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Abstract: Regression quantiles can be underpowered or biased when there are miss-

ing values in some covariates. We propose a method that produces consistent linear

quantile estimation in the presence of missing covariates. The proposed method cor-

rects bias by constructing unbiased estimating equations that simultaneously hold

at all the quantile levels. It utilizes all the available data, and produces uniformly

consistent estimators. An iterative EM-type algorithm is provided for solving the

estimating equations. The finite sample performance of the method is investigated

in a simulation study. Finally, the methodology is applied to data from the National

Health and Nutrition Examination Survey.
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1. Introduction

Quantile regression Koenker and Bassett (1978) has been increasingly pop-

ular due to its flexibility in modelling the relationship between a response vari-

able and its covariates. For example, quantile regression has been shown to be

favoured in obesity studies Terry, Wei, and Essenman (2007), since understand-

ing how the covariates impact the upper quantiles of body mass index is more

important than that on the mean level. These studies often rely on conducting

surveys among a representative population. Inevitably, such survey data con-

tain missing observations. For example, the respondents may be reluctant to

answer one or more survey items Brick and Kalton (1996). Ignoring incomplete

observations reduces estimation efficiency and, more importantly, can lead to

biased estimation (Little and Rubin (1992)). Appropriate statistical methods

are needed to correct bias, which we will illustrate below in a small National

Health and Nutrition Examination Survey (NHANES) study. In that study, the

researchers are interested in investigating the association between nutritional in-

take and waist-circumference, a known risk factor for cardiovascular diseases.

The effect of total-fat intake on the upper quantiles of waist-circumference are

seriously underestimated if some of the relatively heavier subjects choose not to

report certain food items.

http://dx.doi.org/10.5705/ss.2011.302
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In this paper, we propose a method to consistently estimate a linear quantile

model with some covariates missing at random(MAR). We assume the model

Qyi(τ ;xi, zi) = x⊤
i β0,τ + z⊤i γ0,τ , i = 1, . . . , n, (1.1)

holds true at all quantile levels τ ∈ (0, 1), where Qyi(τ ;xi, zi) is the τ -th condi-

tional quantile of the response variable yi given xi and zi. We assume that the

covariate zi is q-dimensional including a vector of one’s, and xi is p-dimensional.

We assume that the covariate zi and response yi are completely observed, but

some values of xi are missing at random, where the probability of missingness

may depend on yi or zi, but not on xi itself. If the missingness of xi depends on

the covariates only, the regression quantiles based on the observed data only are

still unbiased (Lipstiz et al. (1997)) despite some loss of efficiency. If the miss-

ingness depends on yi, then using the observed data alone can lead to substantial

bias. The current work is aimed at obtaining consistent estimators of quantile

coefficients (βτ ,γτ ) when some covariates are missing at random.

Dealing with missing covariates is a long-standing research topic in statis-

tics. For mean regression, classical approaches include complete-case analysis

(when missing is completely at random), conditional mean imputation (Afifi

and Elashoff (1969a,b)), likelihood based approaches including multiple impu-

tations(Rubin (1978, 1987) and Rubin and Schaferm (1990)). Little (1992) has a

nice review of these approaches. In quantile regression the area remains largely

undeveloped, mainly because most approaches have relied on parametric like-

lihood and cannot be applied directly to quantile regression. In addition, due

to the non-additivity of the quantile regression objective function, conditional

mean imputation does not lead to unbiased estimation. The estimating equa-

tion approach of Robins, Rotnitzky, and Zhao (1994) has become a popular

method in recent years due to its efficiency and robustness, but it does not avoid

distributional assumptions. Among works on handling missing data in quan-

tile regression, Lipstiz et al. (1997) considered an inverse weighting approach to

correct the bias due to longitudinal drop-outs. For the same type of data, Yi

and He (2009) extended the inverse probability weighted generalized estimating

equations proposed by Robins, Rotnitzky, and Zhao (1995) to correct the bias

from longitudinal drop outs. Wei, Ma, and Carroll (2012) considered multiple

imputation approach when missingness is completely at random. Our approach

is based on constructing unbiased estimating equations that hold for all quantile

levels. The joint modelling approach is an extension of Wei and Carroll (2009).

Although the methods differ in their objective functions and computational al-

gorithms, and inthe derivation of the asymptotic results, to our best knowledge,

this is the first attempt at correcting the bias due to MAR covariates in quantile

regression.
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The rest of the paper is organized as follows. The proposed method is dis-

cussed in Section 2, where we also develop an algorithm and establish the asymp-

totic properties of the resulting estimators. A simulation study is presented in

Section 3. The proposed method is applied to NHANES data in Section 4 to

show how it can handle missing covariates. Proofs are included in the Appendix.

2. Methods

Let δi be the binary indicator for the existence of xi. We construct the

unbiased estimating function φτ

φτ (βτ ,γτ , yi,xi, zi, δi) = δiΨτ (βτ ,γτ , yi,xi, zi)

+(1− δi)

∫
x
Ψτ (βτ ,γτ , yi,xi, zi)f(x|δi, yi, zi)dx, (2.1)

where (βτ ,γτ ) are unknown parameters,

Ψτ (βτ ,γτ , y,x, z) = {τ − I(y − x⊤βτ − z⊤γτ < 0)}(x⊤, z⊤)⊤;

and f(x|δi, yi, zi) is the conditional density of x given the observed (δi, yi, zi).

Here Ψτ (βτ ,γτ , y,x, z) is the original estimating function for quantile regres-

sion, and (2.1) sets out its conditional expectation given the observed data. Let

(β0,τ ,γ0,τ ) be the true conditional quantile coefficients. Then one can show that

Eyi

{
φτ (β0,τ ,γ0,τ , yi,xi, zi, δi)|δi,xi, zi

}
= 0

for any (δi,xi, zi), so the estimating function φτ () is unbiased and leads to the

unbiased sample estimating equations

n∑
i=1

φτ (βτ ,γτ , yi,xi, zi, δi) = 0. (2.2)

The equations depend on the conditional density f(x|δi, yi, zi), which needs

to be estimated. By Bayes theorem, we decompose this density as

f(x|δi, yi, zi) =
p(δi|x, yi, zi)f(yi|x, zi)f(x|zi)∫

x p(δi|x, yi, zi)f(yi|x, zi)f(x|zi)dx
.

This decomposition implicitly assumes that the probabililty of observation

p(δi|x, yi, zi) is bounded away from zero for any (y, z), a common assumption in

missing data methods. Under the assumption that the x are missing at random,

δi does not depend on x conditioning on the observed yi and zi, p(δi|x, yi, zi) =
p(δi|yi, zi). Consequently, the representation of f(x|δi, yi, zi) can be simplified to

f(x|δi, yi, zi) = f(x|yi, zi) =
f(yi|x, zi)f(x|zi)∫

x f(yi|x, zi)f(x|zi)dx
. (2.3)
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The first conditional density f(yi|x, zi) is unspecified under the quantile regres-

sion framework following Wei and Carroll (2009), we assume that the linear model

(1.1) holds for all quantile levels. This holds for the location-scale model. We

denote the true quantile coefficient process as β0(τ) and γ0(τ), while β0,τ and

γ0,τ denote the true quantile coefficients at the τth quantile. Under the joint

modelling assumption, the conditional density f(yi|x, zi) is then

f(yi|x, zi) =
[
∂{x⊤β0(τ) + z⊤i γ0(τ)}

∂τ

]−1
∣∣∣∣∣
τ=τyi{β0(τ),γ0(τ)}

,

where τyi{β0(τ),γ0(τ)} = inf{τ ∈ (0, 1) : x⊤β0(τ) + z⊤i γ0(τ) > yi} denotes the

quantile level of yi.

The density f(yi|x, zi) depends on the unknown coefficient functions β0(τ)

and γ0(τ), which are of infinite dimension. For any β(τ) ∈ Rp × (0, 1), we

approximate it by natural linear splines, expanding from a series of quantile

coefficients on a fine grid of quantile levels. Specifically, we choose quantile levels

τk = k/(kn+1), k = 1, . . . , kn, where kn is the number of quantile levels. We then

define β̃(τ) as a p-dimensional piecewise linear function on [0,1], that satisfies

β̃(τk) = β(τk) and β̃′(0) = β̃′(1) = 0. If β(τ) is a smooth function, then it

can be well approximated by β̃(τ) given a sufficient number of quantile levels

kn. We can approximate γ(τ) in the same way. Let f{y|x, z,β(τ),γ(τ)} be the

conditional density function of y given (x, z) that is induced from the quantile

function x⊤β(τ) + z⊤γ(τ). We then take

f{y|x, z,β(τ),γ(τ)} ≈ f̃{y|x, z, β̃(τ), γ̃(τ)}

=̂

[
∂{x⊤β̃(τ) + z⊤i γ̃(τ)}

∂τ

]−1 ∣∣∣∣∣
τ=τyi{β̃(τ),γ̃(τ)}

=
∑kn

k=1

τk+1 − τk
(x⊤βτk+1

+ z⊤γτk+1
)− (x⊤βτk + z⊤γτk)

×I{(x⊤βτk + z⊤γτk) ≤ y < (x⊤βτk+1
+ z⊤γτk+1

)}, (2.4)

where βτk and γτk are unknown parameters at the τkth quantile. WE thus incor-

porate the unknown coefficient functions {β(τ),γ(τ)} into the conditional density
f(yi|x, zi) with a finite number of unknown coefficients. Replacing f(yi|x, zi) by
f̃{y|x, z, β̃(τ), γ̃(τ)}, we approximate the estimating function (2.1) by

φ̃τ (βτ ,γτ , yi,xi, zi, δi) = δiΨτ (βτ ,γτ , yi,xi, zi)

+(1− δi)

∫
x
Ψτ (βτ ,γτ , yi,x, zi)f̃(x|yi, zi)dx,

where
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f̃(x|yi, zi) =
f̃{yi|x, zi, β̃(τ), γ̃(τ)}f(x|zi)∫

x f̃{yi|x, zi, β̃(τ), γ̃(τ)}f(x|zi)dx
,

and f̃{yi|x, zi, β̃(τ), γ̃(τ)} is defined at (2.4). We then take kn sets of working

estimating equations,

S̃n,τ (βτ ,γτ ) = n−1
n∑

i=1

φ̃τ (βτ ,γτ , yi, xi, zi, δi) = 0, for τ =
1

kn + 1
, . . . ,

kn
kn + 1

,

(2.5)

that need to be solved on the kn quantile levels simultaneously. In the next

subsection, we outline an iterative algorithm to obtain the βτ and γτ estimates

on a grid of quantile levels.

2.1. Main estimation algorithm for solving (2.5)

Let ν be the indicator of iteration steps. The algorithm is outlined as follows.

Step 1 Set the initial values of (β
(0)
τk ,γ

(0)
τk )knk=1 based on the quantile regression

omitting the cases with missing data.

Step 2 Update the distribution f (ν)(x|yi, zi) for missing xi based on (β
(ν−1)
τk ,

γ
(ν−1)
τk )knk=1 from the previous iteration, so

f (ν)(x|yi, zi) =
f(yi|x, zi,β(ν−1)(τ),γ(ν−1)(τ))f(x|zi)∫

x f(yi|x, zi,β(ν−1)(τ),γ(ν−1)(τ))f(x|zi)dx
,

where β(ν)(τ) and γ(ν)(τ) are natural linear splines expanded from β(ν)’s

and γ(ν)’s and, as defined at (2.4), f(yi|x, zi,β(ν)(τ),γ(ν)(τ)) is the con-

ditional density of yi given (x, zi) in the ν-th iteration.

Step 3 Update (β
(ν)
τk ,γ

(ν)
τk )knk=1 based on the new estimating functions with

f (ν)(x|yi, zi). Numerical integrations can be used to perform this step.

Let x̃i = (x̃i,1, . . . , x̃i,m) be a fine grid of possible xi values. The estimat-

ing equations can be written as

n∑
i=1

{
δiΨτk(βτk ,γτk , yi,xi, zi) + (1− δi)

m∑
j=1

[
Ψτk(βτk , γτk , yi, x̃i,j , zi)

f (ν)(x̃i,j |yi, zi)× (x̃i,j+1 − x̃i,j)
]}

= 0, (2.6)

where k = 1, . . . , kn. Solving (2.6) can be achieved by weighted quantile

regression with response yi, the covariates (x̃i,j , zi), and weights δi or

(1− δi)f
(ν)(x̃i,j |yi, zi)× (x̃i,j+1 − x̃i,j).

Step 4 Repeat Steps 2 and 3 until the algorithm converges.
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In the algorithm, we implicitly assumed that f(x|z) is known, which needs

to be estimated in most applications. In later sections, we present an algorithm

adapted from Robins, Rotnitzky, and Zhao (1994) to obtain consistent estimation

of f(x|z) parametrically under the assumption that x is missing at random.

Other estimation methods exist, such as Titterington and Mill (1983), Wang

(2008), Dubnicka (2009), Iacus and Torre (2002), and Huang and Salleb-Aouissi

(2009). Once f(x|z) is estimated, we replace f(x|z) in Step 2 with its estimator

f̂n(x|z). The rest of the algorithm remains unchanged. We let Ŝn,τ (βτ ,γτ ) be the

counterpart of S̃n,τ (βτ ,γτ ), replacing the true density f(x|zi) by its estimator

f̂n(x|zi), and take

Ŝn(β,γ) = (Ŝn,τ1(βτ1 ,γτ1)
⊤, Ŝn,τ2(βτ2 ,γτ2)

⊤, . . . , Ŝn,τkn (βτkn
,γτkn

)⊤)

as the entire kn sets of working estimation equations at the quantile levels

Ω = {τ1, . . . , τkn}. Here β = (β⊤
τ1 , . . . ,β

⊤
τkn

)⊤, γ = (γ⊤
τ1 , . . . ,γ

⊤
τkn

)⊤ are two

concatenated coefficient vectors.

2.2. Asymptotics

Let (β̂n, γ̂n) be the solution of Ŝn(β,γ) = 0. Let β̂n(τ) and γ̂n(τ) be the

natural linear splines expanded from β̂n and γ̂n, respectively. In this section, we

derive the uniform consistency of (β̂n(τ), γ̂n(τ). We make the following assump-

tion on the conditional density f(x|z) and its estimator f̂n(x|z).

Assumption 0.

(i) The conditional density f(x|z) is bounded away from zero and infinity for

all (x, z).

(ii) There exists a consistent estimator f̂n(x|z) of f(x|z), such that,

max
i
f̂n(x|zi) < M∥x∥−(p+2). (2.7)

(iii)E{maxi ∥zi∥} <∞
Let Sτ (β,γ) = Eyi {φτ (β,γ, yi,xi, zi, δi)|xi, zi, δi} be the expectation of the

estimating equations at the τth quantile level, evaluated under the true den-

sity function f(x|δ, y, z), and S̃τ (β,γ) be its counterpart replacing the density

component f(y|x, z) by its approximation f̃{y|x, z, β̃0(τ), γ̃0(τ)} f̃ as at (2.4).

Assumption 1. The true coefficient (β0,τ ,γ0,τ ) is the unique solution to the

equation Sτ (β,γ) = 0, for all τ ∈ (0, 1), and there exists a (β∗
τ ,γ

∗
τ ) that uniquely

solves the equation S̃τ (β,γ) = 0, for all τ ∈ (0, 1).

Assumption 2. There is a compact set Θ ∈ Rp+q, such that

|Ŝn(β̂n, γ̂n)| ≤ inf
(θ,γ)∈Θ

|Ŝn(β,γ)|+ op(1).
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Assumption 1 is the identifiability condition commonly assumed in the quan-

tile regression literature, while Assumption 2 is used to ensure that the solution

to the approximated working estimating equations is confined to a compact set

Θ.

If {β0(τ),γ0(τ)} are the true quantile coefficient functions, for any (x, z),

(x⊤β0(τ) + z⊤γ0(τ)) defines a conditional quantile function. We set h(τ,x, z) =

1/(x⊤β′
0(τ) + z⊤γ ′

0(τ)), the density of y given (x, z) at the τ -th quantile. We

call this the conditional quantile density function, and its reciprocal is known as

the sparsity function (Koenker and Xiao (2004); Welsh (1988)).

Assumption 3. The coefficients (β0(τ),γ0(τ)) are smooth functions on (0, 1)

and, for any (x, z),

(i) 0 < h(τ,x, z) <∞, and limτ→0 h(τ,x, z) = limτ→1 h(τ,x, z) = 0;

(ii) there exist constants M and ν1, ν2 > −1 such that its first derivative is

bounded by
sup
x

|h′(τ,x, z)| < Mτν1(1− τ)ν2 . (2.8)

Assumption 3 has the coefficient functions smooth enough to be well approx-

imated by normalized B-splines. It also implicitly assumes that the conditional

density f(y|x, z) is continuous, bounded away from zero and infinity, and dimin-

ishes to zero as quantile level goes to zero and one. These conditions are common,

although in different forms. The inequality (2.8) holds for a fairly wide range of

distributions, including those in the exponential family.

Theorem 1. Under Assumptions 0−3, for kn → ∞, and knn
−1 → 0,

sup
τ∈[1/(kn+1), kn/(kn+1)]

∥β̂n(τ)− β0(τ)∥ = op(1);

sup
τ∈[1/(kn+1), kn/(kn+1)]

∥γ̂n(τ)− γ0(τ)∥ = op(1).

3. Simulations

3.1. Models and settings

To show the performance of the proposed methods, we conducted simulations

study based on the location-scale model

yi = 1 + 2xi + 0.5zi + (1 + 0.5xi)ei. (3.1)

Here the error term ei is the standard normal. Under (3.1), the intercept function

is 1+Φ−1(τ), where Φ−1(τ) is the quantile function of the standard normal. The

slope function associated with x is 2 + 0.5Φ−1(τ), and that of z is constantly 0.5
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at any quantile level. We considered the following distributions of the covariates

(x, z).

Setting 1: z ∼ Bernoulli(0.5) ; and x ∼ N(4.5 + z, 1),

Setting 2: z ∼ Uniform(0, 1); and x ∼ N(4.5 + z, 1),

Setting 3: z ∼ Uniform(0, 1); and x ∼ 4.5 + z + (χ2
1 − 1)/

√
2.

In Setting 3, the covariate x is chi-square, but its conditional mean and

variance given z are the same as in Setting 2. We assumed that the covariate

xi could be missing with probability P (δi = 0|yi) = (1 + exp(−12 + 1.6yi))
−1.

That results in approximately 20% missing observations in x.

3.2. Estimation of the conditional distribution f(x|z)

To estimate the conditional distribution f(x|z), we assume that x and z are

linearly associated as

x = a+ bz + e, e ∼ N(0, σ2),

where a, b, and σ are unknown parameters. Under the MAR assumption, the

missingness in x is independent of the underlying x values when conditioning on

both y and z. However, it could be related to x conditioning on z only and, as

a result, standard density estimation using the completely observed (x, z) only

could lead to substantial bias. Several methods have been proposed to estimate

(x, z) under this scenario, such as the ignorable likelihood approach (Little and

Zhang (1992)) and the estimating equations approach in Robins, Rotnitzky, and

Zhao (1994). We adapt the latter method, and take the estimating equations for

a, b, σ as
δ

π(x)
Ψ(x, z, a, b, σ2)− δ − π(x)

π(x)
E{Ψ(x, z, a, b, σ2)|y} = 0,

where δ is the binary indicator for the existence of x, π(x) is the probability

of x being observed, and the Ψ(x, z, a, b, σ2) are the estimating functions for

(a, b, σ) when all the data are observed. Specifically, we estimate π(x) using the

logistic regression of δ on y and z, and estimate E{Ψ(x, z, a, b, σ2)|y}=̂ϕ(y, z)
by regressing Ψ(x, z, ã, b̃, σ̃2) against y and z, where ã, b̃, σ̃2 are naive estimates

using the completely observed data only. To ensure the flexibility of ϕ(y, z), we

assume a partly linear model ϕ(y, z) = g(y) + ηz, where g(y) is nonparametric

function and η is the linear coefficient of z. With estimated π and ϕ, we obtain

the estimate of (a, b, σ), which we denote as (â1, b̂1, σ̂1). Then the conditional

density f(x|z) can be estimated by

f̂(x|z) = ϕ(â1 + b̂1z, σ̂
2
1),
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where ϕ() is the density of standard normal.

We applied this procedure to all three settings. Since the algorithm assumes

the normality of x given z, it produces consistent estimation of f(x|z) in Set-

tings 1 and 2, but may be biased when applied to Setting 3. We use the first two

settings illustrate the performance of proposed methods with finite sample sizes,

and Setting 3 to investigate the robustness of the proposed estimator against

misspecified conditional distributions of x|z. One can assess the normality as-

sumption by regressing xi against yi and zi on the complete set, and use a QQ

plot to check whether the residuals look normal.

3.3. Results and comparisons

We simulated 100 Monte-Carlo samples from each of the three settings with

n = 200, 500, and 2,000. For each Monte carlo sample, we estimated the quantile

coefficients using four approaches.

(1) The proposed iterative estimation algorithm was used to obtain the condi-

tional quantile coefficient estimators at 40 evenly spaced quantile levels, when

the density f(x|z) was estimated with the algorithm in Section 3.2.

(2) The proposed iterative estimation algorithm was used with the true density

f(x|z).
(3) Unadjusted quantile regression was done using the completely observed data

only.

(4) We estimated the coefficients by solving the estimation equations
n∑

i=1

δiψτ (βτ ,γτ , yi, xi, zi)

π(yi, zi)
= 0,

where π(yi, zi) is the probability of the existence of xi conditional on (yi, zi),

estimated by a logistic regression of δi over yi and zi.

The comparison between the first two approaches help in understanding the

impact of estimating f(x|z). We compare the performances of the four estimators

based on the X coefficient, similar results are found for the Z coefficients.

In Table 1, we present the mean square errors, mean biases, and empirical

standard errors of the estimated X coefficients under Setting 1 from the four

approaches at quantile levels 0.1, 0.5, and 0.9. Tables 2 and 3 present the same

entries under Settings 2 and 3, respectively. In all the tables, RQ stands for the

unadjusted quantile regression; IPW stands for the inverse probability weighting

approach; MAR are estimates from the proposed method with estimated f(x|z);
and MARt are the estimates from the proposed method but using the true f(x|z).

In Settings 1 and 2, where f(x|z) is consistently estimated, the proposed

estimation and the IPW method corrected bias to a large extent. The standard
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errors of the former are consistently smaller than those of latter, which suggests

that the proposed method is more efficient than IPW, as it uses all the available

observations in the estimating equations. The MAR and IPW estimations per-

formed worse at lower quantiles. By design, the probability of missing X is fairly

substantial at the lower quantiles of Y . The probability of missing x is as high

as 90% when Y = 6.1(the 0.1th quantile). In Tables 1 and 2, one sees smaller

biases as the sample sizes increase from 200 to 2,000.

The mean square errors of IPW estimates and the proposed estimates are

smaller than those from the unadjusted quantile regression in most cases. How-

ever, when the quantile level is 0.1 and sample sizes are 200 and 500, the mean

square errors from the IPW and the proposed method are larger than those

from unadjusted quantile regressions. These methods need to estimate the con-

ditional densities/probabilities, which adds extra variability. When sample sizes

are small and the local probability of missingness is large, the extra variances can

outweigh the benefits of the bias correction. The proposed estimates with true

f(x|z) (MARt) have smaller mean square errors than the unadjusted regression

quantiles, which further indicates that the inflated mean square errors are due

to the variability in estimating the conditional density f(x|z). Therefore, in ap-

plications, we suggest evaluating the standard errors of the estimates using the

bootstrap, to decide on an estimator.

The misspecified f(x|z) in the Setting 3 undermines the performance of the

proposed estimates, especially at lower quantiles. However, the mean square er-

rors of the proposed MAR estimates are still smaller that those of the unadjusted

quantile estimates and IPW estimates at median and upper quantiles.

4. Application: National Health and Nutrition Examination Survey

We applied our method to part of the nutrition data from National Health

and Nutrition Examination Survey (NHANES) 2005-2006. The data were from

289 male African American adults between 25 and 45 years old. Daily nutrition

intake was recorded, in addition to various body size measures. Since the waist

circumference is known to be highly associated with the risk of cardiovascular

diseases, it is of interest to understand how daily nutrition intake is related to

waist circumference. For illustrative purposes, we consider the following linear

quantile model to evaluate the association between the total-fat intake and the

waist circumference(WC) while controlling for age:

Qτ (WC) = µτ + β1,τ (TOTAL-FAT− TOTAL-FAT) + β2,τAGE. (4.1)

Here TOTAL-FAT is the actual daily total fat intake, ranging from 54.0 to 450.4

gm, TOTAL-FAT is the average total fat intake, and AGE is a binary indicator

for the younger age group. We also considered a model including an interaction
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Table 1. (Setting 1) The mean square erros, mean biases and emprical
standard errors of the estimated X coefficients at quantile levels 0.1, 0.5 and
0.9 using different methods at different sample sizes.

n = 200 n = 500 n =2,000
τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9

Setting 1: z ∼ Uniform(0, 1)

Mean Squre Errors
RQ 0.466 0.228 0.222 0.375 0.177 0.125 0.342 0.134 0.063
IPW 0.779 0.211 0.218 0.637 0.304 0.171 0.406 0.221 0.046
MAR 0.666 0.185 0.206 0.493 0.090 0.076 0.413 0.042 0.030
MARt 0.446 0.116 0.177 0.255 0.051 0.071 0.083 0.017 0.018

Mean Biases
RQ -0.598 -0.382 -0.224 -0.585 -0.381 -0.220 -0.576 -0.353 -0.206
IPW -0.561 -0.194 -0.114 -0.542 -0.139 -0.075 -0.285 -0.034 -0.022
MAR -0.499 -0.218 -0.159 -0.452 -0.182 -0.082 -0.442 -0.124 -0.074
MARt -0.131 0.055 -0.085 -0.211 -0.067 -0.029 -0.042 0.033 -0.004

Empirical Standard Errors
RQ 0.328 0.288 0.417 0.191 0.179 0.281 0.098 0.095 0.143
IPW 0.684 0.416 0.455 0.585 0.533 0.409 0.572 0.468 0.216
MAR 0.645 0.370 0.427 0.548 0.241 0.265 0.468 0.163 0.156
MARt 0.659 0.337 0.414 0.459 0.218 0.265 0.290 0.128 0.136

between age group and total fat intake (not presented here); interaction was not

significant at the quantiles of interest, so (4.1) was then employed.

We evaluated Model (4.1) at the 0.1th, 0.5th, and 0.9th quantiles, and found

the total fat intake not associated with the lower quantile of waist circumfer-

ence, but that it significantly impacts its median and upper quantile. Every

unit increase of total fat intake results in an increase of the 0.9th quantile of

waist-circumference by 0.10, and an increase of median by 0.06. The estimated

TOTAL-FAT coefficients and their 95% confidence intervals are in Table 4. The

age group is also significant at all the quantiles, the subjects in the younger age

group tending to smaller waist circumference.

AS some overweight respondents may be reluctant to report their daily in-

takes, we mimicked this by assuming that those with waist circumferences larger

than 90 inches (the median) do not report their total-fat intake values with

probability 0.4. We then re-estimated regression quantiles using the remaining

80% “completely observed data”. Although the intercept and age group coeffi-

cients wew not affected, TOTAL-FAT effect was seriously under-estimated: the

TOTAL-FAT coefficient at the 0.9th quantile decreased from 0.10 to 0.01 and

was no longer significant. A similar pattern was found at median. The esti-

mated coefficients using the 80% “completely observed data”, as well as their

95% confidence intervals, are listed in Table 4.
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Table 2. (Setting 2) The mean square erros, mean biases and emprical
standard errors of the estimated X coefficients at quantile levels 0.1, 0.5 and
0.9 using different methods at different sample sizes.

n = 200 n = 500 n =2,000
τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9

Setting 2: z ∼ Bernoulli(0.5)

Mean Squre Errors
RQ 0.406 0.216 0.257 0.370 0.190 0.114 0.337 0.132 0.071
IPW 0.797 0.182 0.221 0.593 0.158 0.098 0.420 0.145 0.040
MAR 0.703 0.176 0.200 0.408 0.090 0.073 0.298 0.031 0.026
MARt 0.401 0.105 0.198 0.282 0.054 0.066 0.082 0.018 0.017

Mean Biases
RQ -0.538 -0.360 -0.214 -0.585 -0.402 -0.210 -0.571 -0.348 -0.221
IPW -0.598 -0.164 -0.091 -0.498 -0.173 -0.076 -0.373 -0.028 -0.034
MAR -0.476 -0.196 -0.108 -0.391 -0.178 -0.100 -0.326 -0.076 -0.057
MARt -0.113 0.012 -0.059 -0.233 -0.094 -0.069 -0.059 0.030 -0.009

Empirical Standard Errors
RQ 0.338 0.294 0.461 0.179 0.170 0.263 0.099 0.102 0.149
IPW 0.661 0.427 0.463 0.678 0.615 0.313 0.529 0.380 0.198
MAR 0.690 0.372 0.434 0.573 0.255 0.251 0.437 0.160 0.153
MARt 0.626 0.325 0.441 0.481 0.212 0.248 0.284 0.134 0.132

We also applied the proposed procedure to estimate coefficients, pretending

that the 20% of total-fat intake values were missing. As in the simulations, we

choose 40 evenly spaced quantile levels. Figure 1 displays the qq-plots of the log-

arithm of TOTAL-FAT in the two age groups, and the residuals from regressing

log transformed totalfat against age and waist circumference. These QQ plots

suggest that the log transformed TOTAL-FAT follows an approximate normal

distribution. We hence applied the estimation procedure in Subsection 3.2 to

the log of TOTAL-FAT, and subsequently estimated the conditional distribu-

tions of TOTAL-FAT given age groups. The resulting estimated TOTAL-FAT

coefficients are in Table 4, together with their 95% bootstrap confidence inter-

vals with 50 bootstrap samples. The proposed estimation largely corrected the

bias in TOTAL-FAT that was introduced from the removed observations. The

estimated coefficient associated with the total fat intake was 0.08 for the median

and 0.12 for the 0.9th quantile, close to the original estimates.

We plot in Figure 2 the three sets of regression lines at the 0.9th quantile.

The solid lines are the original regression quantiles using all the data; the dotted

lines are the regression quantiles using the 80% “completely observed” data only;

the dashed lines are regression quantiles using the proposed method. Here the

plus points are those data points whose total fat intakes were treated as missing,
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Table 3. (Setting 3) The mean square erros, mean biases and emprical
standard errors of the estimated X coefficients at quantile levels 0.1, 0.5 and
0.9 using different methods at different sample sizes.

n = 200 n = 500 n =2,000
τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9 τ=0.1 τ=0.5 τ=0.9

Setting 3: Misspecified model

Mean Squre Errors
RQ 0.348 0.188 0.442 0.260 0.119 0.145 0.253 0.067 0.039
IPW 0.638 0.230 0.407 0.487 0.091 0.136 0.542 0.301 0.070
MAR 0.764 0.175 0.356 0.663 0.080 0.130 1.033 0.045 0.038
MARt 0.764 0.209 0.389 0.416 0.073 0.133 0.093 0.018 0.032

Mean Biases
RQ -0.443 -0.175 -0.099 -0.436 -0.225 -0.130 -0.489 -0.227 -0.089
IPW -0.311 0.039 0.029 -0.211 -0.031 -0.027 -0.178 0.061 0.039
MAR -0.669 -0.049 -0.004 -0.684 -0.073 -0.004 -0.944 -0.094 0.034
MARt -0.169 0.048 -0.020 -0.224 -0.019 -0.020 -0.091 -0.006 0.014

Empirical Standard Errors
RQ 0.392 0.398 0.661 0.265 0.262 0.360 0.155 0.125 0.178
IPW 0.739 0.480 0.640 0.669 0.301 0.370 0.718 0.548 0.263
MAR 0.565 0.418 0.600 0.445 0.274 0.362 0.379 0.190 0.193
MARt 0.862 0.458 0.627 0.608 0.271 0.366 0.292 0.134 0.179

Figure 1. The qqplots to assess the normality of the log transformed totalfat.
(a) is the QQ plot for the observed log transformed totalfat in the younger
age group, (b) is that in the old age group. (c) is the QQ plot of the
residuals from regressing the log transformed totalfat against age group and
waist circumference.

and the circled ones are the remaining 80% of data points. From Figure 2, one

sees a stronger association between fat intake and waist circumference among the

heavier subjects. The slope is seriously underestimated after excluding some of
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Table 4. Estimated TOTAL-FAT effect and their 95% confidence intervals
in the NHANES study at quantile levels 0.5 and 0.9. RQcom refers to the
regression quantile estimates using the entire data; RQobs refers to the re-
gression quantile estimates using 80% completely observed data; and RQmis

refers to the estimates obtained from the proposed method assuming 20%
total fat intakes are missing.

τ RQcom RQobs RQmis

0.5 0.06* 0.04 0.08*
(0.02,0.09) (-0.02,0.09) (0.04,0.12)

0.9 0.10* 0.01 0.12*
(0.01,0.17) (-0.04,0.14) (0.05,0.22)

Figure 2. Comparison of the estimated regressions lines at 0.9th quantile.
The plus signs indicate those data points whose TOTAL-FAT values are
artificially treated as missing, and the circles are the rest of the 80% data
points. The solid line is the original regression quantile using all of the data;
the dotted line is the regression quantile only using the 80% “completely
observed” data; the dashed line is the regression quantile using the proposed
method.

them from the estimation, and the estimates using the proposed method success-

fully correct the bias.

5. Discussion

We have proposed to construct unbiased estimation equations for parameter
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estimation in a quantile regression model when some covariates contain missing

values. Under suitable conditions, the estimator was shown to be uniformly

consistent. In addition, since the method fully utilizes the entire data set, it

improves the estimation efficiency.

Dealing with the missing covariates in the quantile regression context is chal-

lenging because the conditional density y given the covariates is unspecified.

Thus, the classical parametric likelihood based approaches cannot be applied di-

rectly. Here, we adopted the similar joint modelling approach in Wei and Carroll

(2009) to circumvent the difficulty, though the objectives of the two papers are

different: we aim to correct the bias in regression quantiles from missing data,

while Wei and Carroll (2009) handle mis-measured covariates. The proposed

method differs from previous work in that estimating equations are constructed

differently, the estimation algorithms need to be adapted, and the asymptotic

results need to be studied separately.

The validity of the method relies on a correct specification of the conditional

density f(x|z). In the simulation study and a data application, we modeled

it parametrically for robustness against the possible misspecification, and ob-

tained reasonably good results. Although nonparametric estimation methods

are available to further improve flexibility, they are usually complex and known

to have slow convergence rates. In addition, we assumed the conditional quantile

functions to be linear at all quantile levels. This assumption holds readily for

location-scale models. If needed, one can easily relax the linear quantile function

to an arbitrary nonlinear or even nonparametric function. The algorithm remains

largely unchanged after setting the linear function to the new regression function

in the quantile regression estimating function. Thus, let gτ (yi,xi, zi,βτ ) be the

conditional quantile function, with β containing linear or non-linear coefficients.

If gτ contains a nonparametric component, it can be approximated by appro-

priate spline functions, and then β includes the spline coefficients. We need to

generalize the Ψτ function in (2.1) to

Ψτ (βτ , y,x, z) = {τ − I(y − gτ (y,x, z,βτ ) < 0)}∂gτ (y,x, z,βτ )/∂βτ .

To improve the robustness of the estimation, one could appeal to Robins’s

(1994) estimating function

Ω(Y,X,Z, δ,β) =
δ

π(Y,Z)
Ψ(Y,X,Z,β) +

δ − π(Y,Z)

π(Y, Z)
E{Ψ(Y,X,Z,β) | Y, Z},

where π(Y, Z) is the probability of X being observed, estimated using logis-

tic regression, and E{Ψ(Y,X,Z,β) | Y, Z} evaluated using a similar approach.

The resulting estimators inherit double-robustness from Robin’s estimating equa-

tion: if either π(Y, Z) or E{Ψ(Y,X,Z, β)|Y,Z} are estimated “consistently”, the
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resulting estimators are consistent. However, such estimators may be less effi-

cient from variability introduced by estimating π(Y,Z) and its correlation with

E{Ψ(Y,X,Z, β)|Y, Z}. Future research is needed on asymptotic behaviours.
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Appendix: Proof of Theorem 1

We take (βτ ,γτ ) as the unknown coefficient at the τ -th quantile, and write

β = (β⊤
τ1 , . . . ,β

⊤
τkn

)⊤, γ = (γ⊤
τ1 , . . . ,γ

⊤
τkn

)⊤ as the concatenated coefficient vec-

tors. Consequently, β̃(τ) and γ̃(τ) are natural linear splines expanded from β

and γ, respectively. We take (β0,τ ,γ0,τ ) as the true coefficient at the τ -th quan-

tile, (β0,γ0) as the concatenated true coefficient vector at kn quantile levels, and

{β0(τ),γ0(τ)} as the entire true coefficient processes.

As defined earlier, Sτ (βτ ,γτ ) is the limiting estimating function of (2.1),

and S̃τ (βτ ,γτ ) is its approximation when replacing the true coefficient function

{β0(τ),γ0(τ)} by its spline approximation {β̃0(τ), γ̃0(τ)}. We write

S(β,γ) = {Sτ1(βτ1 ,γτ1)
⊤, . . . , Sτkn (βτkn

,γτkn
)⊤}⊤

as the entire set of limiting functions at kn quantile levels, and define S̃τ (β,γ)

in the same manner. It is easy to see that

∥S̃(β,γ)−S(β,γ)∥ ≤
kn∑
k=1

E(y,z)

{∫
x
∥Ψτk(βτk ,γτk , y,x, z)∥[f(x|y, z,β0(τ),γ0(τ))

−f(x|y, z, β̃0(τ), γ̃0(τ))]dx
}
.

Following the arguments of Lemma 1 of Wei and Carroll (2009), one can show

that

k−1
n ∥S̃(β0,γ0)− S(β0,γ0)∥ = o(1) (A.1)

under Assumptions 0 and 3.

With Assumption 1, (β0,γ0) is the unique solution of S(β,γ) = 0. There-

fore, the convergence of (A.1) is equivalent to k−1
n ∥S̃(β0,γ0)∥ = o(1). Since

(β∗
τk
,γ∗

τ,k) is the unique solution of S̃τk(θ) = 0, and Assumption 1, it follows that

k−1
n ∥S̃(β0,γ0)− S̃(β∗,γ∗)∥ → 0. Due to the continuity of S̃() and the uniqueness

of (β∗,γ∗), we have

k−1
n ∥β∗ − β0∥ → 0 and k−1

n ∥γ∗ − γ0∥ → 0, (A.2)
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as n goes to infinity.

Now S̃n(β,γ) is the sample version of the estimating function S̃(β,γ), and

Ŝn(β,γ) is its approximation replacing the true density f(x|z) by its estima-

tor f̂n(x|z). We show that the difference between the two sample estimating

functions above uniformly converges to zero as n goes to infinity, under the As-

sumptions 0 and 2.

Let

Ai(β,γ) =

∫
x
f(yi|x, zi, β̃(τ), γ̃(τ))f(x|zi)dx,

Âi(β,γ) =

∫
x
f(yi|x, zi, β̃(τ), γ̃(τ))f̂n(x|zi)dx.

By Assumption 0, f̂n(x|zi) converges to f(x|zi) for any (x, zi), and maxi f̂n(x|zi)
< M∥x∥−(p+2) for some constant M , so

max
i

∫
x
f(yi|x, zi, β̃(τ), γ̃(τ))f̂n(x|zi)dx

<

∫
x
f(yi|x, zi, β̃(τ), γ̃(τ))M∥x∥−(p+2)dx <∞.

Then, it follows from the Dominated Convergence Theorem that

max
i

|Â(β,γ)−A(β,γ)| =max
i

∫
x
f(yi|x, zi, β̃(τ), γ̃(τ)){f̂n(x|zi)− f(x|zi)}dx

= op(1),

for any (β,γ) ∈ Θ× Ω. Following the same argument, we have

sup
(β,γ)∈Θ×Ω

∫
x
∥Ψτ (yi,x, zi,βτ ,γτ )∥|f̂n(x|zi)− f(x|zi)|dx = op(1).

Consequently, together with the fact that Ai(β,γ) > 0 and Âi(β,γ) > 0 for any

(β,γ), we have

sup
(β,γ)∈Θ×Ω

k−1
n ∥Ŝn(β,γ)− S̃n(β,γ)∥

≤ sup
(β,γ)∈Θ×Ω

n−1k−1
n

n∑
i=1

kn∑
k=1

1
Ai(β,γ)

∫
x
∥Ψτ (yi,x, zi,βτ ,γτ )∥|f̂n(x|zi)−f(x|zi)|dx

+ sup
(β,γ)∈Θ×Ω

k−1
n

n∑
i=1

kn∑
k=1

|Ai(β,γ)−Âi(β,γ)|
Ai(β,γ)Âi(β,γ)

∫
x
∥Ψτ (yi,x, zi,βτ ,γτ )∥f(x|zi)dx

= op(1) (A.3)

Next we show that

sup
(β,γ)∈Θ×Ω

k−1
n ∥S̃n(β,γ)− S̃(β,γ)∥ = op(1) (A.4)
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To simplify the notation, let θ = (β,γ), θ0 = (β0,γ0), θτ = (βτ ,γτ ), θ0,τ =

(β0,τ ,γ0,τ ) and θ̃(τ) = {β̃(τ), γ̃(τ)}.
If Ψ(θ, yi,xi, zi) = {Ψτ1(θτ1 , yi,xi, zi)

⊤, . . . ,Ψτkn
(θτkn , yi,xi, zi)

⊤}⊤ then,

by definition,

S̃n(θ) = n−1
n∑

i=1

δiΨ(θ, yi,xi, zi)+
1

n

n∑
i=1

(1−δi)
∫
x
Ψ(θ, yi,x, zi)f{x|yi, zi, θ̃(τ)}dx

=̂ S̃(1)
n (θ) + S̃(2)

n (θ).

We can write the limiting function as S̃(θ) = S(1)(θ)+S̃(2)(θ). Following Lemma

8.4 in Wei and He (2006), supθ k
−1
n ∥S(1)

n (θ) − S(1)(θ)∥ = op(1). Hence we only

need to show that supθ k
−1
n ∥S̃(2)

n (θ)− S̃(2)(θ)∥ = op(1), which is equivalent to

pr

(
sup

θ∈Θ×Ω
k−1
n ∥S̃(2)

n (θ)− S̃(2)(θ)∥ > ϵ

)
→ 0 (A.5)

for any ϵ > 0. Without loss of generality, we assume the parameter space Θ×Ω =∪
k{θ : |θτk − θ0,τk | < 1}, and partition it into Ln disjoint small cubes Γl with

diameters less than qn = C1kn/n, for some constant C1. Let ξl be the center of

the lth cube Γl. The probability of the left side of (A.5) is bounded by the sum,

P1 + P2, of

P1 = pr
(

max
1≤l≤Ln

sup
θ∈Γl

k−1
n ∥S̃(2)

n (θ)− S̃(2)
n (ξl)− S̃(2)(θ) + S̃(2)(ξl)∥ >

ε

2

)
;

P2 = pr
(

max
1≤l≤Ln

k−1
n ∥S̃(2)

n (ξl)− S̃(2)(ξl)∥ >
ε

2

)
.

Note that

∥S̃(2)
n (θ)− S̃(2)

n (ξl)∥

≤ n−1
n∑

i=1

∥∥∥∥∫
x
{Ψ(θ, yi,x, zi)−Ψ(ξl, yi,x, zi)} f{x|yi, zi, ξ̃l(τ)}dx

∥∥∥∥
+n−1

n∑
i=1

∥∥∥∥∫
x
Ψ(θ, yi,x, zi)

[
f{x|yi, zi, θ̃(τ)} − f(x|yi, zi, ξ̃l(τ))

]
dx

∥∥∥∥
= SS1 + SS2.

Here

max
1≤l≤Ln

sup
θ∈Γl

SS1

= max
1≤l≤Ln

sup
θ∈Γl

n−1
n∑

i=1

∥∥∥ ∫
x
{Ψ(θ, yi,x, zi)−Ψ(ξl, yi,x, zi)} f{x|yi, zi, ξ̃l(τ)}dx

∥∥∥
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≤ max
1≤l≤Ln

sup
θ∈Γl

2n−1
n∑

i=1

kn∑
k=1

∫
x
∥Ψτk(θτk , yi,x, zi)−Ψτk(ξl,τk , yi,x, zi)∥

f{x|yi, zi, ξ̃l(τ)}dx

≤ max
1≤l≤Ln

sup
θ∈Γl

2n−1
n∑

i=1

kn∑
k=1

∫
x
I{|(x⊤, z⊤i )ξl,τk−yi|≤|(x⊤, z⊤i )(ξl,τk−θτk)|}

∥(x, zi)∥f{x|yi, zi, ξ̃l(τ)}dx

≤ 2n−1
n∑

i=1

kn∑
k=1

∫
x
I{|(x⊤, z⊤i )ξl,τk−yi|≤∥(x⊤, z⊤i )∥qn}∥(x, zi)∥f{x|yi, zi, ξ̃l(τ)}dx.

Under Assumption 0, and the fact that f(yi|x, zi, ξ̃l(τ)) is bounded,

max
i

∫
x
∥(x⊤, z⊤i )∥f{x|yi, zi, ξ̃l(τ)}dx <∞

for any l. Since qn goes to zero as n goes to infinity,∫
x
I{|(x⊤, z⊤i )ξl,τk − yi| ≤ ∥(x⊤, z⊤i )∥qn}f{x|yi, zi, ξ̃l(τ)}dx = op(1)

follows the Dominate Convergence Theorem. Consequently we have max1≤l≤Ln

supθ∈Γl
k−1
n SS1 = op(1). On the other hand,

max
1≤l≤Ln

sup
θ∈Γl

SS2

= max
1≤l≤Ln

sup
θ∈Γl

n−1
n∑

i=1

∥∥∥∥∫
x
Ψ(θ, yi,x, zi)

[
f{x|yi, zi, θ̃(τ)}−f(x|yi, zi, ξ̃l(τ))

]
dx

∥∥∥∥
≤ sup

θ∈Γl

2n−1
n∑

i=1

kn

∫
x
∥(x⊤, z⊤i )∥

[
f{x|yi, zi, θ̃(τ)} − f(x|yi, zi, ξ̃l(τ))

]
dx.

Since

sup
θ∈Γl

max
i

|f{x|yi, zi, θ̃(τ)} − f(x|yi, zi, ξ̃l(τ))| = op(1),

and maxi
∫
∥(x⊤, z⊤i )∥f̂n(x|zi)dx <∞ under Assumption 0, we have

max
1≤l≤Ln

sup
θ∈Γl

k−1
n SS2 = op(1).

Combining the convergence of SS1 and SS2, we have supθ∈Γl
k−1
n ∥S(2)

n (θ) −
S
(2)
n (ξl)∥ = op(1). Following a similar argument, we can also show that supθ∈Γl

∥S(θ)− S(ξl)∥ = o(1). It then follows that P1 = o(1).
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Under the assumption that E(maxi ∥zi∥) < ∞, we have prob(maxi ∥zi∥ >
Ln1/2k

−1/2
n ) → 0 for some constant L. Consequently, P2 = o(1) is equivalent to

pr
(

max
1≤l≤Ln

k−1
n ∥S̃(2)

n (ξl)− S̃(2)(ξl)∥ >
ε

2
, and max

i
zi ≤ n1/2k−1/2

n

)
= o(1).

Let

Xi(l, k,m) = 1− δi

∫
x
(τk − I{yi − (x⊤, z⊤i )ξl,k})xmf(x|yi, zi; ξ̃l(τ))dx},

for m = 1, . . . , p, and

Zi(l, k,m) = 1− δi

∫
x
(τk − I{yi − (x⊤, z⊤i )ξl})zi,mf(x|yi, zi; ξ̃l(τ))

dxI{zi,m ≤ n1/2k−1/2
n }, m = 1, . . . , q.

A sufficient condition for P2 = o(1) is that

pr
{

max
1≤l≤Ln;1≤k≤kn;1≤m≤p

n−1
∣∣∣ n∑
i=1

Xi(l, k,m)− E{Xi(l, k,m)}
∣∣∣ > ε

2

}
= o(1),

and pr{max1≤l≤Ln;1≤k≤kn;1≤m≤q n
−1|

∑n
i=1Zi(l, k,m)−E{Zi(l, k,m)}| > ε/2} =

o(1). Under Assumption 0, and the fact that Γ is a bounded support, |Xi(l, k,m)|
< Cn1/2k

−1/2
n and |Zi(l, k,m)| < Cn1/2k

−1/2
n for all i. Applying Bernstein’s

inequality to this probability term, we have

pr
(

max
1≤l≤Ln;1≤k≤kn;1≤m≤p

n−1
∣∣∣ n∑
i=1

Xi(l, k,m)− EXi(l, k,m)
∣∣∣ > ε

)
≤ kn · p · Ln · pr

(
n−1

∣∣∣ n∑
i=1

Xi(l, k,m)− EXi(l, k,m)
∣∣∣ > ε

)
≤ kn· ·Ln · exp

{
− n2ε2

2nC2nk−1
n + (2/3)Cn1/2k

−1/2
n nε

}
= o(1).

The same convergence holds for Zi(l, k,m)’s. The uniform convergence (A.5)

now follows, which in turn implies (A.4). Combining (A.3) and (A.4), we have

sup
θ∈Θ×Ω

k−1
n ∥Ŝn(θ)− S̃(θ)∥ = op(1). (A.6)

We turn to the uniform convergence of θ̂n.

For any δ > 0, we define a compact set Bτ = {θτ ∈ Rp+1 : ∥θτ − θ0,τ∥ <
δ}, where θ0,τ is the true coefficients at the quantile level τ , and let Bc

τ be its

complementary set. We define the distance

dn(δ) = k−1
n

{
min

θ∈{Θ∩Bc
τ}⊗Ω

∥S̃(θ)∥ − ∥S̃(θ0)∥
}

(A.7)
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between the norm of the limiting estimating equations S̃ evaluated at the true

coefficients θ0 and the minimized norm when θ stays outside of Bτ ⊗ Ω.

Due to the convergence (A.1), there exist Kδ, such that when kn > Kδ, we

have k−1
n ∥θ∗ − θ0∥ < δ/2, so θ∗ ∈ Bτ × Ω for kn > Kδ. On the other hand, the

uniqueness of θ∗ ensures that, for any kn > Kδ, we have

d∗n(δ) = k−1
n

{
min

θ∈{Θ∩Bc
τ}⊗Ω

∥S̃(θ)∥ − ∥S̃(θ∗)∥
}
> 0. (A.8)

Following the continuity of S̃(), and convergence of θ∗, we also have

k−1
n ∥S̃(θ∗)− S̃(θ0)∥ <

d∗n(δ)

2
, (A.9)

for sufficiently larger kn. Combining these (A.9) and (A.8), we have

dn(δ) = k−1
n [ min

θ∈Θ∩Bc
τ

∥S̃(θ)∥ − ∥S̃(θ0)∥] >
d∗n(δ)

2
> 0, (A.10)

for sufficiently large kn.

The random event

En =

{
k−1
n max

θ∈Θ×Ω
[∥Ŝn(θ)− S̃(θ)∥] < dn(δ)

3

}
,

together with Assumption 2, imply that

k−1
n ∥S̃(θ̂n)∥ ≤ k−1

n ∥Ŝn(θ̂n)∥+
dn(δ)

3
, (A.11)

k−1
n ∥Ŝn(θ0)∥ ≤ k−1

n ∥S̃(θ0)∥+
dn(δ)

3
. (A.12)

Since θ̂n is the minimizer of ∥Ŝn(θ)∥, we have ∥Ŝn(θ̂n)∥ < ∥Ŝn(θ0)∥, which, to-
gether with (A.11), shows that k−1

n ∥S̃(θ̂n)∥≤k−1
n ∥Ŝn(θ0)∥+dn(δ)/3 ≤ k−1

n ∥S̃(θ0)∥
+2dn(δ)/3.

Following (A.6), limn→∞ pr(En) = 1, which implies

lim
n→∞

pr
{
k−1
n ∥S̃(θ̂n)∥ ≤ k−1

n ∥S̃(θ0)∥+
2dn(δ)

3

}
≥ lim

n→∞
pr(En) = 1.

By the definition of Bτ and the fact that dn(δ) > d∗n(δ)/2 > 0, this in turn

implies that limn→∞ pr(θ̂n ∈ Bτ ) = 1, or

sup
τ∈[1/(kn+1),kn/(kn+1)]

∥θ̂n(τ)− θ0(τ)∥ = op(1).

The consistency of θ̂n(τ) is proved.
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