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Abstract: Linear mixed effects (LME) models are important statistical tools for

analysis of clustered and correlated data. High breakdown estimators are currently

the robust methods of choice for multivariate linear regression, but extensions of

such estimators have been developed only for completely balanced LME models.

In this work, we propose a generalized S-estimator for a general unbalanced LME

model. Our GS-estimator reduces to the classic high breakdown S-estimator when

the LME model reduces to a multivariate normal location and scale model or mul-

tivariate regression model. The asymptotic properties are established, and we show

that the estimator may be viewed as a redescending M-estimator. A small simu-

lation study is conducted to compare performance of the GS-estimates, monotone

M-estimates, and restricted maximum likelihood (REML) estimates under various

contamination patterns. The proposed estimator is used for analysis of age-related

changes in hemoglobin levels of sickle cell disease patients.

Key words and phrases: Breakdown, clustered data, longitudinal data, redescending

M-estimators, robust estimation.

1. Introduction

Linear mixed effects (LME) models are widely used for analysis of clus-

tered and correlated data from the biomedical and agricultural sciences, psy-

chology, sociology, economics, and more. Robust estimation of the LME mod-

els was originally proposed through robustified weighted log-likelihood (Huggins

(1993); Huggins and Staudte (1994); Richardson and Welsh (1995)) or through

the log-likelihood based on t-distribution (Stahel and Welsh (1997); Pinheiro,

Liu, and Wu (2001)). Richardson (1997) and Welsh and Richardson (1997) pro-

posed a general class of bounded influence estimating equations (BIEE) esti-

mators (generalized M-estimators with monotone increasing ρ-function) for the

LME models. Field, Pang, and Welsh (2010) developed robust bootstrap pro-

cedures for monotone M-estimators of covariance parameters in a general LME

model. Samanta and Welsh (2013) developed fast and robust bootstrap for mono-

tone M-estimators in LME models and investigated performance of various boot-

strap estimates for highly unbalanced clustered data. Monotone M-estimators

have good local robustness (bounded influence function), but do not necessary
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have good breakdown properties (Maronna (1976); Maronna, Martin, and Yohai

(2006)). Recent work in robust estimation of linear models has shifted toward

high breakdown S-estimators (Bilodeau and Duchesne (2000)); Van Aelst and

Willems (2005)) and redescending M-estimators (Yohai (1987); Tatsuoka and

Tyler (2000)). For balanced LME models, Copt and Victoria-Feser (2006) pro-

posed a constrained S-estimator defined similarly to the S-estimators of multi-

variate location and scale (Davies (1987); Lopuhaä (1989)). This estimator is

limited to completely balanced data with the same number of observations and

the same covariance matrix for each independent unit, and there is a need for

extension to unbalanced LME models (Heritier et al. (2009)).

We consider unbalanced LME models for independent vector observations

with variable dimensions and not necessarily identical covariance structure. The

proposed generalized S-estimator (GS-estimator) minimizes the weighted sum of

the log-transformed determinants of the covariance matrices of independent vec-

tor observations, subject to constraint insuring unbiasedness of the fixed effects

estimates and a desired breakdown parameter. If an LME model reduces to a mul-

tivariate regression or location and scale model, then the GS-estimator reduces

to the S-estimator and the breakdown parameter becomes a breakdown point.

For balanced LME models, the GS-estimator is the constrained S-estimator of

Copt and Victoria-Feser (2006).

In Section 2, we formally define the GS-estimators and derive the corre-

sponding system of unbiased estimating equations. Asymptotic properties of the

GS-estimators are presented in Section 3. Section 4 describes the computing

algorithm for GS-estimators. The fixed effects inference based on GS-estimators

is addressed in Section 5. We report on the results of the simulation studies

in Section 6, and present a data example in Section 7. Section 8 concludes

with a discussion. All proofs are given in the online supplement available at

http://www.stat.sinica.edu.tw/statistica.

2. Generalized S-estimator

Consider the standard hierarchical LME model

yi = Aiβ + Ziγi + εi, (2.1)

where mi-dimensional vectors yi, i = 1, . . . ,M, are assumed to be independent,

β is a q× 1 vector of fixed population parameters, γi is a g× 1 vector of random

effects associated with yi, Ai and Zi are design matrices for the fixed and random

effects, respectively, and εi, i = 1, . . . ,M, are independent vectors of error terms.

It is assumed that γi
i.i.d.∼ Ng(0,G), εi ∼ Nmi(0,Ri), and γl is independent of

any εi for any l and i. We denote by θ = [θ1, . . . , θl]
′ the vector of all unknown
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covariance parameters in G and Ri, i = 1, . . . ,M, and by ξ the vector of all

population parameters, ξ = [β′, θ′]′ ∈ Θ⊂Rq+l, q = dim(β), and l = dim(θ).

We write y = Aβ + Zγ + ε, where y = [y′
1, . . . ,y

′
M ]′ , A = [A′

1, . . . ,A
′
M ]′ ,

Z = Diag (Z1, . . . ,ZM ) , γ = [γ′1, . . . , γ
′
M ]′ and ε = [ε′1, . . . , ε

′
M ]′ . Model (2.1)

also has a multivariate formulation as

yi ∼ Nmi (Aiβ,Vi) , i = 1, . . . ,M, where Vi = ZiGZ′
i +Ri. (2.2)

Let 0 < ϵ ≤ 0.5 be the breakdown parameter, mmax = maximi, and mmin =

minimi. Consider a family of real-valued ρ-functions
{
ρϵmi

(d)
}
, mmin ≤ mi ≤

mmax, d ∈ [0,∞), such that parameters of ρϵmi
are selected as solutions of the

equation

ϵ =
Ed2∼χ2

mi

[
ρϵmi

(d)
]

maxd ρϵmi
(d)

, (2.3)

with ρ-functions that satisfy the conditions (Lopuhaä (1989))

R1 ρϵmi
(d) is symmetric with continuous derivative and ρϵmi

(0) = 0,

R2 there exists c0(mi) > 0 such that ρϵmi
(d) is strictly increasing on [0, c0(mi)]

and constant on [c0(mi),∞),

R3 uϵmi
(d) = (1/d) ∂

∂dρ
ϵ
mi

(d) and ∂2

∂dρ
ϵ
mi

(d) are bounded and continuous.

Conditions R1-R3 imply that ρϵmi
(d) are redescending functions. To obtain

a generalized S (GS)-estimator of ξ, it is proposed to minimize

D =

M∑
i=1

vi ln [det(Vi)] , (2.4)

subject to
M∑
i=1

ρϵmi
(di)− bM = 0 (2.5)

where di is the Mahalanobis distance for vector yi,

di =
[
(yi −Aiβ)

′V−1
i (yi −Aiβ)

]1/2
, (2.6)

vi =m−1
i Ed2∼χ2

mi

[
d2uϵmi

(d)
]
, (2.7)

bM =
M∑
i=1

bmi , bmi = Ed2∼χ2
mi

[
ρϵmi

(d)
]
. (2.8)

The ρ-function applied to each vector yi is selected to correspond to dimension

mi of yi in the sense that E
[
ρϵmi

(d)
]
in (2.3) is computed under d2 ∼ χ2

mi
. Mean-

while, parameter(s) of ρϵmi
are solutions of (2.3) with a priori chosen breakdown
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Figure 1. Tukey biweight weighting functions u(d) for dimensions m = 1
to 20 and breakdown parameters 0.2 and 0.5. The curves shift right as
dimension increases.

parameter ϵ ≤ 0.5, the same for all mi. In numerical studies, we use the Tukey

biweight ρ-functions (Beaton and Tukey (1974)).

ρB(d; cmi) =

 1
6c

2
mi

[
1−

(
1− ( d

cmi
)2
)3]

if d ≤ cmi ,

1
6c

2
mi

if d ≥ cmi .
(2.9)

Respectively, the weighting functions are

umi(d) =

{
(1− ( d

cmi
)2)2 if d ≤ cmi ,

0 if d ≥ cmi .

Constants cmi , mmin ≤ mi ≤ mmax, are chosen as solutions of (2.3). Figure 1

shows the weighting functions umi(d) for m = 1, . . . , 20 and ϵ = 0.2 or ϵ = 0.5.

Constraint (2.5) is similar to the balanced case (up to variable dimensionmi)

and ensures that estimating equations for β are conditionally unbiased (Künsch,

Stefanski, and Carroll (1989)) under the true model. Meanwhile, weights (2.7)

are selected so that estimating equations for θ are conditionally unbiased, as

shown in Theorem 1.



GENERALIZED S-ESTIMATORS FOR LINEAR MIXED EFFECTS MODELS 1261

We further suppress the subscript mi in ρmi(di) and umi(di). With the stan-

dard assumption that V
−1/2
i exists for any i, we let ri = V

−1/2
i (yi −Aiβ) , so

that di = (r′iri)
1/2 .

Theorem 1. The GS-estimator of ξ is a solution of the estimating equations

1

M

M∑
i=1

u(di)A
′
iV

−1/2
i ri = 0, (2.10)

1

M

M∑
i=1

u(di)r
′
iV

−1/2
i FjiV

−1/2
i ri = 0, j = 1, . . . l, (2.11)

M∑
i=1

ρ (di)− bM = 0, (2.12)

that are unbiased under the assumed model, where

Fji =

(
l∑

s=1

∂Vi

∂θs

)
M∑
k=1

vktr

(
V−1

k

∂Vk

∂θj

)
− ∂Vi

∂θj

M∑
k=1

vktr

(
V−1

k

l∑
s=1

∂Vk

∂θs

)
.

(2.13)

The proof is given at http://www.stat.sinica.edu.tw/statistica.

For the balanced case with mi = m and vi = v = m−1Ed2∼χ2
m

[
d2u(d)

]
for

any i, (2.5) reduces to
∑M

i=1 ρ (di) = Mb0. Minimizing (2.4) with equal weights

vi = v is equivalent to minimizing det(V). Hence, the proposed GS-estimator

reduces to the constrained S-estimator in balanced LME models, and to the S-

estimator in multivariate regression, which may be viewed as subclass of LME

models. The breakdown parameter ϵ is the same as the usual breakdown point

if all fixed effects covariates are random (continuous) and all matrices Vi are

the same, which is not necessary in (2.1). The first problem is that a general

LME model allows for any mixture of continuous and categorical fixed effects

covariates, which implies that the standard definition of the breakdown point

does not apply (Maronna and Yohai (2000)). The maximum possible breakdown

point for multivariate regression models with only random covariates is 0.5 (Van

Aelst and Willems (2005)), but for linear models with fixed designs corresponding

to two or more groups, the maximum possible breakdown point of S-estimators

may be lower than 0.5 (He and Fung (2000); Maronna and Yohai (2000)), and it

is affected by between-subject fixed design covariates. A typical example is the

dummy variables corresponding to group indicators. In particular, in case of one-

way design for the fixed effects model, the results in Maronna and Yohai (2000)

imply that ϵ ≤ (1/M) [(Mmin + 1)/2], where Mmin is the number of independent

http://www.stat.sinica.edu.tw/statistica.
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vectors in the smallest group. One can adapt the definition of the breakdown

point for mixed designs proposed by Maronna and Yohai (2000) in the context of

regression with continuous and categorical predictors to address the breakdown

of the fixed effects parameter estimates in LME models. However, the breakdown

point for covariance parameter estimates cannot be well defined in a LME model

with different covariance matrices Vi depending on different (but not necessarily

disjoint) subsets of the covariance parameter vector θ. In our data application,

the covariance matrices for vector observations from two phenotypes depend on

common error term variance and on phenotype-specific variance of the subject

random effect.

The estimating equations in (2.10) look similar to the corresponding fixed

effects part in bounded influence estimating equations (BIEE) of Welsh and

Richardson (1997) with W0i = wiImi (Imi is mi × mi identity matrix) and

U0i = Imi , but in (2.10) the ρ-functions and ψ-functions are applied to Ma-

halanobis distances corresponding to vectors ri, while in BIEE estimators, the

ψ-functions are applied to each scalar component of vectors ri.

3. Asymptotic Properties

Let Θ be the parameter space for ξ = [β′, θ′]′ ∈ Θ⊂Rq+l. The proof of

Theorem 1 implies that the proposed GS-estimator satisfies the system of q + l

unbiased estimating equations

ΨM(y, ξ) =
[
Ψβ

M (y, ξ)′,Ψθ
M (y, ξ)′

]′
= 0,

Ψβ
M (y, ξ) =

1

M

M∑
i=1

u(di)A
′
iV

−1/2
i ri, (3.1)

Ψθ
M (y, ξ) =

1

M

l∑
j=1

elj ⊗
M∑
i=1

[
u(di)r

′
iV

−1/2
i FjiV

−1/2
i ri+cj (ρ (di)− bmi)

]
. (3.2)

Here, elj is the jth canonical l × 1 vector, ⊗ is the Kronecker product of two

matrices, Fji is given (2.13), and bmi = Ed2∼χ2
mi

[
ρϵmi

(d)
]
. Denoting

g (y, ξ) =
M∑
i=1

ρϵmi
(di)− bM ,

(3.2) can be written as

Ψθ
M (y, ξ)=

1

M

[(
1′l×1

∂g

∂θ

)
∂D

∂θ
−
(
1′l×1

∂D

∂θ

)
∂g

∂θ
+ gc

]
,
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where D is the objective function given in (2.4), 1l×1 is a l×1 vector of ones, and

c = [c1, . . . , cl] is a non-zero l × 1 vector. The equations in (3.1) are the same q

equations as in (2.10), and the l equations in (3.2) are linear combination of the

l+ 1 equations (2.11) and (2.12). Adding gc =
(∑M

i=1 ρ (di)− bM

)
c to (2.11) is

necessary because equations in (2.11) are linearly dependent after excluding the

Lagrange multiplier. Vector c is any non-zero l×1 vector such that the Jacobian

of the estimating equations ΨM (y, ξ0) is non-singular, where ξ0 = [β′0, θ
′
0]
′ is the

true value of ξ such that E [ΨM (y, ξ0)] = 0.

The following regularity conditions are used to establish consistency and

asymptotic normal distribution of the GS-estimator.

R4 There exists mmax such that for any i, mi ≤ mmax <∞.

R5 For any i, Vi is twice continuously differentiable with respect to θ.

R6 For any ξ in some compact neighborhood of ξ0, there exists

Φ(ξ) = limM→∞E
[

∂
∂ξΨM(y, ξ)

]
not singular at ξ0.

R7 For any M, matrix ΩM (ξ0) = (1/M)
∑M

i=1E
[
Ψi(yi, ξ0)Ψi(yi, ξ0)

′] is posi-

tive definite, and there exists positive definiteΩ (ξ0) = limM→∞ {ΩM (ξ0)} .

Theorem 2. If ξ0 = [β′0, θ
′
0]
′ is the true value of ξ such that E [ΨM (y, ξ0)] =

0, then under R1−R5, as M → ∞, there exists a consistent sequence of GS-

estimators such that, with probability 1, ΨM (y, ξ̂M) = 0 and ξ̂M → ξ0.

The proof is given at http://www.stat.sinica.edu.tw/statistica.

Theorem 3. Under the assumptions of Theorem 2 and R6−R7, for a consistent

sequence of GS-estimators ξ̂M , M
1/2(ξ̂M − ξ0)→ N (0,Σ (ξ0)) , where

Σ (ξ0) = [Diag (Φβ0 ,Φθ0)]
−1Diag

(
Ωβ0 ,Ωθ0

) [
Diag (Φβ0 ,Φθ0)

′]−1

Φβ0 = lim
M→∞

1

M

M∑
i=1

Ed2i∼χ2
mi

[
u(di) +m−1

i u′(di)di
]
A′

iV
−1
i Ai

Φθ0 = lim
M→∞

1

M

{(
1′l×1

∂D

∂θ
Il×l −

∂D

∂θ
1′l×1

)
G− c

∂D

∂θ′

}
,

G = E

[
∂2g

∂θ∂θ′

]
− ∂2D

∂θ∂θ′

=

l∑
j=1

l∑
k=1

elj ⊗ (elk)
′ ⊗

M∑
i=1

{
vitr

(
V−1

i

∂Vi

∂θj
V−1

i

∂Vi

∂θk

)

http://www.stat.sinica.edu.tw/statistica.
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+
E
[
u′(di)d

3
i

]
mi (mi + 2)

tr

([(
V

−1/2
i

∂Vi

∂θk
V

−1/2
i

)′
⊗
(
V

−1/2
i

∂Vi

∂θj
V

−1/2
i

)]
Hmi

)}
,

∂D

∂θ
=

l∑
j=1

elj ⊗
M∑
i=1

vitr

[
V−1

i

∂Vi

∂θj

]
,

Ωβ0 = lim
M→∞

1

M

M∑
i=1

m−1
i Ed2i∼χ2

mi

[
u2(di)d

2
i

]
A′

iV
−1
i Ai,

Ωθ0 = lim
M→∞

1

M

l∑
j=1

l∑
k=1

elj ⊗ (elk)
′ ⊗

{
cjck

M∑
i=1

E
[
(ρ (di)− bmi)

2
]

+

M∑
i=1

E
[
u2(di)d

4
i

]
mi (mi + 2)

tr

([(
V

−1/2
i FkiV

−1/2
i

)′
⊗
(
V

−1/2
i FjiV

−1/2
i

)]
Hmi

)

+
M∑
i=1

m−1
i E

[
u(di)d

2
i (ρ (di)− bmi)

]
tr
[
V−1

i (cjFji + ckFki)
]}

,

Hmi =
[
I+Kmi + vec (I) vec (I)′

]
. Here Kmi is a

(
m2

i ×m2
i

)
-block matrix with

(i, j)-th block K (i, j) of size (mi ×mi) with 1 at (i, j) and 0 otherwise, ⊗ is the

Kronecker product, and Fji (θ) is as in (2.13).

The proof is given at http://www.stat.sinica.edu.tw/statistica.

4. Computing GS-estimates

To compute the GS-estimator, one has to minimize (2.4) subject to (2.5).

Theorem 1 implies that the GS-estimator satisfies (2.10)−(2.12), but not all

solutions of (2.10)−(2.12) are solutions of (2.4)−(2.5). Furthermore, (2.4) may

have several local minima, and (2.10)−(2.12) may have multiple solutions. A

common approach to computing regression S-estimators is to employ a multi-

start algorithm (Maronna, Martin, and Yohai (2006)). Similarly, it is proposed

to compute a large number of candidate solutions of (2.4)−(2.5) or (2.10)−(2.12)

and select among them the one that yields the global minimum of (2.4).

The proposed computational algorithm is the following.

I Select a number Ns of candidate solutions to be computed and a size S of

subsamples to be used for computing starting values.

II The following steps are repeated Ns times.

II.1 For each n ≤ Ns, randomly select a subsample {y(n)
is
, s = 1, . . . , S} of inde-

pendent vectors {yi, i = 1, . . . ,M} .

http://www.stat.sinica.edu.tw/statistica.
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II.2 For {y(n)
is
, s = 1, . . . , S}, compute the robust REML estimates β̂

(n)
RREML and

θ̂
(n)
RREML.

II.3 Using β̂
(n)
RREML and θ̂

(n)
RREML as starting values, compute a candidate solu-

tion (β̃(n)′, θ̃(n)′) by solving (2.4)−(2.5) directly or by solving (2.10)−(2.12).

III Among Ns candidate solutions (β̃(n)′, θ̃(n)′), select the one which yields the
global minimum of (2.4) as the GS-estimator of [β′, θ′] .

The algorithm implements ”random direction” search for starting values as
proposed by Ruppert (1992). The size S of the sub-samples {yis , s = 1, . . . , S}
should be small enough to increase probability of subsamples without outliers
in random effects, and large enough to allow all parameters in the model to
be estimable. The number of subsamples Ns may be selected to have a desired
probability of getting at least one (random effects) outlier-free subsample of size S
(Section 5.7.2 in Maronna, Martin, and Yohai (2006)). The proportion of outliers
pO in error terms result in fewer uncontaminated vectors yi thanM(1−pO) under
the independent contamination model (Alqallaf et al. (2009)). Therefore, for
robustness to contamination in error terms, it is proposed to use robust REML
for computing starting values from each subsample {y(n)

is
, s = 1, . . . , S}.

In Step II.3, direct minimization of (2.4)−(2.5) subject to (2.5) may be im-
plemented using a constrained nonlinear optimization routine such as PROC
NLP in SAS (SAS Institute Inc., Cary, NC, USA). Alternatively, (2.10)−(2.12)
can be solved, for example, using the R package ‘nleqslv’ (Hasselman (2009) or
’BB’ (Varadhan and Gilbert (2009)). In either case, it is not necessary that all
Ns starting values yield valid solutions of (2.4)−(2.5) or (2.10)−(2.12).

To solve (2.10)−(2.12) it is also possible to use fixed-point equations if each
covariance matrixVi can be written asVi =

∑l
g=1 θgLig, i = 1, . . . ,M, where Lig

are known (mostly singular) matrices. Then, as shown in online supplementary
material, the solution θ̂M of (2.11) is also a solution of the fixed-point equations

θ = − (PM )−1Q(θ)−1 [UM+M−1g (y, ξ) c
]
, (4.1)

where Q(θ) is a symmetric l × l matrix with entries

[Q(θ)]jk =
∑M

i=1
vitr

[
V−1

i LijV
−1
i Lik

]
,

PM =M−1
M∑
i=1

[
u(di)r

′
iV

−1/2
i

( l∑
s=1

Lis

)
V

−1/2
i ri

]
,

and UM is an l × 1 vector with entries

[UM ]j =M−1SMl

M∑
i=1

[
u(di)r

′
iV

−1/2
i LijV

−1/2
i ri

]
,
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SMl =

M∑
k=1

vktr
(
V−1

k

l∑
s=1

Lis

)
.

It is straightforward that the solution β̂M of (2.10) is a solution of the fixed-point

equations

β =
[ M∑

i=1

u (di)A
′
iVi (θ)

−1Ai

]−1{ M∑
i=1

u (di)A
′
iVi (θ)

−1 yi

}
. (4.2)

Thus, Step II.3 in the algorithm may be replaced by the following.

II.3* For a pre-determined numberNI , perform up toNI iterations using (4.2)−
(4.1) with the starting values computed in Step II.2 while evaluating the

absolute value of the relative change in D, |△D| /D, between consecu-

tive iterations. Record estimates for β and θ only if |△D| /D < δD and

|g (y, β, θ)| < δg for some sufficiently small δD and δg.

5. Inference for Fixed Effects

For the fixed effects GS-estimates, the approximate covariance matrix is

Σ̂M (β̂M ) =
1

M

[
Φ̂β0M (ξ̂M )

]−1
Ω̂β0M (ξ̂M )

[
Φ̂β0M (ξ̂M )′

]−1
, (5.1)

where

Ω̂β0M (ξ̂M ) =
1

M

M∑
i=1

e1miA
′
iV̂

−1
i Ai, e1m = m−1Ed2∼χ2

m

[
u2(d)d2

]
,

Φ̂β0M (ξ̂M ) =
1

M

M∑
i=1

e2miA
′
iV̂

−1
i Ai, e2m = Ed2∼χ2

m

[
u(d) +m−1u′(d)d

]
.

With u(d) ≡ 1, which corresponds to the maximum likelihood estimation,

(5.1) reduces to (
∑M

i=1A
′
iV

−1
i Ai)

−1, the asymptotic covariance matrix of the

maximum likelihood estimator. The approximate covariance matrix of θ̂M can

be computed by substituting β̂M and θ̂M into expressions for Φθ0 and Ωθ0 in

Theorem 1. Alternatively, one can use an empirical sandwich estimator replac-

ing the expectations by their empirical analogues. Such an approach simplifies

computations of Ω̂M (ξ̂M ), but the empirical analogue of Φ̂M (ξ̂M ), which in-

volves the derivatives of the estimating equations, is more complex than Φθ0 .

For the balanced case with mi = m and Vi = V for any i, (5.1) reduces to

Σ̂M (β̂M ) = (e1m/e2m
2)
(∑M

i=1A
′
iV̂

−1
i Ai

)−1
. This is the same result as in Heri-

tier et al. (2009) for MM-estimators, which have the same estimating equations

for the fixed effects as (3.1). Ratio e22/e1 is the asymptotic relative efficiency of

the location S-estimator.
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Matrices Σ̂M (β̂M ) and Σ̂M (θ̂M ) can be used to construct approximate normal

confidence intervals for β̂M and θ̂M . For fixed effects inference, one can use the

Wald chi-square test of a general linear hypothesis H0 : Gβ = 0 vs. Gβ ̸= 0,

where G is a matrix of full column rank. Test statistic

T2 = β̂′MG′
[
G
{
Σ̂M (β0)

}
G′
]−1

Gβ̂M

has an asymptotic χ2 distribution with degrees of freedom equal to rank(G).

6. Simulation Study

A simulation study was conducted to evaluate finite sample performance

of the proposed GS-estimator, and to compare it to the standard REML and

the robust REML II estimator of Richardson and Welsh (1995). In Richardson

and Welsh (1995), the robust REML II estimator performed the best among

other considered BIEE estimators. The design of our simulation study is similar

to theirs, except that we generated unbalanced data and considered additional

contaminations with “good” and “bad” leverage points.

Uncontaminated data were simulated from the one-way random effects model

yij = α1 + α2xij + γi + εij , (6.1)

where i = 1, . . . ,M , j = 1, . . . ,mi, mi ∈ {2, 3, 4, 5, 6} , xij ∼ N(0, 1), γj ∼
N(0, σ21), and εij ∼ N(0, σ22). Two, four, or six replicates of 5 groups (M = 10,

20, or 30) of sizes mi = 2, 3, 4, 5, 6 were generated, so that the total sample size

(40, 80, and 120) was always a multiple of
∑j=6

j=2 j = 20. The true parameter

values were α1 = α2 = σ21 = σ21 = 1.

Following Richardson and Welsh (1995), contaminations were introduced by

replacing one or both normal distributions γj ∼ N(0, 1) and εij ∼ N(0, 1) with

0.9N(0, 1) + 0.1N(0, 11). Contamination scenarios are denoted by (0,0), (0.1,0),

(0,0.1), (0.1,0.1), where the first number in the pair stands for contamination pro-

portion in the distribution of random effects γj and the second number stands for

contamination proportion in the distribution of error terms εij . Scenario (0.1,0)

is the classic Tukey-Huber contamination model, while (0,0.1) is the independent

contamination model (Alqallaf et al. (2009)). Additionally, leverage points were

introduced by replacing xij ∼ N(0, 1) with xij ∼ 0.9N(0, 1) + 0.1N(0, 11). For

generating “good” leverage points (scenario (0.1 glp X)), the xij were contami-

nated before yij were generated according to (6.1). For generating “bad” leverage

points (scenario (0.1 blp X)), the xij were contaminated after generating yij ac-

cording to (6.1).

Two hundred data sets were simulated for each scenario and analyzed using

the standard REML, Robust REML II, and GS-estimators with ϵ = 0.2 and ϵ =
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0.5. For Robust REML II, the Huber ψ-function, ψHc(x; c) = min {c,max {x,−c}}
was used with c = 1.34 for location and c = 2.0 for scale estimation as in Richard-

son and Welsh (1995). The GS-estimators were computed using the algorithm

of Section 4 with S = 4 for M = 10, S = 6 for M = 20, S = 8 for M = 30,

Ns = 50, and utilizing PROC NLP in SAS (SAS Institute Inc., Cary, NC, USA)

for computing candidate solutions in Step II.3. For M = 10 and 0.1 proportion

of outliers in random effects, using S = 4 implies probability
(
9
4

)
/
(
10
4

)
= 0.60 of a

random effects outlier-free subsample of size S (sampling without replacement).

Then, the probability of at least one random effects outlier-free subsample among

Ns = 50 subsamples is δ = 1 − (1− 0.60)50 = 1 − 1.3 × 10−20. The same prob-

ability of at least one random effects outlier-free subsample among Ns = 50 of

sizes S = 6 from M = 20 and S = 8 from M = 30 are 1 − 7.0 × 10−15 and

1− 4.4× 10−11, respectively.

Figure 2 shows the boxplots of error distributions of parameter estimates,

for which differences in performance of considered estimators were observed. For

scenario (0.1 glp X), we observe substantial estimation bias (∼ 30% on average)

for the slope α2 estimates using REML and Robust REML II, but generally

unbiased GS-estimates. For scenario (0.1 blp X), there is a downward bias in

estimating α2 using all estimators, but for GS-estimates with ϵ = 0.5, the empir-

ical bias is ∼ 40% lower (∼ 0.3 vs ∼ 0.5). For scenarios with contaminations in

error terms ((0,0.1) and (0.1,0.1)), the GS-estimators and Robust REML II yield

similar errors for estimating the error terms variance component σ22, while these

errors are substantially higher for the corresponding REML estimates. For sce-

narios (0.1,0) and (0.1,0.1), GS-estimators, especially with ϵ = 0.5, yield smaller

errors in estimates of random effects variance σ21 as compared to both REML

and Robust REML II. The boxplots of error distributions for all parameter esti-

mates when N = 40 and N = 80 are shown in Supplementary Figures 1 and 2,

respectively. Supplementary Figures 3-4 show the QQ-plots of the GS-estimates

with ϵ = 0.2 and ϵ = 0.5 for N = 80. They suggest that for both fixed effects

and covariance parameter estimates, the normal distribution approximation is

generally appropriate for N ≥ 80. The results for N = 120 are similar to results

for N = 80 and not shown.

The root mean squared errors (RMSE) are displayed in Figure 3 for pa-

rameters and scenarios with differences in performance of considered estimators

and in Supplementary Figure 5 for all parameters and scenarios. For fixed effects

parameter estimates, RMSE is similar for all estimation methods and all contam-

ination patterns, except for the ones with leverage points. For slope parameter

α2, in (0.1 glp X) with N = 40, the RMSE of the GS-estimators is about half

as large as compared to the RMSE of REML and Robust REML II. For (0.1

blp X), the GS-estimator with ϵ = 0.5 yields the smallest RMSE for all consid-

ered sample sizes (Figure 3). For covariance parameter estimates, the RMSE is
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Figure 2. Error distribution of parameter estimates for simulated data sets
with n=40 observations from ten groups with 10% contamination in error
terms (0,0.1), with 10% contamination in random effect (0.1, 0), with 10%
contamination in both error terms and random effect (0.1,0.1), and with
10% of “good” (0.1 glp in X) and 10% of “bad” (0.1 blp in X) leverage
points. Estimation methods used are REML (ML), Robust REML II (RR),
GS-estimator with breakdown parameter 0.2 (S2), and GS-estimator with
breakdown parameter 0.5 (S5).

substantially smaller for GS as compared to REML and Robust REML II for

variance components corresponding to contaminated sources of variability. For

scenarios shown in Figure 3, the Robust REML II estimates of σ21 and σ22 resulted

in a small proportion of very large errors (4-6% of data sets for N = 40, 2% for

N = 80, and 1% for N = 120). Because of these large errors, the corresponding

RMSE of Robust REML II are higher than 300% and outside of the plotting

areas in subplots σ21(0.1,0), σ
2
2(0,0.1), σ

2
1(0.1,0.1), and σ

2
2(0.1,0.1).

The empirical coverage of asymptotic 95% confidence intervals is shown in

Supplementary Figure 6 for all scenarios, and in Figure 4 for selected scenar-

ios where some differences between ϵ = 0.2 and ϵ = 0.5 were observed. For
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Figure 3. Root mean squared errors (RMSE) as a function of sample size
(40, 80 or 120) for parameter estimates in simulated data sets with 10%
contamination in error terms (0,0.1), with 10% contamination in random ef-
fect (0.1, 0), with 10% contamination in both error terms and random effect
(0.1,0.1), and with 10% of “good” (0.1 glp in X) and 10% of “bad” (0.1 blp
in X) leverage points. Estimation methods used are REML (squares, dashed
lines), Robust REML II (diamonds, dashed lines), GS-estimator with break-
down parameter 0.2 (cirles, solid lines), and GS-estimator with breakdown
parameter 0.5 (triangles, solid lines). Missing points for Robust REML II
correspond to the mean squared errors far outside the plotting range.

N = 80, the nominal 95% coverage was generally maintained (empirical cover-

age within the approximate acceptance region [0.92,0.98] for the null hypothesis

H0 : p = 0.95) for fixed effects parameter estimates in all scenarios, except for

estimates of α2 in scenario (0.1 blp X). For covariance parameter estimates, the

empirical coverage is either close to nominal or conservative for GS-estimates

with ϵ = 0.5 and N = 80 in all contaminated scenarios. Meanwhile, the cov-

erage is significantly lower than nominal for σ22 with ϵ = 0.2 in scenarios with

contamination in error terms ((0:0.1) and (0.1:0.1)).
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Figure 4. Coverage of asymptotic 95% confidence intervals for sample sizes
40, 80 and 120 in simulated data sets with 10% contamination in error
terms (0,0.1), with 10% contamination in random effects (0.1,0), with 10%
contamination in both error terms and random effects (0.1,0.1), and with
10% of “good” (0.1 glp in X) and 10% of “bad” (0.1 glp in X) leverage points.
Results for GS-estimator with breakdown parameter 0.2 plotted with circles
and for GS-estimator with breakdown parameter 0.5 plotted with triangles.
Solid lines indicates the nominal 95% coverage, and the dotted lines limit
the approximate acceptance region [0.92,0.98] for the null hypothesis H0: p
=0.95.

In conclusion, the GS-estimators provided less biased results with smaller

RMSE as compared to REML and Robust REML when contaminations were

present in random effects or predictors. For the contaminations considered, the

coverage of asymptotic confidence intervals based on GS-estimators with ϵ =

0.5 was consistent with the nominal level, unless the contamination represented

“bad” leverage points.

7. Data Example

Hemoglobin (Hb) is the standard measure to diagnose sickle cell anemia and

differentiate between the phenotypes HbSS and HbSC. Our data include 227 Hb

measures from 134 patients with sickle cell disease (88 with HbSS and 46 with

HbSC phenotype) of ages from 22 month to 23 years old. The number of repeated

measures per patient varies from 1 to 4 (75 patients (56%) with 1 observation, 34

patients (25%) with 2 observations from , 17 patients (13%) with 3 observations,

and 17 patients (6%) with 4 observations). We are interested in evaluating age
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Figure 5. Scatterplot of the sickle cell patients Hemoglobin (Hb) vs. Age
(a); boxplots of the best linear predictors of random effects by genotype
(b); diagnostics for the standard LME model: (c) residual quantiles, (d)
quantiles of the best linear predictors of random effects; (e) weights for GS-
estimator with breakdown parameter 0.5 vs. Mahalanobis distances at the
final GS-estimated model; and (f) Hemoglobin (Hb) vs. Age only in sickle
cell patients with GS-estimator weights greater than 0.01.

related Hb trends in each phenotype since it is still not well established whether

Hb tends to increase or decrease with age for more severe HbSS phenotype.

Figure 5(a) shows the Hb measurements by phenotype as a function of age. It

indicates a small group of potential high end outliers among HbSS patients and

leverage points that correspond to sparse data for older ages. Log transformation

of age was considered, but it did not alleviate potential problems with outliers

and leverage points.

Initially, the data were analyzed using the standard LME model in SAS
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Table 1. Parameter estimates (Estimate) and standard errors (SE) for the
linear mixed effects model fitted to the sickle cell data.

REML GS
Group Parameter Estimate SE p-value Estimate SE p-value
SC β1 10.68 0.178 <0.001 10.52 0.203 <0.001
SS β2 8.70 0.247 <0.001 7.95 0.275 <0.001
SC β3 0.037 0.027 0.169 0.071 0.039 0.066
SS β4 -0.002 0.027 0.945 0.068 0.033 0.038
SC σ2

SC 0.523 0.136 <0.001 0.319 0.129 0.014
SS σ2

SS 1.907 0.312 <0.001 0.988 0.231 <0.001
SC/SS τ2 0.190 0.028 <0.001 0.171 0.008 <0.001

PROC MIXED. The variability of the best linear predictors (BLUPs) of the

random effects appeared different in the two phenotypes (Figure 5(b)). The

final LME models incorporates random effect variance components different by

phenotype, but common variance of the error terms. Even accounting for different

phenotype random effects variance components, normal quantile plots of residuals

(Figure 5(c)), and especially of the BLUPs of the random effects (Figure 5(d)),

suggest deviations from the normal distribution assumption.

Denote by yij the jth Hb measure in the ith patient of age xij . The model

used to model dependence of Hb on age and phenotype was

yij = (β1 + β2xij) I{i∈HbSC} + (β3 + β4xij) I{i∈HbSS}

+γSCi I{i∈HbSC} + γSSi I{i∈HbSS} + εij , (7.1)

where I{i∈HbSS} = 1 if patient i has HbSS phenotype and I{i∈HbSS} = 0 oth-

erwise, I{i∈HbSC} = 1 if patient i has HbSC phenotype and I{i∈HbSC} = 0

otherwise, i = 1, . . . , 134, j = 1, . . . ,mi, 1 ≤ mi ≤ 4. It is assumed that

γSSi
i.i.d.∼ N(0, σ2SS) when patient i has HbSS phenotype, γSCi

i.i.d.∼ N(0, σ2SC) if pa-

tient i has HbSC phenotype, and the εij
i.i.d.∼ N(0, τ2) are independent for any i

and j.

Table 1 presents the results of estimating (7.1) using the REML and the GS-

estimator with Tukey biweight ρ-functions and breakdown parameter ϵ = 0.5.

The latter yielded the least biased results across all scenarios in the simulation

study. The intercept estimates for HbSC and HbSS phenotypes are very sim-

ilar for both estimation methods, and the intercepts are significantly different

(p < 0.001) between phenotypes using either the t-test with the standard LME

model, or the Wald test described in Section 5 with GS-estimators. This result

is consistent with all sickle cell disease literature. In contrast, the slope esti-

mates are different for REML and robust GS estimation methods. The REML

estimates β̂3 = 0.037 and β̂4 = −0.002, and their difference, are not significantly
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different from zero. Meanwhile, the GS-estimator with ϵ = 0.5 yields very similar

β̂3 = 0.071 and β̂4 = 0.068, with β̂4 significantly (p = 0.038) and β̂3 borderline

significantly (p = 0.066) different from zero. Figures 5(e) and 5(f) demonstrate

that the GS-estimator with ϵ = 0.5 successfully downweights the subgroup of

potential outliers in HbSS phenotype with uncharacteristicly high levels of Hb.

Use of the GS-estimator with ϵ = 0.5 suggests changing the conclusion about

the age-related trend in HbSS phenotype from nonsignificant negative, using

REML, to significant positive slope. The robust analysis results also indicate

that age-dependent trends are essentially the same for the two phenotypes of

sickle cell disease.

8. Discussion

We have developed a generalized S-estimator that provides foundation for

further developments in robust inference for general unbalanced LME models,

including construction of efficient MM-estimators and robust tests, similar to the

work of Copt and Heritier (2007) for fully balanced LME models. The approxi-

mate covariance matrix of the fixed effects GS parameter estimates is relatively

simple to compute. It is different from the covariance matrix for the maximum

likelihood estimates only in terms of incorporating additional weights that de-

pend on the dimension of independent vectors and breakdown parameter through

the corresponding ρ-function. The asymptotic covariance matrix of covariance

parameter estimates has rather complicated expression, but it is not required

when the interest is in the fixed effects inference. It is expected that arguments

similar to the ones used in Field, Pang, and Welsh (2010) can yield asymptotic

validity of suitably selected bootstrap procedure(s), which would eliminate the

need to evaluate the asymptotic covariance matrix of the covariance parameter

estimates. Such developments will be a focus of further investigations.

Danilov, Yohai, and Zamar (2012) recently introduced a generalized S-

estimator (GSE) for multivariate location and scatter in the presence of missing

data. Both their estimator and ours reduce to the S-estimator for multivariate

location and scale under the multivariate normal distribution model, but involve

quite different model assumptions and objective functions for minimization.

In numerical studies, we use the Tukey biweight ρ-function, but alternative

re-descending ρ-functions (e.g., proposed by Rocke (1996)) can be used instead.

Our simulation results suggest that the advantage of the GS-estimator over Ro-

bust REML is most notable when there is a contamination in distribution of ran-

dom effects or predictor variable. This result is consistent with known differences

between S-estimators and M-estimators in simpler models with contamination in

design variables.
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