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Abstract: It is common in regression analysis of failure time data, such as the AIDS

Clinical Trail Group (ACTG) 175 clinical trial data, that the failure time (AIDS

incidence time) is subject to interval-censoring and the covariate (baseline CD4

count) is subject to measurement error. To perform valid analysis in this setting,

we propose a functional inference method under the semiparametric proportional

odds model. The proposal utilizes the working independence strategy to handle

general mixed case interval censorship, as well as the conditional score approach to

handle mismeasured covariate without specifying the covariate distribution. The

asymptotic theory, together with a stable computational procedure combining the

Newton-Raphson and self-consistency algorithms, is established for the proposed

estimation method. We illustrate the performance of the proposal via simulation

studies and analysis of ACTG 175 data.
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1. Introduction

Interval-censored failure time data are commonly encountered in medical

studies in which the failure time of interest cannot be observed exactly but is

known to fall in a time interval obtained from a sequence of examinations. Re-

gression analysis for assessing the effects of covariates on the interval-censored

failure time has been widely studied by, e.g., Huang and Wellner (1997), Huang

and Rossin (1997), Betensky, Rabinowitz, and Tsiatis (2001), and was compre-

hensively reviewed by Zhang and Sun (2010). Existing methods, however, are

restricted to the setting where the covariates are accurately measured, and such

a restriction often does not apply. For example, in the AIDS Clinical Trial Group

(ACTG) 175 clinical trial on HIV-infected patients (Hammer et al. (1996)), the

effects of baseline CD4 cell counts and treatments (zidovudine alone, zidovudine

plus didanosine, zidovudine plus zalcitabine, and didanosine alone) on time to

the incidence of AIDS are of interest. However, data on the AIDS onset time are

determined at intermittent clinic visits and hence subject to interval-censoring.
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In addition, measurements of the baseline CD4 counts are subject to error due to

both instrumental contamination and biological variation (Song and Ma (2008)).

While there is considerable work on the covariate measurement error problem

for right-censored failure time data (see, e.g., Hu, Tsiatis, and Davidian (1998)

Tsiatis and Davidian (2001), Song and Huang (2005)), regression analysis for

interval-censored data with mismeasured covariate has so far been less studied.

Song and Ma (2008) used a multiple augmentation method to convert interval-

censored data into right-censored data and then applied the conditional score

method to the converted data. Wen (2012) proposed a full-likelihood method.

Both methods rely on a parametric specification for the distribution of the unob-

served error-prone covariate, hence belong to the structural modeling approach

in the measurement error literature (Carroll et al. (2006)). Correctly specifying

a parametric model for the covariate distribution may be difficult given that the

covariate has been mismeasured, and misspecification of the covariate distribu-

tion can result in biased estimates for the regression parameters. Alternatively,

a functional modeling method which makes no distributional assumption for the

error-prone covariate was considered by Wen and Chen (2012), but only in the

specific “case 1” interval-censoring setting wherein there is only one examination

time for each subject.

We describe a functional inference method under the semiparametric pro-

portional odds model for interval-censored failure time data with mismeasured

covariates. The semiparametric proportional odds model is considered since it

is a flexible and popular model in regression analysis of failure time data, and

it allows for a particularly effective application of the well-known conditional

score approach for dealing with covariate measurement error. The new method

extends the conditional score approach of Wen and Chen (2012) from case 1 to

general interval-censored data by treating multiple examinations from the same

subjects as single examinations from different subjects, and then applying the

conditional score correction method of Wen and Chen (2012) to each examina-

tion. Dependence among different examinations of the same subject is accounted

for in standard error estimation. This idea of working independence for interval-

censored data has been adopted by Betensky, Rabinowitz, and Tsiatis (2001)

and Zhu, Tong, and Sun (2008). As mentioned in Betensky, Rabinowitz, and

Tsiatis (2001), underlying such an approach is the assumption of independence

between the examination times and the failure time given covariates. This is en-

sured when the examinations continue to occur regardless of whether the failure

has occurred, as observed in the ACTG 175 data. In general, data of this type

arise in settings in which there are endpoints of secondary interest, for which

examinations continue even after the occurrence of the primary endpoint.
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This paper is organized as follows. Section 2 introduces the data structure

and the model. Section 3 describes the proposed working independence con-

ditional score method and the properties of the estimator. Section 4 presents

the computational algorithm. Section 5 evaluates the proposed method through

simulation studies and an analysis of the ACTG 175 data. Section 6 contains

concluding remarks. Proofs of the asymptotic properties are given in the Ap-

pendix.

2. The Conditional Score Estimator

Let T and (X,Z′)′ denote the failure time and covariate vector for a sub-

ject, where Z is error-free and X is error-prone. We assume X is univariate

for brevity of derivation, but the idea is extendable to the case of multivariate

X. Instead of exact measurement of X, its replicated surrogate measurement

W = (W1, . . . ,Wm) is available with Wj = X + ej , j = 1, . . . ,m, where the

measurement errors ej ’s are N(0, σ2) distributed, independently of each other

and of X. Throughout we consider mixed case interval-censoring (Schick and

Yu (2000)) in which T is not observed but is monitored by a triangle array

of random examination times U = {UK,l : l = 1, . . . ,K,K = 1, 2, . . .}, with
UK,1 < . . . < UK,K , the number of examinations K being random. Assume

that the examinations continue to occur regardless of whether or not failure has

occurred, so that the examination times (K,U) and the failure time T are in-

dependent given covariates (X,Z). The variables we observe for one subject are

thus O = {(K,UK,l,∆K,l,W,Z) : l = 1, . . . ,K}, where ∆K,l = I(T ≤ UK,l)

indicates whether the failure time T precedes the examination time UK,l.

Given covariates (X,Z), we assume that at time t the conditional survival

function of T given covariates is of the form

Pr(T > t|X = x,Z = z) = {1 + exp(β1x+ β′
2z+H(t))}−1, (2.1)

where β = (β1,β
′
2)

′ is an unknown regression vector and H is an unspecified,

nondecreasing and continuous baseline log odds function. Assume that (T,K,U)

and W are conditionally independent given (X,Z), the surrogate condition, and

the conditional distribution of (K,U) given (X,Z) does not depend on param-

eters of interest. Let W̄ =
∑m

j=1Wj/m and σ̃2 = σ2/m. Then the conditional

likelihood of (∆K,l, W̄ ), given (K,UK,l, X,Z) is proportional to

exp{∆K,l(β1X + β′
2Z+H(UK,l))}

[1 + exp{β1X + β′
2Z+H(UK,l)}](σ̃2)1/2

exp

{
−(W̄ −X)2

2σ̃2

}
=

exp{∆K,l(β
′
2Z+H(UK,l))}

[1 + exp{β1X + β′
2Z+H(UK,l)}](σ̃2)1/2

exp

(
−W̄ 2 +X2

2σ̃2

)
exp

{
XSK,l

σ̃2

}
,
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where SK,l = SK,l(β1, σ
2) = β1∆K,lσ̃

2 + W̄ is a complete sufficient statistic for
X. Thus the conditional probability of ∆K,l = 1 given (K,UK,l, SK,l,Z) is

EK,l(θ)(O) =
exp{β1SK,l − β2

1 σ̃
2/2 + β′

2Z+H(UK,l)}
1 + exp{β1SK,l − β2

1 σ̃
2/2 + β′

2Z+H(UK,l)}
,

where θ = (β, H, σ2).
The approach to estimation here is based on treating examinations from

the same subjects as if they were single examinations from different subjects.
Under this “working independence” assumption, the conditional likelihood of
(∆K,1, . . . ,∆K,K) given {(K,UK,l, SK,l,Z) : l = 1, . . . ,K} takes the form

L(θ)(O) =

K∏
l=1

EK,l(θ)(O)∆K,l{1− EK,l(θ)(O)}1−∆K,l . (2.2)

Let Oi = {(Ki, U
(i)
Ki,l

,∆
(i)
Ki,l

,Wi,Zi) : l = 1, . . . ,Ki}, i = 1, . . . , n, be n i.i.d.
copies of observed variable O. Suppose that Wi = (Wi1, · · · ,Wimi) and take

W̄i =
∑mi

j=1Wij/mi, σ̃
2
i = σ2/mi, and S

(i)
Ki,l

= β1∆
(i)
(K,l)σ̃

2
i + W̄i for l = 1, . . . ,Ki.

Following Stefanski and Carroll (1987), we can construct a conditional score (CS)
estimator for β by solving the estimating equation

n∑
i=1

ℓ1(θ)(Oi) = 0, (2.3)

where ℓ1(θ)(O) =
∑K

l=1(SK,l−β1σ̃
2,Z′)′{∆K,l−EK,l(θ)(O)} is obtained by differ-

entiating the logarithm of conditional likelihood (2.2) with respect to β, ignoring
the dependence of SK,l’s on β.

For fixed β and σ2, we propose to estimate the baseline log odds function H
by maximizing the conditional likelihood

Ln(θ)(O1, . . . , On) =

n∏
i=1

L(θ)(Oi). (2.4)

It is easy to see that (2.4) depends onH only through {H(U
(i)
Ki,l

) : l = 1 . . . ,Ki, i =
1, . . . , n}. Therefore, in maximizing Ln we treat H as a nondecreasing step func-

tion with possible jumps only at the examination times U
(i)
Ki,l

’s.

Usually the error variance σ2 is also unknown and must be estimated. Based
on the replicated measurement data {Wi : i = 1, . . . , n}, σ2 can be consistently
estimated by σ̂2 =

∑
i,j(Wij − W̄i)

2/
∑

i(mi − 1), the solution of the estimating
equation n∑

i=1

φ(σ2)(Wi) = 0, (2.5)

where φ(σ2)(Wi) =
∑mi

j=1(Wij − W̄i)
2 − (mi − 1)σ2.

The proposed estimation procedure thus consists of the following steps.
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1. Obtain the estimate σ̂2 for the variance σ2 of measurement error, using (2.5).

2. Substitute σ̂2 for σ2 in (2.3) and (2.4), obtain the conditional score estimate

(β̂, Ĥ) for (β,H) by solving (2.3) and maximizing (2.4).

We detail in Section 4 the computational algorithm used in Step 2. In Step 1,

to obtain a consistent estimate for the error variance σ2, we require replicates of

Wi, i.e., mi ≥ 2. In fact, this is also required in Step 2 to obtain the consistent

conditional score estimate (β̂, Ĥ), owing to the fact that the estimating equations

derived from (2.3) and (2.4) are not orthogonal to that for the parameter σ2.

Remark 1. As suggested by the Associate Editor, the examination times UK,1 <

. . . < UK,K can be alternatively viewed as the recurrence times generated by a

point process. Treating the point process as a whole as a random component is

a more direct way to examine the relationship between failure times and exami-

nation times. This is a promising topic for our future research.

3. Asymptotic Theories and Variance Estimation

The asymptotic theories for the CS estimator (β̂, Ĥ) can be established using

empirical process and semiparametric M-estimator theories (Korosok (2008)).

Details of the theories, together with the assumptions and proofs, are relegated

to the Appendix. Briefly, the CS estimator (β̂, Ĥ) is consistent for (β0,H0), the

true value of (β,H). The convergence rate of β̂ is of order n1/2, but that of Ĥ is

of order n1/3 only; these are rates obtained in general semiparametric analysis of

interval-censored data; see, e.g., Huang (1996). Assuming temporarily that the

true value σ2
0 of error variance σ2 is known, we have

√
n(β̂ − β0)

.
=

[
−E

{
∂

∂β
ℓ∗(θ0)

}]−1 1√
n

n∑
i=1

ℓ∗i (θ0),

where θ0 = (β0, H0, σ
2
0), ℓ

∗(θ)(O) =
∑K

l=1{(SK,l − β1σ̃
2,Z′)′ −g∗(UK,l)}{∆K,l −

EK,l(θ)(O)}, ℓ∗i (θ) = ℓ∗(θ)(Oi), and g∗ is given by

g∗(u) =

∑∞
k=1

∑k
l=1 fK,l(k, u)Ek,u

[
{SK,l − β1σ̃

2,Z′}′Vk,l(θ)(O)
]∑∞

k=1

∑k
l=1 fK,l(k, u)Ek,u [Vk,l(θ)(O)]

, (3.1)

evaluated at θ = θ0 with VK,l(θ) = EK,l(θ)(1 − EK,l(θ)), fK,l the density of

(K,UK,l) and Ek,u(·), the conditional expectation given K = k, UK,l = u.

In general σ2 is unknown and can be estimated through (2.5). Write φi(σ
2) =

φ(σ2)(Wi) in (2.5). To account for the extra estimation of σ2, we thus have

√
n

[
β̂ − β0

σ̂2 − σ2
0

]
.
= I−1 1√

n

n∑
i=1

[
ℓ∗i (θ0)

φi(σ
2
0)

]
,
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which is asymptotically distributed as N(0, I−1Σ(I−1)′), where Σ is the covari-

ance matrix of (ℓ∗(θ0)
′, φ(σ2

0))
′, and

I = −E

[
∂
∂βℓ

∗(θ0)
∂

∂σ2 ℓ
∗(θ0)

0 ∂
∂σ2φ(σ

2
0)

]
. (3.2)

The asymptotic variance can be estimated by replacing the population quan-

tities with their empirical counterparts. In particular, according to Huang (1996),

the quantity g∗ can be estimated by using the nonparametric regression technique

with kernel smoothing. Based on the asymptotic normality and the estimated

variance, hypothesis testing and confidence interval for the regression parameter

β can be simply performed. For example, the test of H0 : β = 0 can be per-

formed via the Wald test statistic β̂′{v̂ar(β̂)}−1β̂, which has an asymptotic χ2

distribution with d = dim(β) degrees of freedom under H0, where v̂ar(β̂) is the

submatrix of Î−1Σ̂(Î−1)′ corresponding to β̂.

4. Computational Algorithm

The parameter H is non-parametric and its size is of the order of the sample

size. The maximization of the conditional likelihood is thus a high-dimensional

optimization problem. We propose a self-consistency algorithm for estimation of

H, that modifies the algorithm in Wen and Chen (2012) developed under case 1

interval-censoring.

Let u1 < . . . < uN denote the distinct ordered values of {U (i)
Ki,l

: l =

1, . . . ,Ki, i = 1, . . . , n}. The function H can be expressed as its jump sizes by

h = (h1, . . . , hN )′, where h1 = H(u1) and hj = H(uj)−H(uj−) is the jump size

of H at uj for j ≥ 2. We treat the hj ’s as non-zero parameters even though some

of them may approach 0, and obtain the estimate ĥj for hj by differentiating

the conditional likelihood (2.4) with respect to hj , j = 1, . . . , N . Accordingly,

for fixed (β, σ2), ĥ = (ĥ1, . . . , ĥN )′ is obtained as the solution to the system of

equations

∂

∂hj
logLn(β, ĥ, σ

2) =
n∑

i=1

Ki∑
l=1

∆
(i)
Ki,l

I[U
(i)
Ki,l

≥ uj ]

−
n∑

i=1

Ki∑
l=1

EK,l(β, ĥ, σ
2)(Oi)I[U

(i)
Ki,l

≥ uj ]

≡ aj − bj(β, ĥ, σ
2)

= 0. (j = 1, . . . , N) (4.1)

In (4.1), by definition, aj = bj(β, ĥ, σ
2) and aj +M0 = bj(β, ĥ, σ

2) +M0 for any

constant M0. For fixed β and σ2, we consider the self-consistency algorithm for
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solving ĥ:

h
(k+1)
j =Dj(β,h

(k), σ2), j = 1, . . . , N, (4.2)

with

Dj(β,h
(k), σ2) = h

(k)
j ·

{
aj +M0

bj(β,h(k), σ2) +M0

}
, for j = 2, . . . , N, (4.3)

D1(β,h
(k), σ2) = h

(k)
1 + log

{
a1 +M0

b1(β,h(k), σ2) +M0

}
, (4.4)

where the superscript (k) denotes the kth iteration of the algorithm. It is easy to

check that if h(k) = ĥ in (4.2), the estimate ĥ is a fixed point of the algorithm.

The non-negative constant M0 is used here to aid convergence of the algorithm;

more explanation is given below. In fact, the value of M0 is not crucial and the

convenient choice of M0 = 0 usually works well in our numerical studies.

For fixed (H,σ2), the CS estimate for β can be obtained by traditional

methods such as the Newton-Raphson algorithm. The estimate σ̂2 for σ2 can

be obtained separately by solving (2.5). We therefore compute the CS estimate

(β̂, ĥ) via a hybrid algorithm, consisting of a Newton-Raphson algorithm for

solving β and a self-consistency algorithm for solving h. The hybrid algorithm

proposed is as follows. Starting from initial values β(0) and h(0) and fixing

σ2 = σ̂2 throughout, for k = 0, 1, . . . , we iterate between Steps 1 and 2 below

until some convergence criterion is met.

1. Fix h = h(k), update β(k) to β(k+1) by solving (2.3) with the one-step Newton-

Raphson algorithm.

2. Fix β = β(k+1), update h(k) to h(k+1) by (4.2).

Remark 2. As with other conditional score methods, there may be multiple

solutions. To better locate the consistent solution, as in Tsiatis and Davidian

(2001), we solve (2.3) with the initial (β,H) values given by the naive estimates

maximizing the standard likelihood (5.1), where the true covariate is imputed by

the mean of the surrogate measurements. This strategy has worked well in our

numerical studies. Another feasible strategy is to choose the consistent solution

as the one minimizing the least squares or other goodness-of-fit criteria; see Heyde

and Morton (1998) for details.

Remark 3. The role of M0 in the algorithm is explained as follows. Since al,

bl, and el(β,h, σ
2) ≡ (∂/∂hl)bl(β,h, σ

2) are all positive, and al = bl(β, ĥ, σ
2),

a sufficiently large M0 ensures |∂D1/∂h1| = |1 − e1/(b1 + M0)| ∈ (0, 1) and

|∂Dl/∂hl| = |(al +M0)/(bl +M0)− hlel(al +M0)/(bl +M0)
2| ∈ (0, 1) for l ≥ 2,

when h is near ĥ. This means that the self-consistency algorithm is locally

contractive and converges by the contraction principle (Rudin (1973)).
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Remark 4. By definition, h1 may be negative while hj is positive for j ≥ 2. To

accommodate this, the type of iterative equation used for hj , j ≥ 2, is applied to

eh1 to obtain the iterative equation for h1, as shown in equations below (4.2).

5. Numerical Studies

5.1. Simulations

We performed simulation studies to assess the performance of the proposed

conditional score estimator and examine the adequacy of the normal approxima-

tion.

In simulations, the error-free covariate Z in model (2.1) was Bernoulli(0.5)

and the error-prone covariate X was N(0, 1). The true regression coefficient

(β10, β20) was (0.5,−0.5) or (1,−0.5), and the baseline log oddsH0(t) was log(e
t−

1). Two surrogate measurements W = (W1,W2) of X were made per subject

with error variance σ2 = 0.25, 0.5, or 0.75. The number of examinations K

was randomly selected from {3, 4, 5} and, given K, the examination time points

UK,1 < . . . < UK,K were generated as the ordered statistics of a random sam-

ple of size K from Uniform(0, 1). The sample size was n = 150 or 300, and the

simulation replication was 400 in each study.

To evaluate the performance of the CS estimator, the bias, standard devia-

tion (SD), average of estimated standard errors (ASE), and the coverage proba-

bility of the 95% confidence intervals (CP) were calculated over simulation repli-

cates and are summarized in Table 1. Since the simulation replication was 400,

if the true coverage were 95%, then 80% of the simulations would have simulated

coverage between 93.5% and 96.25%.

For comparison, Table 1 also includes results from the naive analysis, that

substitutes the mean of the surrogate measurements W̄ = (W1 +W2)/2 for the

true covariate X in the standard proportional odds regression analysis. Thus the

naive estimator maximizes, over the parameter (β,H), the likelihood

L̃(β,H) =

n∏
i=1

Ki+1∏
l=1

{
Fi(U

(i)
Ki,l−1)− Fi(U

(i)
Ki,l

)
}∆̃

(i)
Ki,l (5.1)

with Fi(t) = {1 + exp(β1W̄i + β2Zi +H(t))}−1, where U
(i)
Ki,0

≡ 0, U
(i)
Ki,Ki+1 ≡ ∞,

and ∆̃
(i)
Ki,l

≡ I[U
(i)
Ki,l−1 < Ti ≤ U

(i)
Ki,l

].

Results in Table 1 indicate that the CS estimator performs well in the finite

sample setting considered. The bias of the CS is fairly small compared with

the standard deviation, and it decreases further with decreases in the covariate

effect or error variance, or with increases in the sample size. The proposed stan-

dard error estimate is adequate and close to the simulation standard deviation.
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Figure 1. The Q-Q plot of standardized CS estimates versus standard normal
variate for the simulation scenario with (β1, β2) = (1,−0.5), σ2 = 0.5 and
n = 300.

The normal approximation works well, as reflected in the correct coverage prob-

abilities of the resulting confidence intervals. In the simulation scenario with

(β1, β2) = (1,−0.5), σ2 = 0.5, and n = 300, Figure 1 shows the Q-Q plots com-

paring the standardized CS estimates (v̂ar(β̂))−1/2(β̂ − β0) with the standard

normal variate. It agrees well. In contrast, from Table 1 we see that the naive

estimator, obtained by using the mean surrogate values in the standard propor-

tional odds analysis, performed poorly for β1, the coefficient corresponding to

the error-prone covariate.

We have also conducted additional simulations with X ∼
√
3U(−1, 1), and

other specifications unchanged. The results were quite similar to those presented

above, hence are omitted here.

5.2. Application to ACTG 175 data

We applied the proposed inference procedure to ACTG 175 data intro-

duced in Section 1. The primary goal of the analysis is to address the effects

of the baseline CD4 count and treatments on the time to the AIDS incidence

in antiretroviral-naive patients. To this end, we considered a proportional odds

model with covariates log(CD4) (X) and a treatment indicator (Z = 1 for zidovu-

dine alone and 0 for any of the other three therapies). The surrogates (W1,W2)

for the error-prone covariate X were taken to be the last two measurements of

the CD4 count observed prior to treatment, standardized to have mean 0 and

variance 1. As a crude diagnosis of the normality assumption for the measure-

ment error, Figure 2 depicts the Q-Q plot of the deviations from the average of

standardized log(CD4) versus a standard normal variate, showing measurement

error nearly normal. The mean number of examination times K per subject was

9.06 with the range 1–15 among the total 1014 patients. The proposed condi-
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Table 1. Simulation Results
(a) Conditional score method

β1 estimate β2 estimate
(β10, β20) σ2

e0 n Bias SD ASE CP Bias SD ASE CP

(0.5,-0.5) 0.25 150 0.025 0.222 0.195 93.00 -0.028 0.353 0.348 95.00
300 0.017 0.135 0.136 95.25 -0.014 0.232 0.242 95.75

0.50 150 0.028 0.240 0.210 93.75 -0.029 0.355 0.350 94.75
300 0.018 0.144 0.146 95.00 -0.014 0.233 0.243 95.75

0.75 150 0.033 0.263 0.228 95.00 -0.030 0.358 0.353 95.25
300 0.019 0.154 0.156 95.00 -0.014 0.235 0.245 95.75

(1,-0.5) 0.25 150 0.073 0.258 0.238 94.50 -0.038 0.376 0.369 94.75
300 0.040 0.168 0.165 93.75 -0.021 0.248 0.256 95.25

0.50 150 0.082 0.277 0.267 95.00 -0.040 0.385 0.377 94.25
300 0.045 0.186 0.183 95.00 -0.022 0.252 0.261 95.75

0.75 150 0.098 0.312 0.303 95.50 -0.045 0.396 0.388 94.75
300 0.052 0.207 0.204 96.25 -0.023 0.257 0.266 95.75

(b) Naive method

β1 estimate β2 estimate
(β10, β20) σ2

e0 n Bias SD ASE CP Bias SD ASE CP

(0.5,-0.5) 0.25 150 -0.054 0.175 0.165 93.25 -0.016 0.316 0.327 94.75
300 -0.054 0.113 0.114 93.00 -0.008 0.216 0.228 95.25

0.50 150 -0.103 0.163 0.155 88.25 -0.011 0.314 0.326 95.25
300 -0.102 0.106 0.107 84.25 -0.004 0.215 0.228 95.25

0.75 150 -0.142 0.153 0.147 80.25 -0.007 0.313 0.326 95.75
300 -0.141 0.100 0.102 72.00 -0.000 0.214 0.228 95.50

(1,-0.5) 0.25 150 -0.102 0.182 0.190 91.00 -0.011 0.334 0.339 96.75
300 -0.119 0.128 0.130 82.75 -0.003 0.226 0.236 96.50

0.50 150 -0.208 0.168 0.176 77.25 0.003 0.331 0.337 96.50
300 -0.222 0.120 0.121 54.25 0.009 0.225 0.235 96.25

0.75 150 -0.292 0.157 0.165 54.50 0.013 0.329 0.335 96.50
300 -0.304 0.113 0.113 22.75 0.018 0.224 0.234 96.75

tional score method was applied to account for both the measurement error and

interval-censoring present.

The results of applying both the CS and the naive methods are given in Table

2. The baseline CD4 count is negatively associated with the incidence time of the

AIDS. The zidovudine alone treatment is significantly worse than the other three

treatments in preventing the onset of AIDS. Compared with the proposed CS

estimate, the naive method using the mean surrogate CD4 measurements yields

a remarkably attenuated estimates for the effects of true baseline CD4 count and

treatment. The estimate of the error variance σ2 given by the CS method is
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Table 2. Analysis of ACTG data

Effects
log(CD4) treatment (zidovudine)

Method Estimate S.E. Estimate S.E.

CS -1.0669 0.1907 0.8032 0.2733
Naive -0.7776 0.1452 0.7585 0.2789

Figure 2. Q-Q plots of the deviations from the mean of standardized log(CD4).

0.2928 with a standard error of 0.0174 (on the standardized log(CD4) scale).

Remark 5. We used the last two measurements prior to treatment as two repli-

cates of the surrogate baseline CD4 count. This was done because for the study

subjects, the last two CD4 count measurements prior to treatment were mea-

sured consecutively within one month, hence close, with the relative difference

|(W2 −W1)/W1| < 30% for more than 80% of the study subjects.

6. Conclusion

Motivated by the AIDS Clinical Trial Group 175 data, where the failure

time (AIDS incidence time) was subject to interval-censoring and the covariate

(baseline CD4 count) was subject to measurement error, we have developed a

functional inference method under the semiparametric proportional odds model

for failure time regression analysis. To accommodate general mixed case interval

censorship as well as mismeasured covariates, while avoiding the need to specify

the covariate distribution, we utilized the strengths of the conditional score ap-

proach of Wen and Chen (2012) and a working independence idea similar to that

in Betensky, Rabinowitz, and Tsiatis (2001). Results from simulation studies

and an analysis of ACTG 175 data reveals the utilitiy the proposed method.

It is quite promising to extend the proposed method to more general re-

gression models than the proportional odds model, such as the semiparametric
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transformation model (Zeng and Lin (2007)) and additive hazards model (Zeng,

Cai, and Shen (2006)). To improve estimation efficiency, it is also worthwhile

to develop a functional modeling approach without the working independence

assumption for the examination times on the same subject.
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Appendix

Assumptions. Let P0 denote the true underlying distribution, Pnf =
∑n

i=1

f(Oi)/n, and P0f = Ef(O) for a measurable function f. Consider H in H,

the set of right-continuous non-decreasing functions that are uniformly bounded

on the study period [0, τ ]. For simplicity, proofs are presented under the simpler

setting where the distribution of (K,UK,l, l = 1, . . . ,K) is independent of (W, Z),

though the proposed method can accommodate the dependence case. Let ℓ(θ) =

logL(θ). The asymptotic theories are based on the regularity assumptions that

have been similarly made in the context of interval-censoring studies (e.g., Huang

and Wellner (1997); Zeng, Cai, and Shen (2006); Ma (2010)).

(C1) There exists a positive ξ such that P (UK,l−UK,l−1 ≥ ξ) = 1 for l = 1, . . . ,K.

(C2) Given K, each UK,l has a continuous density and the union of the supports

for conditional distributions {UK,l, l = 1 . . . ,K} is an interval [τ1, τ2] with

0 < τ1 < τ2 < τ.

(C3) The true parameter (β0, σ
2
0) lies in the interior of a compact parameter

set B × Q; H0 is continuously differentiable on [τ1, τ2] and satisfies −M <

H0(τ1) < H0(τ2) < M.

(C4) For θ near θ0, P0{ℓ(θ)− ℓ(θ0)} ≼ −{∥H−H0∥22+∥β−β0∥2+∥σ2−σ2
0∥2},

where ∥ · ∥ is the Euclidean norm, ∥H∥22 =
∫ ∑∞

k=1

∑k
l=1 fK,l(k, u)H

2(u)du,

and fK,l denotes the density of (K,UK,l). The notation ≼ means smaller

than, up to a constant.

(C5) The function g∗ given in (3.1) is differentiable with a bounded derivative

on [τ1, τ2].

(C6) The information matrix I defined as (3.2) is invertible.

The condition (C1) rules out accurately observed failure time and makes the

number of examination times K bounded.
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Theorem A.0 (Consistency and rate of convergence). The estimator β̂ is con-

sistent, β̂
P→ β0. The rate of convergence of Ĥ is of order n−1/3, ∥Ĥ −H0∥2 =

Op(n
−1/3).

Proof. Let Ĥ(β,σ2) be the maximizer of Ln with (β, σ2) fixed. Let w(θ) =

log {[L(θ) + L(θ0)]/2} . Since the class of monotone and uniformly bounded func-

tions is a Donsker class, by Theorem 2.10.6 of van der Vaart and Wellner (1996),

the class {w(β0,H, σ2
0) | H ∈ H} is Donsker and hence Glivenko-Cantelli. Fur-

ther, by the concavity of r(u) ≡ log((u+ 1)/2) and Jensen’s inequality, we have

P0[w(β0,H, σ2
0)− w(θ0)] = P0r

(
L(β0,H, σ2

0)

L(θ0)

)
≤ r(P0

(
L(β0,H, σ2

0)

L(θ0)

)
) = 0,

and the equality holds only if H = H0 on (τ1, τ2). This indicates that

sup
∥H−H0∥2>ε

P0w(β0,H, σ2
0) < P0w(θ0).

Furthermore,

Pnw(β0, Ĥ(β0,σ̂2), σ
2
0) + op(1) = Pnw(β0, Ĥ(β0,σ̂2), σ̂

2)

≥ Pnw(β0,H0, σ̂
2)

= Pnw(θ0) + op(1),

where the inequality follows from the definition of Ĥ(β,σ2), and the equalities are

obtained by the Mean Value Theorem and the consistency of σ̂2. By Theorem

5.7 of van der Vaart (1998), we have ∥Ĥ(β0,σ̂2) −H0∥2
P→ 0.

Using Theorem 2.10.6 of van der Vaart and Wellner (1996) and conditions

(C1)−(C3), we can show that the class {ℓ1(β,H, σ2)|(β,H, σ2) ∈ B × H × Q}
is Dosker and hence Glivenko-Cantelli. By the consistency of (Ĥ(β0,σ̂2), σ̂

2) and

the fact that P0ℓ1(β0,H0, σ
2
0) = 0, we have Pnℓ1(β0, Ĥ(β0,σ̂2), σ̂

2) = op(1). This

together with (C6) implies the existence of a consistent solution of β to the CS

estimating equation Pnℓ1(β, Ĥ(β,σ̂2), σ̂
2) = 0.

We prove

∥Ĥ(β,σ2) −H0∥2 = OP (∥β − β0∥+ ∥σ2 − σ2
0∥+ n−1/3)

by verifying conditions (3.5) and (3.6) in Theorem 3.2 of Murphy and van der

Vaart (1999). The rate of convergence of Ĥ can then be obtained by the con-

sistency of (β̂, σ̂2). A Taylor series argument gives P0{ℓ(θ0) − ℓ(β,H0, σ
2))} ≼

∥β − β0∥2 + ∥σ2 − σ2
0∥2. This together with (C4) can verify that

P0{ℓ(θ)− ℓ(β,H0, σ
2)} ≼ −∥H −H0∥22 + ∥β − β0∥2 + ∥σ2 − σ2

0∥2,
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which is condition (3.5) of Murphy and van der Vaart (1999).

Given two functions l and u, the bracket [l, u] is the set of all functions f

with l ≤ f ≤ u. An ε-bracket in L2(P ) = {f : Pf2 < ∞} is a bracket [l, u] with

P (u−l)2 < ε2. For a subclass C of L2(P ), the bracketing number N[ ](ε, C, L2(P ))

is the minimum number of ε-bracket need to cover C.
Let Ψ = {ℓ(θ) : θ ∈ B × H × Q}. It is easy to see that each element in

Ψ is uniformly bounded and satisfies P0{ℓ(θ) − ℓ(β,H0, σ
2)}2 ≼ ∥H − H0∥22 +

∥β−β0∥2 + ∥σ2 − σ2
0∥2. Lemma 1 gives the bracketing integral J(δ,Ψ, L2(P )) =∫ δ

0 {1+ logN[ ](ε,Ψ, L2(P ))}1/2dε as O(δ1/2). It then follows from Lemma 3.3 of

Murphy and van der Vaart (1999) that their (3.6) is satisfied for ϕn(δ) = δ1/2.

This completes the proof.

Lemma A.1. logN[ ](ε,Ψ, L2(P0)) = O(1/ε).

Proof. For fixed θ, the functions in Ψ depend on H monotonically for ∆K,l = 1

and ∆K,l = 0 separately. Thus, given a ε-bracket HL ≤ H ≤ HU , it follows from

monotonicity of EK,l in H that we can get a bracket (ℓL, ℓU ) for ℓ(θ) where

ℓL ≡ log
K∏
l=1

[
EK,l(β,H

L, σ2)(O)∆K,l{1− EK,l(β,H
U , σ2)(O)}1−∆K,l

]
;

ℓU ≡ log

K∏
l=1

[
EK,l(β,H

U , σ2)(O)∆K,l{1− EK,l(β,H
L, σ2)(O)}1−∆K,l

]
.

Further, by the Mean Value Theorem, we have |ℓL−ℓU |2≼
∑K

l=1(H
U−HL)2(UK,l).

Thus brackets for H of ∥ ·∥2 -size ε can translate into brackets for ℓ(θ) of L2(P0)-

size proportional to ε. By Example 19.11 of van der Vaart (1998), we can cover

the set of all H by exp(C/ε) brackets of size ε for some constant C. Next we

allow ζ = (β′, σ2)′ to vary freely as well. Because B×Q is finite-dimensional and

(∂/∂ζ)ℓ(θ)(O) is uniformly bounded in (θ, O), this increases the entropy only

slightly. This completes the proof.

Suppose Hε ∈ H and Hε = H when ε = 0. Let Ḣ = {g : (∂/∂ε)|ε=0Hε = g}.
Then the score for H along the direction g, (∂/∂ε)|ε=0ℓ(β, Hε, σ

2), has the form

ℓ2(θ)[g](O) =
K∑
l=1

g(UK,l){∆k,l − EK,l(θ)(O)}.

Take ℓ12(θ)[g] = (∂/∂ε)|ε=0ℓ1(β,Hε, σ
2) and ℓ22(θ)[g̃, g] = (∂/∂ε)|ε=0ℓ2(β,Hε,

σ2)[g̃], where g and g̃ are in Ḣ. Then

ℓ12(θ)[g] = −
K∑
l=1

g(UK,l){SK,l − β1σ̃
2, Z ′}′VK,l(θ)(O),
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ℓ22(θ)[g, g̃] = −
K∑
l=1

g(UK,l)g̃(UK,l)VK,l(θ)(O).

Following semiparametric M-estimator theories (e.g., Korosok (2008)), the func-

tion ℓ∗ given in Section 3 is ℓ∗(θ) = ℓ1(θ) − ℓ2(θ)[g
∗], where g∗ is the d-

dimensional (d = dim(β)) vector-valued function satisfying

P0(ℓ12(θ0)− ℓ22(θ0)[g
∗, g]) = 0, (A.1)

for all g in Ḣ. Note that (A.1) can written as∫ ∞∑
k=1

k∑
l=1

fK,l(k, u)g(u)E[{SK,l − β1σ̃
2, Z ′}′VK,l(θ)(O)|K = k, UK,l = u]du

=

∫ ∞∑
k=1

k∑
l=1

fK,l(k, u)g(u)g
∗(u)E[VK,l(θ)(O)|K = k, UK,l = u]du,

which implies that g∗ is given by (3.1).

Theorem A.1 (Asymptotic normality). The estimator (β̂, σ̂2) satisfies

√
n

[
β̂ − β0

σ̂2 − σ2
0

]
= I−1√nPn

[
ℓ∗(θ0)

φ(σ2
0)

]
+ oP (1)

d→ N(0, I−1Σ(I−1)′),

where Σ = P0{[ℓ∗(θ0)′, φ(σ2
0)]

′[ℓ∗(θ0)
′, φ(σ2

0)]} and

I = −E

[
∂
∂βℓ

∗(θ0)
∂

∂σ2 ℓ
∗(θ0)

0 ∂
∂σ2φ(σ

2
0)

]
.

Proof. We first verify
√
nP0ℓ

∗(β0, Ĥ, σ2
0) = op(1). (A.2)

Apply a Taylor expansion to ℓ∗(β0,H, σ2
0)(O) at the point (H0(UK,1), . . .,

H0(UK,K)) to get

P0ℓ
∗(β0,H, σ2

0) = P0ℓ
∗(θ0) + P0{ℓ12(θ0)[H −H0]− ℓ22(θ0)[g

∗, H −H0]}
+Op(∥H −H0∥22). (A.3)

Using the fact that P0ℓ
∗(θ0) = 0, (A.1), and applying the rate of convergence on

Ĥ to (A.3), we get (A.2).

It is known that the class of uniformly bounded functions of bounded varia-

tions is a Donsker class. Applying (C5) and Theorem 2.10.6 of van der Vaart and

Wellner (1996), it can be verified that {ℓ∗(θ)|θ ∈ B×H×Q} and {φ(σ2)|σ2 ∈ Q}
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are uniformly bounded Donsker classes; the proof is technical and is omitted here.

Combining this with the consistency of θ̂ leads to

√
n(Pn − P0)

[
ℓ∗(θ̂)− ℓ∗(θ0)

φ(σ̂2)− φ(σ2
0)

]
= op(1).

Adding (A.2) to the first row of here and using the facts that P0ℓ
∗(θ0) = 0 and

Pnℓ
∗(θ̂) = Pnφ(σ̂

2) = 0,

−
√
nP0

[
ℓ∗(θ̂)− ℓ∗(β0, Ĥ, σ2

0)

φ(σ̂2)− φ(σ2
0)

]
=

√
nPn

[
ℓ∗(θ0)

φ(σ2
0)

]
+ op(1).

By the Mean Value Theorem, there exists (β̃, σ̃2) lying between (β̂, σ̂2) and

(β0, σ
2
0) such that

−
√
nP0

[
∂
∂βℓ

∗(β̃, Ĥ, σ̃2) ∂
∂σ2 ℓ

∗(β̃, Ĥ, σ̃2)

0 ∂
∂σ2φ(σ̃

2)

](
β̂ − β0

σ̂2 − σ2
0

)
=

√
nPn

[
ℓ∗(θ0)

φ(σ2
0)

]
+op(1).

By the consistency of (β̂, σ̂2) and (C6), we have

√
n

[
β̂ − β0

σ̂2 − σ2
0

]
= I−1√nPn

[
ℓ∗(θ0)

φ(σ2
0)

]
+ oP (1)

d→ N(0, I−1Σ(I−1)′).

This completes the proof.
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