood ratio tests, but they improve on the latter by their simplicity

and the fact that, thanks to the Le Cam approach, one can derive explicit power

expressions against sequences of contiguous skew alternatives.

The paper is organized as follows. In Section 2, we first describe the family of

k-sine-skewed distributions, then establish their ULAN property in the vicinity

of symmetry, the crucial step in the Le Cam approach, and discuss some aspects

of this property. In Section 3, we construct our optimal tests for reflective sym-

metry about a known center and investigate their asymptotic properties. The

finite-sample performances of our tests for reflective symmetry are evaluated and

compared to existing tests in a large Monte Carlo simulation study, see Section 4.

Application to the famous red wood ants data set of Jander (1957) is reported

on in Section 5. The Fisher information singularity issue is tackled in Section 6.

Section 7 concludes the paper with final comments and an outlook on the case
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where the median direction is not specified, as considered e.g., in Pewsey (2002).

An Appendix collects the proofs.

2. k-sine-skewed Distributions and the ULAN Property

In this section, we first describe in detail the class of k-sine-skewed circular

distributions and then establish their ULAN property. Throughout, all angles

are in radians and we choose without loss of generality the zero direction as

initial direction and anti-clock-wise orientation of the unit circle. To stress the

difference between symmetry and asymmetry, we consider the interval [−π, π)
instead of [0, 2π), and define quantities such as the cumulative distribution func-

tion (cdf) accordingly. This can lead to some differences with the commonly

adopted notation of, e.g., Mardia and Jupp (2000, Chap. 3), but they do not

affect the mathematical outcomes.

2.1. k-sine-skewed densities

The k-sine-skewed distributions are obtained by perturbation of a base sym-

metric density. Define the collection

F :=

{
f0 : f0(θ) > 0 a.e., f0(θ + 2πk) = f0(θ)∀k ∈ Z, f0(−θ) = f0(θ),

f0 unimodal at 0,

∫ π

−π
f0(θ)dθ = 1

}
of unimodal reflectively symmetric (about the zero direction) circular densities.

The periodicity requirement is both classical and essential when dealing with

circular distributions. The best-known representatives of the collection F are the

von Mises, cardioid, and wrapped Cauchy distributions, with respective densities

fVMκ(θ) := (1/2πI0(κ)) exp(κ cos(θ)) for κ > 0 (I0 stands for the modified Bessel

function of the first kind and order zero), fCAℓ
(θ) := (1/2π)(1 + ℓ cos(θ)) for

ℓ ∈ (0, 1), and fWCρ(θ) := [(1− ρ2)/2π][1/(1 + ρ2 − 2ρ cos(θ))] for ρ ∈ (0, 1).

A location parameter µ ∈ [−π, π) is readily introduced as center of symmetry,

leading to densities f(θ− µ), θ ∈ [−π, π), with mode µ. Inspired by the classical

one-dimensional skewing method of Azzalini and Capitanio (2003), Umbach and

Jammalamadaka (2009) have skewed such symmetric densities f0 by transforming

them into

2f0(θ − µ)G(ω(θ − µ)), θ ∈ [−π, π),

where G(θ) =
∫ θ
−π g(y)dy is the cdf of some circular symmetric density g and

ω is a weighting function satisfying, for all θ ∈ [−π, π), the three conditions

ω(−θ) = −ω(θ), ω(θ + 2πk) = ω(θ)∀k ∈ Z, and |ω(θ)| ≤ π. This construction

being too general, and for the sake of mathematical tractability, Umbach and
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Jammalamadaka particularized their choice to G(θ) = (π + θ)/(2π), the cdf of

the uniform circular distribution, and ω(θ) = λπ sin(kθ), k ∈ N0, with λ ∈ (−1, 1)

playing the role of a skewness parameter. This yields what we call the k-sine-

skewed densities

fkµ,λ(θ) := f0(θ − µ)(1 + λ sin(k(θ − µ))), θ ∈ [−π, π), (2.1)

with location parameter µ ∈ [−π, π) and skewness parameter λ ∈ (−1, 1). When

λ = 0, no perturbation occurs and we retrieve the base symmetric density, other-

wise (2.1) is skewed to the left (λ > 0) or to the right (λ < 0). Further properties

of k-sine-skewed distributions are that fkµ,λ(µ−θ) = fkµ,−λ(µ+θ), f
k
µ,λ(µ) = f0(0)

whatever the value of λ, and the two endpoints, fkµ,λ(µ−π) and fkµ,λ(µ+π), coin-
cide. For k ≥ 2, fkµ,λ is multimodal whereas, for k = 1, multimodality only rarely

occurs. This explains why Abe and Pewsey (2011) restricted their attention to

the study of the densities

fµ,λ(θ) := f0(θ − µ)(1 + λ sin(θ − µ)), θ ∈ [−π, π), (2.2)

which they called sine-skewed circular densities (hence our terminology k-sine-

skewed densities for general k). Abe and Pewsey have given the conditions under

which the densities (2.2) are multimodal. In the present paper, we establish all

our theoretical results and propose tests for general k-sine-skewed distributions.

Note that, when f0 is the circular uniform density, then (2.2) is the cardioid

density fCAλ
with mode at µ + π/2(mod 2π), hence, in passing, we will as well

consider an optimal test for uniformity against the cardioid distribution.

Sine-skewed (and k-sine-skewed) distributions lend themselves well to model-

ing real data phenomena. Aside from Abe and Pewsey (2011), these skew-circular

distributions have been used, inter alia, in the analysis of the CO2 daily cycle in

the low atmosphere at a rural site (Pérez et al. (2012)) and of forest disturbance

regimes (Abe et al. (2012)). This, combined with the motivations stated in the

Introduction, makes k-sine-skewed distributions an appealing choice as asymmet-

ric alternatives in the construction of tests for circular reflective symmetry.

2.2. The ULAN property for k-sine-skewed densities

Let θ1, . . . , θn be i.i.d. circular observations with common density (2.1). For

any symmetric base density f0 ∈ F and any k ∈ N0, denote by P
(n)
ϑϑϑ;f0,k

, where

ϑϑϑ := (µ, λ)′ ∈ [−π, π) × (−1, 1), the joint distribution of the n-tuple θ1, . . . , θn.

Since, for λ = 0, the density fkµ,λ reduces to f0 and hence does not depend on k,

we drop the index k and simply write P
(n)
ϑϑϑ;f0

at ϑϑϑ = ϑϑϑ0 := (µ, 0)′. Any pair (f0, k)

induces the parametric location-skewness model

P(n)
f0,k

:=
{
P
(n)
ϑϑϑ;f0,k

: ϑϑϑ ∈ [−π, π)× (−1, 1)
}
,
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whereas any k ∈ N0 induces the semi-parametric location-skewness model P(n)
k :=

∪f0∈FP
(n)
f0,k

.

The first step in our construction of tests for symmetry about a fixed center
consists in establishing the Uniform Local Asymptotic Normality (ULAN) prop-

erty, in the vicinity of symmetry (i.e., at λ = 0), of the parametric model P(n)
f0,k

.
This paves the way to numerous other applications of the Le Cam theory such
as the construction of tests for symmetry about an unspecified center or of the
one-step optimal estimators, see e.g., van der Vaart (2002). ULAN requires the
following mild regularity condition on the base densities f0.

Assumption (A). The function f0(θ) is a.e.-C1 over [−π, π) (or equivalently
over R by periodicity) with a.e.-derivative ḟ0.

Most classical reflectively symmetric densities satisfy this requirement. Note
that the C1 condition over a bounded set combined with the fact that f0 >
0 and the periodicity condition entails that, letting φf0 = −ḟ0/f0, the Fisher
information quantity for location If0 :=

∫ π
−π φ

2
f0
(θ)f0(θ)dθ is finite. ULAN of the

parametric model P(n)
f0,k

with respect to ϑϑϑ = (µ, λ)′, in the vicinity of symmetry,
then takes the following form.

Theorem 1. Let f0 ∈ F and k ∈ N0, and assume that Assumption (A) holds.

Then, for any µ ∈ [−π, π), the parametric family of densities P(n)
f0,k

is ULAN at
ϑϑϑ0 = (µ, 0)′ with central sequence

∆∆∆
(n)
f0,k

(µ) :=

(
∆

(n)
f0,k;1

(µ)

∆
(n)
k;2(µ)

)

:=
1√
n

n∑
i=1

(
φf0(θi − µ)

sin(k(θi − µ))

)
,

and corresponding Fisher information matrix

ΓΓΓf0,k :=

(
Γf0,k;11 Γf0,k;12

Γf0,k;12 Γf0,k;22

)
,

where Γf0,k;11 := If0, Γf0,k;12 :=−
∫ π
−π sin(kθ)ḟ0(θ)dθ, and Γf0,k;22 :=

∫ π
−π sin

2(kθ)

f0(θ)dθ. More precisely, for any µ(n) = µ + O(n−1/2) and for any bounded

sequence τττ (n) = (τ
(n)
1 , τ

(n)
2 )′ ∈ R2 such that n−1/2τ

(n)
2 belongs to (−1, 1), we have,

letting Λ(n) := log(dP
(n)

(µ(n)+n−1/2τ
(n)
1 ,n−1/2τ

(n)
2 )′;f0,k

/dP
(n)

(µ(n),0)′;f0,k
),

Λ(n) = τττ (n)
′
∆∆∆

(n)
f0,k

(µ(n))− (1/2)τττ (n)
′
ΓΓΓf0,kτττ

(n) + oP(1) (2.3)

and ∆∆∆
(n)
f0,k

(µ(n))
L→ N2(000,ΓΓΓf0,k), both under P

(n)

(µ(n),0)′;f0,k
as n→ ∞.
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The proof is given in the Appendix. One easily sees that the Fisher infor-

mation for skewness Γf0,k;22, and hence the cross-information quantity Γf0,k;12, is

finite by bounding sin2 by 1 under the integral sign. Note that the constant k has

no effect on the validity of Theorem 1 and that ∆
(n)
k;2(µ) does not depend on f0,

a fact that will become of great interest in the sequel. With this ULAN property

in hand, we are ready to derive our optimal tests for reflective symmetry about

a fixed center θ, as explained below in Section 2.3. Moreover, since we do not

fix µ in Theorem 1, our result also paves the way for deriving optimal tests for

symmetry about an unknown center; see Section 7.

We conclude the section by noting, in view of the proof of Lemma A.1 in the

Appendix, that Assumption (A) can be weakened to

Assumption (Amin). The mapping θ 7→ f
1/2
0 (θ) is differentiable in quadratic

mean over [−π, π) (or equivalently over R by periodicity) with quadratic mean or

weak derivative (f
1/2
0 )′(θ) and, letting ψf0(θ) = −2(f

1/2
0 )′(θ)/f

1/2
0 (θ), the Fisher

information quantity for location Jf0 :=
∫ π
−π ψ

2
f0
(θ)f0(θ)dθ is finite.

Quadratic mean differentiability of f
1/2
0 , a classical requirement in the Le

Cam framework, means that
∫ π
−π(f

1/2
0 (θ+ h)− f

1/2
0 (θ)− hψf0(θ))

2dθ = o(h2) as

h→ 0, which corresponds exactly to the integral (A.1) of the proof of Theorem

1 with h = −t and hence is the minimal condition in order to have the ULAN

property of the parametric model P(n)
f0,k

. Under Assumption (A), these two deriva-

tives coincide a.e., as well as ψf0 and φf0 , and Jf0 = If0 (the C1 condition ensures

finiteness of If0 , while in (Amin) one requires that Jf0 <∞).

2.3. Constructing Le Cam optimal tests from the ULAN property

The ULAN property allows us to deduce that (see Le Cam (1986) for de-

tails) our parametric location-skewness model P(n)
f0,k

is locally (around (µ, 0)′)

and asymptotically (for large sample sizes) equivalent to a simple Gaussian shift

model. Intuitively, this follows from the fact that the likelihood ratio expan-

sion (2.3), up to the remainder terms, strongly resembles the likelihood ratio

of a Gaussian shift model N2(ΓΓΓf0,kτττ
(n),ΓΓΓf0,k) with a single observation denoted

by ∆∆∆
(n)
f0,k

. Since the optimal procedures for Gaussian shift experiments are well-

known, we can translate them into our circular location-skewness model and

hence obtain inferential procedures that are asymptotically optimal in the max-

imin sense. Recall that a test ϕ∗ is called maximin in the class Cα of level-α tests

for the null H0 against the alternative H1 if (i) ϕ∗ has level α and (ii) the power

of ϕ∗ is such that

inf
P∈H1

EP[ϕ
∗] ≥ sup

ϕ∈Cα
inf

P∈H1

EP[ϕ].
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We employ this scheme for testing the null hypothesis Hµ
0 of symmetry about

a known central direction µ ∈ [−π, π). Our procedures are (asymptotically)

optimal against a fixed k-sine-skewed alternative (2.1). We first construct f0-

parametric tests for Hµ
0;f0

= P
(n)
(µ,0)′;f0

: the optimality of these tests under the

base density f0 is thwarted by the fact that they meet the asymptotic level-α

constraint only under f0. To avoid this non-validity beyond f0, we make use of

a classical studentization argument allowing us to turn our parametric tests into

tests for the semi-parametric null hypothesis Hµ
0 = ∪f0∈FP

(n)
(µ,0)′;f0

.

3. The Test Statistic and Its Asymptotic Properties

Fix µ ∈ [−π, π). The f0-parametric test ϕ
(n);µ
f0;k

for circular reflective sym-

metry about a known central direction µ we propose rejects Hµ
0;f0

at asymptotic

level α whenever the statistic

Q
(n);µ
f0;k

:=
|∆(n)

k;2(µ)|

Γ
1/2
f0,k;22

=
|n−1/2

∑n
i=1 sin(k(θi − µ))|
Γ
1/2
f0,k;22

(3.1)

exceeds zα/2, the α/2 upper quantile of the standard normal distribution. Tests

for reflective symmetry against one-sided alternatives of the form λ > 0 or

λ < 0 are built similarly. It follows from the Le Cam theory that this test is

locally and asymptotically maximin for testing the null Hµ
0;f0

against Hµ
1;f0,k

:=

∪λ ̸=0∈(−1,1)P
(n)
(µ,λ)′;f0,k

. This optimality does not hold against k′-sine-skewed laws

with k′ ̸= k, each value of k leads to a distinct optimal test.

Consider g0 ∈ F . Under P
(n)
(µ,0)′;g0

, ∆
(n)
k;2(µ) is asymptotically normal with

mean 0 and variance Γg0,k;22 ̸= Γf0,k;22. It is therefore natural to consider the

studentized test ϕ
∗(n);µ
k that rejects (at asymptotic level α) the null of circular

reflective symmetry Hµ
0 when

Q
∗(n);µ
k :=

|
∑n

i=1 sin(k(θi − µ))|(∑n
i=1 sin

2(k(θi − µ))
)1/2 (3.2)

exceeds zα/2. This very simple test statistic does not depend on f0 (hence the

omission of the index f0 in ϕ
∗(n);µ
k ) since the central sequence for skewness,

∆
(n)
k;2(µ), does not depend on f0. This remarkable fact implies that all para-

metric tests ϕ
(n);µ
f0;k

, k ∈ N, lead to the same studentized test statistic ϕ
∗(n);µ
k ,

which therefore inherits optimality from its parametric antecedents under any

base symmetric distribution! This is all summarized in the following result (see

the Appendix for a proof).

Theorem 2. Let k ∈ N0. Then,
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(i) under ∪f0∈FP
(n)
(µ,0)′;f0

, Q
∗(n);µ
k

D→ N (0, 1) as n → ∞, so that the test ϕ
∗(n);µ
k

has asymptotic level α under the same hypothesis;

(ii) under P
(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

with f0 ∈ F and k′ ∈ N0, Q
∗(n);µ
k is asymptot-

ically normal with mean Γ
−1/2
f0,k;22

Cf0(k, k
′)τ2 and variance 1, where τ2 =

limn→∞ τ
(n)
2 and Cf0(k, k

′) :=
∫ π
−π sin(kθ) sin(k

′θ)f0(θ) dθ (which is finite);

(iii) for all f0 ∈ F , Q
∗(n);µ
k = Q

(n);µ
f0;k

+oP(1) as n→ ∞ under P
(n)
(µ,0)′;f0

, so that the

studentized test ϕ
∗(n);µ
k is locally and asymptotically maximin, at asymptotic

level α, when testing Hµ
0 against alternatives of the form ∪λ̸=0∈(−1,1) ∪f0∈F

P
(n)
(µ,λ)′;f0,k

.

Theorem 2(i) shows that the studentized test ϕ
∗(n);µ
k is indeed valid under

the entire null hypothesis Hµ
0 , hence is asymptotically distribution-free. Note the

uniform (in f0, not in k) optimality of our studentized test.

We have also considered above alternatives where k ∈ N is replaced by some

k′ ∈ N possibly different from the k used in the construction of the tests. Point (ii)

of Theorem 2 allows us to give the explicit asymptotic power of ϕ
∗(n);µ
k against

the local alternatives P
(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

:

1−Φ
(
zα/2 − (Γf0,k;22)

−1/2Cf0(k, k
′)τ2

)
+Φ

(
−zα/2 − (Γf0,k;22)

−1/2Cf0(k, k
′)τ2

)
,

where Φ is the standard Gaussian cdf. In Figure 1, we have plotted this power

as a function of τ2 for f0 the von Mises density with concentration parameter 1

and for k = 2 and k′ = 1, 2, 3. The plot shows that the power of the test is lower

if k′ is not correctly chosen.

For f0(θ) = 1/2π, the uniform density, (2.2) with k = 1 corresponds to the

cardioid density with mode at µ+ π/2 ∈ [−π, π). Hence, for fixed µ, an optimal

test for testing the null hypothesis of uniformity against cardioid alternatives

shall be based on (3.1) with k = 1 and Γf0,k;22 = 1
2 . It can be easily shown

that the test statistic coincides with the Rayleigh (1919) test statistic, known

to be optimal for the null hypothesis of uniformity against cardioid alternatives

(see Jammalamadaka and Sengupta (2001, p.133)). When k = 2, ϕ
∗(n);µ
2 coin-

cides with the so-called “b2-star” test proposed in Pewsey (2004). We have thus

shown that that test enjoys maximin optimality features against 2-sine-skewed

alternatives, and provided its asymptotic powers against contiguous alternatives.

This not only complements, but also gives further insight into the b2-star test.

Finally, our tests are easy to interpret, being based on sine moments, the classical

measures of skewness for circular data (see, e.g., Batschelet (1965)).
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Figure 1. Power curves, as a function of τ2, of the studentized test ϕ
∗(n);µ
k

for k = 2 against local alternatives P
(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

for f0 the von Mises

density with concentration parameter 1 and for k′ equal to 1 (solid line), 2
(dashed line) and 3 (dotted line).

4. Monte Carlo Simulation Study

In this section we report on the finite-sample properties of the proposed test-

ing procedures for reflective symmetry. We check the nominal level constraint

under distinct forms of reflective symmetry and determine the power properties

under various forms of asymmetry. For this, we generated N = 10, 000 inde-

pendent samples of sizes n = 30 and n = 100 from reflectively symmetric and

increasingly skewed (λ > 0) circular distributions, and ran our tests (which con-

tain Pewsey’s b2star test), as well as the modified runs test of Pewsey (2004),

under two-sided form at the asymptotic level α = 5%.

Without loss of generality, we fix the center of symmetry µ to 0. We ran our

tests ϕ
∗(n);0
1 , ϕ

∗(n);0
2 and ϕ

∗(n);0
3 as well as the modified runs test ϕ

(n)
modrun (with

p = 0.6, see Pewsey (2004)). We consider k = 1, 2, 3 for our tests because these

values are able to capture both skew unimodality (k = 1) and multimodality, but

do not lead to too many oscillations of the sines within [−π, π) which can lead

to numerical difficulties.

As reflectively symmetric distributions representing the null hypothesis, we

considered the von Mises laws fVM1 and fVM10 , the cardioid fCA0.5 , the wrapped

Cauchy fWC0.5 as well as a mixture of two fVM1 and two fVM10 von Mises laws

with, in each case, respective centers at −π/4 and π/4 and mixing probability

0.5. The latter mixture is meant to assess the performances of our tests under

bimodality. The densities fVM1 and fVM10 were then turned into their 1-,2- and 3-

sine-skewed versions, whereas fCA0.5 and fWC0.5 were 1- and 2-sine-skewed. The

skewness parameter λ was increased from zero to successively positive values.
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Table 1. Empirical rejection probabilities, out of N = 10, 000 replications
and for the sample sizes n = 30 and n = 100, under various reflectively sym-

metric and 1-sine-skewed distributions, of the optimal tests ϕ
∗(n);0
1 , ϕ

∗(n);0
2

and ϕ
∗(n);0
3 as well as of the modified runs test ϕ

(n)
modrun with p = 0.6. Tests

were performed at level α = 5%.

Test n = 30/n = 100 n = 30/n = 100 n = 30/n = 100 n = 30/n = 100
1-sine-skewed fVM1

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.047/0.048 0.110/0.266 0.311/0.779 0.608/0.988

ϕ
∗(n);0
2 0.051/0.053 0.063/0.090 0.101/0.228 0.156/0.449

ϕ
∗(n);0
3 0.046/0.054 0.047/0.053 0.051/0.062 0.056/0.074

ϕ
(n)
modrun 0.054/0.054 0.064/0.072 0.112/0.156 0.204/0.375

1-sine-skewed fVM10

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.046/0.048 0.058/0.095 0.091/0.235 0.164/0.458

ϕ
∗(n);0
2 0.047/0.048 0.059/0.093 0.090/0.234 0.164/0.451

ϕ
∗(n);0
3 0.048/0.047 0.058/0.087 0.086/0.212 0.151/0.408

ϕ
(n)
modrun 0.053/0.051 0.054/0.060 0.070/0.089 0.096/0.150

1-sine-skewed fCA0.5

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.051/0.051 0.111/0.292 0.341/0.824 0.666/0.994

ϕ
∗(n);0
2 0.049/0.046 0.054/0.065 0.070/0.107 0.089/0.185

ϕ
∗(n);0
3 0.052/0.048 0.046/0.051 0.052/0.050 0.049/0.048

ϕ
(n)
modrun 0.043/0.051 0.061/0.064 0.094/0.128 0.163/0.262

1-sine-skewed fWC0.5

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.048/0.049 0.100/0.227 0.270/0.693 0.539/0.972

ϕ
∗(n);0
2 0.050/0.052 0.060/0.083 0.091/0.197 0.143/0.382

ϕ
∗(n);0
3 0.050/0.049 0.048/0.056 0.060/0.085 0.067/0.125

ϕ
(n)
modrun 0.051/0.052 0.061/0.074 0.106/0.153 0.200/0.345

The bimodal mixture of von Mises laws was skewed by shifting the center π/4 to

π/4+λ. To investigate other forms of perturbation of symmetry, we applied the

Moebius transform of Kato and Jones (2010) to fVM1 and fVM10 with r = 0.5:

this transforms each θi, i = 1, . . . , n, into λ + 2arctan (ωr tan ((θi − λ)/2)) with

ωr = (1− r)/(1 + r). The empirical rejection probabilities are reported in Table 1

for 1-sine-skewed alternatives, Table 2 for 2-sine-skewed alternatives, and Table 3

for Moebius, von Mises mixtures and 3-sine-skewed alternatives.

Whatever sample sizes considered, all four tests met the 5% nominal level

constraint under each reflectively symmetric density considered, even under bi-

modality, and appeared unbiased. Under k-sine-skewed alternatives, the opti-

mality features of our tests ϕ
∗(n);0
k were confirmed, whereas under certain k′-sine-

skewed densities the test ϕ
∗(n);0
k for k ̸= k′ exhibited low powers (especially when

combining the indices 1 and 3). When the observations were highly concentrated
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Table 2. Empirical rejection probabilities, out of N = 10, 000 replications
and for the sample sizes n = 30 and n = 100, under various reflectively sym-

metric and 2-sine-skewed distributions, of the optimal tests ϕ
∗(n);0
1 , ϕ

∗(n);0
2

and ϕ
∗(n);0
3 as well as of the modified runs test ϕ

(n)
modrun with p = 0.6. Tests

were performed at level α = 5%.

Test n = 30/n = 100 n = 30/n = 100 n = 30/n = 100 n = 30/n = 100
2-sine-skewed fVM1

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.048/0.048 0.064/0.103 0.107/0.254 0.186/0.491

ϕ
∗(n);0
2 0.049/0.049 0.115/0.295 0.347/0.825 0.669/0.994

ϕ
∗(n);0
3 0.047/0.047 0.060/0.097 0.102/0.242 0.173/0.482

ϕ
(n)
modrun 0.048/0.048 0.056/0.067 0.081/0.122 0.131/0.244

2-sine-skewed fVM10

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.049/0.049 0.084/0.175 0.201/0.572 0.414/0.901

ϕ
∗(n);0
2 0.050/0.050 0.086/0.179 0.205/0.577 0.419/0.907

ϕ
∗(n);0
3 0.050/0.049 0.083/0.173 0.201/0.553 0.405/0.890

ϕ
(n)
modrun 0.049/0.054 0.065/0.068 0.117/0.176 0.211/0.405

2-sine-skewed fCA0.5

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.049/0.048 0.051/0.060 0.067/0.106 0.086/0.186

ϕ
∗(n);0
2 0.048/0.049 0.121/0.292 0.336/0.820 0.670/0.993

ϕ
∗(n);0
3 0.047/0.051 0.055/0.065 0.066/0.113 0.089/0.187

ϕ
(n)
modrun 0.046/0.050 0.059/0.071 0.097/0.137 0.171/0.289

2-sine-skewed fWC0.5

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.051/0.051 0.066/0.096 0.105/0.223 0.165/0.456

ϕ
∗(n);0
2 0.053/0.055 0.113/0.277 0.315/0.788 0.642/0.992

ϕ
∗(n);0
3 0.046/0.048 0.066/0.094 0.109/0.264 0.192/0.524

ϕ
(n)
modrun 0.051/0.047 0.056/0.067 0.082/0.123 0.139/0.262

(fVM10 case), the differences in performance between the three tests vanished.

All our tests were powerful under the Moebius transformed skew densities, and

even under skewed von Mises mixture distributions with high concentration pa-

rameter κ. This suggests that the proposed tests also perform well under other

skew laws. Our three tests generally outperformed the modified runs test.

5. A Real Data Application

We applied our optimal tests for reflective symmetry to a well-known data set

from an animal orientation experiment. This data set stems from an experiment

with 730 red wood ants (Formica rufa L.) described in Jander (1957). Each ant

was individually placed in the center of an arena with a black target positioned

at an angle of 180◦ from the zero direction, and the initial direction in which each

ant moved upon release was recorded to the nearest 10◦. Thus it is clear that
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Table 3. Empirical rejection probabilities, out of N = 10, 000 replications
and for the sample sizes n = 30 and n = 100, under various reflectively sym-

metric and various skewed distributions, of the optimal tests ϕ
∗(n);0
1 , ϕ

∗(n);0
2

and ϕ
∗(n);0
3 as well as of the modified runs test ϕ

(n)
modrun with p = 0.6. Tests

were performed at level α = 5%.

Test n = 30/n = 100 n = 30/n = 100 n = 30/n = 100 n = 30/n = 100
Moebius transformed fVM1

λ = 0 λ = 0.2/3 λ = 0.4/3 λ = 0.2

ϕ
∗(n);0
1 0.051/0.051 0.074/0.127 0.142/0.351 0.239/0.639

ϕ
∗(n);0
2 0.050/0.049 0.082/0.153 0.169/0.453 0.304/0.776

ϕ
∗(n);0
3 0.047/0.048 0.082/0.154 0.163/0.460 0.302/0.771

ϕ
(n)
modrun 0.049/0.053 0.057/0.059 0.074/0.074 0.086/0.116

Moebius transformed fVM10

Test λ = 0 λ = 0.02 λ = 0.04 λ = 0.06

ϕ
∗(n);0
1 0.046/0.046 0.092/0.215 0.244/0.641 0.464/0.937

ϕ
∗(n);0
2 0.047/0.048 0.092/0.215 0.245/0.644 0.466/0.938

ϕ
∗(n);0
3 0.047/0.048 0.093/0.215 0.247/0.646 0.469/0.940

ϕ
(n)
modrun 0.050/0.052 0.069/0.081 0.133/0.204 0.237/0.457

Skewed fVM1 mixtures

Test λ = 0 λ = 0.4 λ = 0.8 λ = 1.2

ϕ
∗(n);0
1 0.048/0.053 0.067/0.102 0.072/0.149 0.066/0.095

ϕ
∗(n);0
2 0.048/0.049 0.052/0.054 0.072/0.123 0.107/0.256

ϕ
∗(n);0
3 0.050/0.048 0.050/0.051 0.048/0.052 0.047/0.053

ϕ
(n)
modrun 0.049/0.049 0.053/0.057 0.073/0.078 0.066/0.086

Skewed fVM10 mixtures

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.049/0.050 0.066/0.121 0.103/0.253 0.130/0.341

ϕ
∗(n);0
2 0.053/0.051 0.055/0.065 0.138/0.361 0.502/0.957

ϕ
∗(n);0
3 0.050/0.050 0.255/0.676 0.835/0.999 0.990/1.00

ϕ
(n)
modrun 0.051/0.053 0.132/0.238 0.407/0.802 0.734/0.995

3-sine-skewed fVM1

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.046/0.052 0.050/0.052 0.057/0.063 0.058/0.080

ϕ
∗(n);0
2 0.051/0.050 0.060/0.098 0.104/0.240 0.176/0.482

ϕ
∗(n);0
3 0.047/0.048 0.117/0.290 0.340/0.828 0.676/0.995

ϕ
(n)
modrun 0.051/0.046 0.059/0.065 0.083/0.132 0.128/0.280

3-sine-skewed fVM10

Test λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

ϕ
∗(n);0
1 0.049/0.046 0.099/0.230 0.266/0.689 0.548/0.970

ϕ
∗(n);0
2 0.050/0.047 0.103/0.245 0.280/0.722 0.574/0.980

ϕ
∗(n);0
3 0.049/0.049 0.105/0.255 0.287/0.743 0.593/0.984

ϕ
(n)
modrun 0.052/0.050 0.067/0.079 0.132/0.201 0.264/0.511

the experimental design suggests the black target as natural median direction, a

fact that is clearly corroborated by the graphical representation of the data in

Figure 2. The question of interest is whether the directions chosen by the ants
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Figure 2. Raw circular plot of the Jander (1957) data set recorded during
an orientation experiment with 730 red wood ants. Each dot represents the
direction chosen by five ants.

are symmetrically distributed around the median direction representing the black

target, allowing us to know inter alia whether the classical symmetric or the more

recent skew distributions better model this data set. Papers that investigated

this problem include Pewsey (2004), Umbach and Jammalamadaka (2009) and

Abe and Pewsey (2011).

This data set is a good candidate for testing circular symmetry about a

known median direction. The data plot in Figure 2 indicates that the underlying

density might be multimodal rather than unimodal, indicating that the tests

ϕ
∗(n);0
2 and ϕ

∗(n);0
3 might be more powerful in the present situation than ϕ

∗(n);0
1 (see

Abe and Pewsey (2011) for a discussion on conditions under which 1-sine-skewed

distributions are unimodal or multimodal). Indeed, ϕ
∗(n);0
1 yields a p-value of

0.778, while ϕ
∗(n);0
2 and ϕ

∗(n);0
3 , respectively, give p-values 0.011 and 0.013. The

latter two p-values provide evidence that the data are in fact not symmetrically

distributed around the median direction of 180◦. Pewsey (2004) obtained the

same conclusion with his b2star test. Abe and Pewsey (2011) find that neither

the symmetric nor the 1-sine-skewed distributions provide an adequate fit to

these data. Their findings are not a surprise: according to ϕ
∗(n);0
1 , 1-sine-skewed

densities show no improvement over symmetric ones, and our other tests reject

the hypothesis of reflective symmetry at just above the 1% level. As a conclusion,

the ant data look to be better fitted by 2- or 3-sine-skewed distributions.

6. Singularity of the Location-Skewness Fisher Information Matrix

The skew-normal distribution of Azzalini (1985) is also famous for having

a singular Fisher information matrix in the vicinity of symmetry, due to the

collinearity of the scores for location and skewness in its initial parameteriza-

tion. A large literature has been devoted to the analysis of the reasons for this

singularity, to its negative impact on inferential procedures, to possible cures
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(reparameterizations), and to the study of which other skew-symmetric distribu-

tions suffer from the same drawback. For a recent overview see Hallin and Ley

(2012), where the class of skew-symmetric distributions suffering from the Fisher

singularity is determined.

The present section can be inscribed into this stream of literature. We solve

the same problem for k-sine-skewed circular distributions. Moreover, our results

are very important when one considers the construction of optimal tests about

an unknown center µ, as will be briefly discussed in the final section. Recall that

the information matrix in the vicinity of symmetry is given by

ΓΓΓf0,k =


∫ π

−π
φ2
f0(θ)f0(θ)dθ

∫ π

−π
sin(kθ)φf0(θ)f0(θ)dθ∫ π

−π
sin(kθ)φf0(θ)f0(θ)dθ

∫ π

−π
sin2(kθ)f0(θ)dθ

 .

This matrix is singular if and only if(∫ π

−π
φ2
f0(θ)f0(θ)dθ

)(∫ π

−π
sin2(kθ)f0(θ)dθ

)
=

(∫ π

−π
sin(kθ)φf0(θ)f0(θ)dθ

)2

.

(6.1)

The Cauchy-Schwarz inequality readily yields that the equality sign “=” in (6.1)

can be replaced by “≥” with equality holding if and only if φf0(θ) = a sin(kθ)

for some real constant a. The latter easy-to-solve first-order differential equation

then shows that an information singularity can only occur for base symmetric

densities f0 of the form c exp((a/k) cos(kθ)) for a ∈ R and c > 0 a normalizing

constant. The class of base densities F we consider contains the condition of

unimodality on f0, which rules out k ≥ 2 and forces a to be positive. Hence, the

only base symmetric density for which the Fisher information matrix ΓΓΓf0,k is sin-

gular is f0(θ) = c exp(κ cos(θ)) with κ = a/k > 0 a concentration parameter, the

von Mises circular density. We formalize this result in the following proposition.

Proposition 1. Let f0 be a symmetric base density belonging to F and satisfying

Assumption (A), and consider k-sine-skewed densities of the form f0(θ− µ)(1 +

λ sin(k(θ−µ))). Then the Fisher information matrix associated with the param-

eters µ ∈ [−π, π) and λ ∈ (−1, 1) is singular in the vicinity of symmetry (that

is, at λ = 0) if and only if one is considering sine-skewed von Mises densities.

A referee raised the question of the existence of a parameterization that

avoids this singularity, as is the case for skew-normal distributions with the

Centered Parameterization (Azzalini (1985)) or the parameterization proposed

in Hallin and Ley (2014). Mimicking these constructions, one obtains such a
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singularity-free parameterization, but this is beyond the scope of the present

paper.

7. Final Comments

The tests we propose are uniformly (over the null hypothesis) locally

and asymptotically maximin against k-sine-skewed alternatives, asymptotically

distribution-free and moreover of a very simple form. They furthermore exhibit

nice finite sample behaviors. Now, as already mentioned before, It would be

of interest to adapt our procedures to the case of an unspecified center, and

our general ULAN property provides the required theoretical background for

constructing such tests. The crucial difference here lies in the fact that we need

to replace the unknown location µ with an estimator µ̂. If the information matrix

ΓΓΓf0,k were diagonal, then the substitution of µ̂ for µ would have no influence,

asymptotically, on the behavior of the central sequence for skewness ∆
(n)
k;2(µ). As

this is rarely the case, a local perturbation of µ has the same asymptotic impact

on ∆
(n)
k;2(µ) as a local perturbation of λ = 0. Thus the cost of not knowing µ

is strictly positive when performing inference on λ; the stronger the correlation

between µ and λ, the larger the cost. The worst case occurs when the information

matrix is singular (see Section 6), which leads to asymptotic local powers equal

to the nominal level α; more precisely, this situation entails that the best possible

test is the trivial test, that is, the test discarding the observations and rejecting

the null of reflective symmetry at level α whenever an auxiliary Bernoulli variable

with parameter α takes value one.

To take into account the cost of not knowing µ, one can replace the central

sequence ∆
(n)
k;2(µ) with the, in Le Cam terminology (see, e.g., Le Cam (1986)),

efficient central sequence

∆
(n)eff
f0,k;2

(µ) := ∆
(n)
k;2(µ)−

Γf0,k;12

Γf0,k;11
∆

(n)
f0,k;1

(µ)

= n−1/2
n∑

i=1

(
sin(k(θi − µ))−

Γf0,k;12

Γf0,k;11
φf0(θi − µ)

)
.

This is the orthogonal projection of ∆
(n)
k;2(µ) onto the subspace orthogonal to

∆
(n)
f0,k;1

(µ), which ensures that ∆
(n)eff
f0,k;2

(µ) and ∆
(n)
f0,k;1

(µ) are asymptotically un-

correlated. An asymptotic test can then be obtained by considering a studentized

version of ∆
(n)eff
f0,k;2

(µ̂). Unfortunately, by doing so, it can be shown that, only un-

der f0, there is no asymptotic effect when µ is replaced with µ̂ (this fails to hold

for g0 ̸= f0). Therefore, rather than having as in the present paper a test that is

valid under any density f0 ∈ F with a fixed location µ, we would obtain a test
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which is valid for any value of µ but only under a single f0 (complete paramet-

ric test). Constructing tests that are completely distribution-free (with respect

to both the underlying base density and the location parameter) is an ongoing

research project.

As to the choice of k in the statistic (3.2), we showed that, for a fixed k,

the test based on Q
∗(n);µ
k is asymptotically optimal against k-sine-skewed alter-

natives with the same k. Without a particular value of k in mind, we suggest two

possibilities. First, one can consider several tests ϕ
∗(n);µ
k and compare their out-

comes. Second, a test could be performed using the asymptotic joint distribution

of Q∗(n);µ := (Q
∗(n);µ
1 , Q

∗(n);µ
2 , . . . , Q

∗(n);µ
q )′ for a certain q ∈ N0. The asymptotic

distribution of Q∗(n);µ under the null can be derived using Theorem 2. However,

an asymptotic test based on Q∗(n);µ clearly loses the optimality property against

all the alternatives considered here. One can also raise the question of choosing

q ∈ N0 in Q∗(n);µ. This issue is therefore beyond the scope of the present paper.
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Appendix A

Our proof relies on Lemma 1 of Swensen (1985) and more precisely on its

extension in Garel and Hallin (1995). The sufficient conditions for ULAN in

those results follow from standard arguments once it is shown that (µ, λ)′ 7→
(fkµ,λ)

1/2(θ) (see (2.1)) is quadratic mean differentiable at any (µ, 0)′, which we

establish in the following lemma.

Lemma A.1. Let f0 ∈ F and k ∈ N0, and assume that Assumption (A) holds.

Define

Dθ(f
k
µ,0)

1/2(θ) := −1

2

ḟ0(θ − µ)

f
1/2
0 (θ − µ)

and

Dλ(f
k
µ,λ)

1/2(θ)|λ=0 :=
1

2
f
1/2
0 (θ − µ) sin(k(θ − µ)).

Then, for any µ ∈ [−π, π), we have that, as (t, ℓ) → (0, 0),

(i)

∫ π

−π

(
(fkµ+t,0)

1/2(θ)− (fkµ,0)
1/2(θ)− tDµ(f

k
µ,0)

1/2(θ)
)2
dθ = o(t2),
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(ii)

∫ π

−π

(
(fkµ+t,ℓ)

1/2(θ)− (fkµ+t,0)
1/2(θ)− ℓDλ(f

k
µ+t,λ)

1/2(θ)|λ=0

)2
dθ = o(ℓ2),

(iii)

∫ π

−π

(
Dλ(f

k
µ+t,λ)

1/2(θ)|λ=0 −Dλ(f
k
µ,λ)

1/2(θ)|λ=0

)2
dθ = o(1),

(iv)

∫ π

−π

{
(fkµ+t,ℓ)

1/2(θ)− (fkµ,0)
1/2(θ)−

(
t

ℓ

)′(
Dµ(f

k
µ,0)

1/2(θ)

Dλ(f
k
µ,λ)

1/2(θ)|λ=0

)}2

dθ

= o(||(t, ℓ)′||2).

Proof of Lemma A.1. (i) By definition of fkµ,0 we can rewrite the left-hand

side of (i) as∫ π

−π

(
f
1/2
0 (θ − µ− t))− f

1/2
0 (θ − µ) +

1

2
t
ḟ0(θ − µ)

f
1/2
0 (θ − µ)

)2

dθ. (A.1)

The a.e.-differentiability of f0 (Assumption (A)) combined with the Mean Value

Theorem turns (A.1) into∫ π

−π

(
1

2
t
ḟ0(θ − µ∗)

f
1/2
0 (θ − µ∗)

− 1

2
t
ḟ0(θ − µ)

f
1/2
0 (θ − µ)

)2

dθ

=
1

4
t2
∫ π

−π

(
ḟ0(θ − µ∗)

f
1/2
0 (θ − µ∗)

− ḟ0(θ − µ)

f
1/2
0 (θ − µ)

)2

dθ (A.2)

with µ∗ ∈ (µ, µ+t). Assumption (A) and the periodicity requirement ensure that

ḟ0(θ)/f
1/2
0 (θ) is continuous over [−π, π], hence its square can be bounded by a

sufficiently large constant; consequently, the Lebesgue Dominated Convergence

Theorem implies that (A.2) is o(t2).

(ii) Similarly, the left-hand side integral in (ii) can be re-expressed as∫ π

−π
f0(θ − µ− t)

(
(1 + ℓ sin(k(θ − µ− t)))1/2 − 1− ℓ

1

2
sin(k(θ − µ− t))

)2

dθ.

Exactly as for (i), the differentiability of sin(kθ) allows us to re-write this integral

under the form

1

4
ℓ2
∫ π

−π
f0(θ − µ− t) sin2(k(θ − µ− t))

(
1

(1 + ℓ∗ sin(k(θ − µ− t)))1/2
− 1

)2

dθ

with ℓ∗ ∈ (0, ℓ). Since sin2(kθ)f0(θ) is integrable and (1+ℓ∗ sin(k(θ−µ−t)))−1 is

bounded by a constant not depending on ℓ (indeed, we can take ℓ∗ ≤ ℓ < 1/2 as

ℓ→ 0, hence 1+ℓ∗ sin(k(θ−µ− t)) ≥ 1/2 over [−π, π) which does not depend on
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ℓ), Lebesgue’s Dominated Convergence Theorem applies and yields the desired

o(ℓ2) quantity.

(iii) The left-hand side in (iii) is

1

4

∫ π

−π

(
f
1/2
0 (θ − (µ+ t)) sin(k(θ − (µ+ t)))− f

1/2
0 (θ − µ) sin(k(θ − µ))

)2
dθ.

(A.3)

Since f
1/2
0 (θ) sin(kθ) is square-integrable, the quadratic mean continuity entails

that (A.3) tends to zero as t→ 0, hence is an o(1) quantity.

(iv) The left-hand side in (iv) is bounded by C(S1 + S2 + ℓ2S3), where

S1 =

∫ π

−π

(
(fkµ+t,0)

1/2(θ)− (fkµ,0)
1/2(θ)− tDµ(f

k
µ,0)

1/2(θ)
)2
dθ,

S2 =

∫ π

−π

(
(fkµ+t,ℓ)

1/2(θ)− (fkµ+t,0)
1/2(θ)− ℓDλ(f

k
µ+t,λ)

1/2(θ)|λ=0

)2
dθ

and

S3 =

∫ π

−π

(
Dλ(f

k
µ+t,λ)

1/2(θ)|λ=0 −Dλ(f
k
µ,λ)

1/2(θ)|λ=0

)2
dθ.

The result then follows from (i), (ii) and (iii).

Appendix B

Proofs of Theorem 2. Fix f0 ∈ F . Part (i) of the theorem trivially follows

from the Central Limit Theorem combined with the fact that

Q
∗(n);µ
k =

|n−1/2
∑n

i=1 sin(k(θi − µ))|
(n−1

∑n
i=1 sin

2(k(θi − µ)))1/2
=

|n−1/2
∑n

i=1 sin(k(θi − µ))|
(Γf0,k;22)

1/2
+ oP(1)

(A.4)

as n → ∞ under P
(n)
(µ,0)′;f0

. Part (ii) can be readily handled by using the

“Third Lemma of Le Cam” (see Le Cam (1986)). Under P
(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

,

the asymptotic normality of ∆
(n)
k;2(µ) with mean Cf0(k, k

′)τ2 and variance

Γf0,k;22 is obtained by establishing the joint normality of ∆
(n)
k;2(µ) and

log
(
dP

(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

/dP
(n)
(µ,0)′;f0

)
under P

(n)
(µ,0)′;f0

and then applying Le Cam’s

third Lemma (which holds thanks to the ULAN property). Part (ii) follows im-

mediately since (A.4) also holds under P
(n)

(µ,n−1/2τ
(n)
2 )′;f0,k′

by contiguity. Finally,

Part (iii) trivially follows from (A.4) and the optimality features of the parametric

test ϕ
(n);µ
f0;k

for all f0 ∈ F .
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