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Abstract: We propose a method for constructing general sliced Latin hypercube

designs, intended for computer experiments. A general sliced Latin hypercube

design has multiple layers, at each of which there are multiple Latin hypercube

designs that can be sliced into smaller Latin hypercube designs at the next layer.

The proposed method is easy to implement, capable of accommodating any number

of factors and flexible in run size. Such designs include ordinary Latin hypercube

design and sliced Latin hypercube design as special cases. A special case of general

sliced Latin hypercube design with two layers, called doubly sliced Latin hypercube

design, is studied in detail, including its sampling properties. The more flexible

structure of doubly sliced Latin hypercube design allows more flexible batch size

for both collective evaluation of different computer models and batch sequential

evaluation of a single computer model. Numerical examples are provided to show

its advantages.

Key words and phrases: Computer experiment, design of experiments, space-filling

design, ensembles of computer models.

1. Introduction

Experiments with deterministic simulation codes have become ubiquitous in

science, engineering, and services for studying complex phenomena. Here, run-

ning a deterministic simulation with the same inputs yields identical outputs

(Santner, Williams, and Notz (2003); Fang, Li, and Sudjianto (2005)). A goal in

many computer experiments is to estimate the expected output of a computer

model given a distribution of inputs. To address this, McKay, Conover, and

Beckman (1979) introduced Latin hypercube designs (LHD), referred to as or-

dinary Latin hypercube designs hereinafter. Qian (2012) proposed sliced Latin

hypercube designs for collective evaluation of computer models. Such a design

is a special LHD that can be decomposed into smaller slices, each of which is an

LHD. This slicing idea is related to central composite designs for quantitative

and qualitative factors (Wu and Ding (1998)).

Sometimes one is interested in collective evaluation of related computer mod-

els. For example, we may have nine computer models A1, A2, A3, B1, B2, B3 and
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C1, C2, C3, where Ais are variants of a finite element model A implemented with

different mesh densities, Bis inherit a finite element model B with different mesh

densities, and Cis come from a finite element model C with different mesh den-

sities. Moreover, A, B, and C are related to each other. We are interested in

estimating the expected output of each of the nine computer models, a linear

combination of the expected outputs of the variants for each of A, B, and C,

as well as a linear combination of the expected outputs of the nine computer

models. An example of computer models solved using different mesh densities

is in Tuo, Wu, and Yu (2013). There the computer model simulating a casting

process is solved using different mesh densities, considered as a tuning parame-

ter. As another example, we may have three computer models A, B, and C and

we want to run each of the models in multiple batches to estimate the expected

outputs of each of them, as well as a linear combination of the expected outputs

of the three models. Running the computer models in batches may enable us

to stop earlier once we have achieved a desired accuracy for the estimator. To

achieve more flexible slicing, we propose a new class of designs called general

sliced Latin hypercube designs (GSLHD). These designs are useful for collective

ensemble and batch evaluation of computer models.

The remainder of the article is organized as follows. Section 2 discusses the

construction of a general sliced Latin hypercube design. Some sampling proper-

ties of GSLHD with double slicing are derived in Section 3. Section 4 provides

numerical illustration of some advantages of the proposed design. Summary and

future research directions are presented in Section 5. The supplementary file

contains proofs.

2. Construction of General Sliced Latin Hypercube Design

We first review the construction of a sliced Latin hypercube design (SLHD),

and then present a recursive strategy for constructing a GSLHD. The stepping

stone of the construction of an SLHD in Qian (2012) is the generation of sliced

permutation matrices. For positive integers n, m, t with n = mt, a permutation

matrix PM(m, t) on Zn = {1, . . . , n} is an m× t matrix in which each element of

Zn appears exactly once. If A is a PM(m, t) and each column of ⌈A/t⌉ forms a

permutation on Zm, we call A an m× t sliced permutation matrix, denoted by

SPM(m, t). It can be used to construct an SLHD of t slices, each of which has

m runs.

For positive integers m, s1, s2, and d, a doubly sliced Latin hypercube design

(DSLHD) D is an LHD with ms2s1 levels in d dimensions. Such a D can be

partitioned into Dij ’s as
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Figure 1. An example of DSLHD. All markers in the figure constitute a
DSLHD(3,2,2,2). The design can be decomposed into D11, D12, D21 and
D22 as in (2.1). The three stuffed circles are from D11. The three stuffed
squares correspond to D12. The three unstuffed circles belong to D21. The
three unstuffed squares come from D22.

D11 D12 · · · D1s1

D21 D22 · · · D2s1
...

...
. . .

...

Ds21 Ds22 · · ·Ds2s1

, (2.1)

where Dij is a d-dimensional LHD with m levels for i = 1, . . . , s2, j = 1, . . . , s1,

Di = ∪s1
j=1Dij is a d-dimensional LHD with ms1 levels for i = 1, . . . , s2. Com-

pared with an SLHD, each slice Di in a DSLHD can be further partitioned into

s1 smaller LHDs. For s1 = 1, a DSLHD becomes an SLHD. Throughout, we use

DSLHD(m, s2, s1, d) to denote a DSLHD associated with parameters m, s2, s1,

and d. An example of a DSLHD(3,2,2,2) is shown in Figure 1.

The sliced structure can be extended. Given a positive integer r, for positive

integers n, m, s1, . . . , sr with n = m
∏r

i=1 si, an r-layer general sliced Latin

hypercube design D has the following form. In the first layer, D consists of∏r
k=1 sk LHDs, each of which has m runs; in the second layer, there are

∏r
k=2 sk

LHDs, each of which is of ms1 levels and consists of s1 LHDs from the first

layer; in the kth layer for k = 3, . . . , r, there are
∏r

j=k sj LHDs, each of which

is of m
∏k−1

j=1 sj levels and consists of sk LHDs from the (k − 1)th layer. The sr
LHDs in the rth layer constitute the whole design, which is also an LHD. Such

a design is denoted by GSLHD(s1, . . . , sr; m; d), where s1, . . . , sr represent the

layer structure, m is the number of runs in each LHD in the first layer and d is

the number of factors. A GSLHD(s1, s2, . . . , sr; m; d) reduces to an SLHD and
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Figure 2. Tree diagram for a three-layer SLHD with s1 = 2, s2 = 3 and
s3 = 2, where each node denotes an LHD. There are 12 (= s1s2s3) small
LHDs in layer 1. In layer 2, each LHD can be partitioned into two (= s1)
LHDs in layer 1. In layer 3, each LHD can be partitioned into three (= s2)
LHDs in layer 2. The two (= s3) LHDs in layer 3 constitute the whole
design.

a DSLHD for r = 1 and r = 2, respectively. An ordinary LHD without any sliced

structure can be viewed as an r-layer general sliced Latin hypercube design with

r = 0. An example of the layer structure of a general sliced Latin hypercube

design of three layers with s1 = 2, s2 = 3 and s3 = 2 is shown in Figure 2.

We consider design construction for d quantitative factors each taking value

in (0, 1]. For a real number a, let ⌈a⌉ denote the smallest integer greater than or

equal to a and ⌊a⌋ denote the largest integer less than or equal to a. Similarly

define ⌈A⌉ and ⌊A⌋ for a real matrix A. For a real matrix A, let A(:, j) be its jth

column, A(i, :) its ith row and A(i, j) its (i, j)th element. For an integer b ≥ 1,

let Zb denote the set {1, . . . , b}. Drawing a uniform permutation on a set of b

integers means taking a permutation on the set with all b! possible permutations

equally probable.

Qian (2012) used SPM for constructing an SLHD. We use sliced permuta-

tion vectors instead of permutation matrices. An SPM(m, t) can be written as a

one-layer SPV(t; m), a concatenation of the columns of an SPM(m, t). A one-

layer SPV(t; m) is a permutation on Zn, let {p1, . . . , pn} be its elements. For

i = 1, . . . , t,
{
⌈p(i−1)m+1/t⌉, . . . , ⌈p(i−1)m+m/t⌉

}
is a permutation on Zm. These

properties follow immediately from those of an SPM(m, t). More generally for

r > 1, an r-layer sliced permutation vector SPV(s1, . . . , sr; m) with entries
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{p1, . . . , pn} is a permutation on Zn, where for i = 1, . . . , sr,
{
⌈p(i−1)w+1/sr⌉, . . .,

⌈p(i−1)w+w/sr⌉
}
is an (r − 1)-layer SPV(s1, . . . , sr−1; m). Here w = m

∏r−1
k=1 sk.

Consider the three-layer general sliced Latin hypercube design in Figure 2 as an

example. To construct a GSLHD(2, 3, 2;m; d), we first generate SPV(2, 3, 2; m)’s.

An SPV(2, 3, 2; m) can be partitioned into segments (b′
1,b

′
2) corresponding to

two LHDs in the third layer, where ⌈b1/2⌉ and ⌈b2/2⌉ have to be two SPV(3, 2;

m)’s. Therefore, to generate an SPV(2, 3, 2; m), we can first generate two

SPV(2, 3; m)’s. Similarly, to generate an SPV(2, 3; m), we can generate three

SPV(2; m)’s, which can be generated using the algorithm in Qian (2012).

We present a recursive strategy for generating SPV(s1, . . . , sr; m).

Step 1: Construct a w × sr matrix H = (hij) whose ith row is
(
(i − 1)sr +

1, . . . , (i− 1)sr + sr
)
. Here w = m

∏r−1
k=1 sk.

Step 2: Construct a w × sr matrix C = (cij) whose ith row is a uniform per-

mutation on
(
hi1, . . . , hisr

)
. Permutations are carried out independently

from one row to another.

Step 3: For i = 1, . . . , sr,

If r = 1,

Generate a uniform permutation (p1, . . . , pw)
′ on Zw.

Else

Suppose an SPV(s1, . . . , sr−1; m)=(p1, . . . , pw)
′ has been generated.∗

Construct a permutation bi = (b1i, . . . , bwi)
′ on (c1i, . . . , cwi)

′

such that

bji = cpji for j = 1, . . . , w.

End If

End i loop.∗∗

Step 4: An SPV(s1, . . . , sr; m) is given by (b′
1, . . . ,b

′
sr)

′.∗∗∗

Note * This is where the recursive strategy comes in. To generate an SPV

(s1, . . ., sr−1; m), we need to independently generate sr−1 SPV(s1, . . .,

sr−2; m)’s. This recursion proceeds until r = 1, where SPM(s1; m) can

be generated using the algorithm in Qian (2012).

** In this step, the implementations in all iterations of the i loop are

carried out independently.

*** When r = 2, the SPV(s1, s2; m) generated can be used for con-

structing a DSLHD.
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As pointed out by a referee, one can also use the orthogonal array-based

method in Tang (1993) to construct general sliced Latin hypercube designs. After

generating s independent permutations of Zm, we replace all positions with entry

i by a permutation of {(i−1)s+1, . . . , (i−1)s+s} for each i = 1, . . . ,m. The new

permutation, Zms, is an SPV(s;m). An SPV(s1, . . . , sr; m) can be constructed

by a recursive strategy. Generating sr independent SPV(s1, . . . , sr−1; m)’s, then

replacing all positions with entry i by a permutation of {(i − 1)sr + 1, . . . , (i −
1)sr + sr} for each i = 1, . . . , s1 · · · sr−1m produces an SPV(s1, . . . , sr; m).

Example 1. We generate a two-layer SPV(2, 2; 3). Suppose the matrix C (in

transpose) in Step 2 is

C ′ =

(
1 4 6 7 9 12

2 3 5 8 10 11

)
.

For Step 3, since s2 = 2, we need to generate two independent SPV(2; 3)’s.

Using Qian (2012)’s algorithm, suppose we have generated (1, 3, 6, 4, 2, 5)′ and

(1, 5, 4, 6, 2, 3)′. Note both SPV(2; 3)’s are concatenation of vectors v1 and

v2 such that ⌈vk/2⌉ is a permutation vector of an ordinary LHD of three lev-

els. Here k = 1, 2. Given the generated SPV(2; 3)s, b1 and b2 in Step 3

are (1, 6, 12, 7, 4, 9)′ and (2, 10, 8, 11, 3, 5)′, respectively. The desired two-layer

SPV(2, 2; 3) is (1, 6, 12, 7, 4, 9, 2, 10, 8, 11, 3, 5)′.

Example 2. We generate an SPV(2, 2, 2; 3). Suppose the matrix C (in trans-

pose) in Step 2 is

C ′ =

(
1 4 6 7 10 11 13 15 18 20 21 24

2 3 5 8 9 12 14 16 17 19 22 23

)
.

Since s3 = 2, we need to generate two independent SPV(2, 2; 3). As in Example

1, suppose we have generated (7, 2, 10, 12, 4, 5, 1, 9, 8, 11, 6, 3)′ and (6, 1, 12, 9, 4, 7,

8, 2, 10, 11, 3, 5)′. b1 and b2 in Step 3 are thus (13, 4, 20, 24, 7, 10, 1, 18, 15, 21, 11,

6)′ and (12, 2, 23, 17, 8, 14, 16, 3, 19, 22, 5, 9)′, respectively. Hence the desired SPV

(2, 2, 2; 3) is (13, 4, 20, 24, 7, 10, 1, 18, 15, 21, 11, 6, 12, 2, 23, 17, 8, 14, 16, 3, 19, 22, 5,

9)′. The generated SPV (2, 2, 2; 3) can be partitioned into eight vectors: v111 =

(13, 4, 20)′, v112 = (24, 7, 10)′, v121 = (1, 18, 15)′, v122 = (21, 11, 6)′, v211 =

(12, 2, 23)′, v212 = (17, 8, 14)′, v221 = (16, 3, 19)′ and v222 = (22, 5, 9)′. At

the first layer, ⌈vijk/8⌉ is a permutation on Z3, i, j, k = 1, 2. At the sec-

ond layer, let v11 = (v′
111,v

′
112)

′ = (13, 4, 20, 24, 7, 10)′, v12 = (v′
121,v

′
122)

′ =

(1, 18, 15, 21, 11, 6)′, v21 = (v′
211,v

′
212)

′ = (12, 2, 23, 17, 8, 14)′ and v22 = (v′
221,

v′
222)

′ = (16, 3, 19, 22, 5, 9)′. ⌈vij/4⌉ is a permutation on Z6, i, j = 1, 2. At

the third layer, let v1 = (v′
11,v

′
12)

′ = (13, 4, 20, 24, 7, 10, 1, 18, 15, 21, 11, 6) and

v2 = (v′
21,v

′
22)

′ = (12, 2, 23, 17, 8, 14, 16, 3, 19, 22, 5, 9). ⌈vi/2⌉ is a permutation

on Z12.
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Figure 3. An example of three-layer GSLHD. All markers in the figure con-
stitute a GSLHD(2, 2, 2; 3; 2). In the first layer, the GSLHD(2, 2, 2; 3; 2)
is partitioned into eight small LHDs, denoted by small stuffed circles, large
stuffed circles, small stuffed squares, large stuffed squares, small unstuffed
circles, large unstuffed circles, small unstuffed squares, and large unstuffed
squares, respectively. Each of the small LHDs has three runs. In the second
layer, there are four LHDs, denoted by stuffed circles, stuffed squares, un-
stuffed circles, and unstuffed squares, respectively. Each LHD in this layer
can be partitioned into two LHDs in the first layer. In the third layer, there
are two LHDs, denoted by stuffed markers and unstuffed markers, respec-
tively. Each LHD in this layer can be partitioned into two LHDs in the
second layer.

Based on r-layer SPV(s1, . . . , sr; m)’s, an r-layer GSLHD(s1, . . . , sr;m; d)

can be generated as follows.

Step 1: Construct an n×d matrix A = (aij), whose columns are d independent

SPV(s1, . . . , sr; m)s. Here n = m
∏r

i=1 si.

Step 2: Construct an n× d matrix D, the (i, j)th entry of which is

dij =
aij − uij

n
, for i = 1, . . . , n, j = 1, . . . , d,

where uij are i.i.d. U [0, 1) random variables, and aij and uij are mutually

independent. D is an r-layer GSLHD(s1, . . . , sr; m; d).

An example of a three-layer GSLHD is shown in Figure 3.

3. Sampling Properties

We derive sampling properties of the DSLHD. Unlike an SLHD, a DSLHD

can be sliced twice: a bigger slice at the first layer can be further sliced into



1246 HUIZHI XIE, SHIFENG XIONG, PETER Z. G. QIAN AND C. F. JEFF WU

smaller LHD’s at the second layer. This enables us to allocate LHDs of smaller

size to different computer models for collective evaluation. Moreover, when we

combine these designs, they form a larger LHD. Hence DSLHD enables a spacing

property at a finer scale than SLHD. This shows the advantage of DSLHD over

SLHD for collective evaluation of computer models. This will be seen more

clearly in the numerical experiments. A list of schemes for collective evaluation

of different computer models is given in Definition 1. Specific examples will be

given to illustrate the greater flexibility of DSLHD. First, we define the collective

evaluation problem as follows.

Suppose there are s2 computer models and each of them has s1 variants.

For example, we can have s2 different finite element models and each of them

is solved using s1 different mesh densities. Denote the computer models as fij ,

i = 1, . . . , s2, j = 1, . . . , s1, where fij is the jth variant of the ith computer model.

Assume each fij has factors x = (x1, . . . , xd) with the uniform distribution F on

(0, 1]d. For c1 = 1, . . . , s1, c2 = 1, . . . , s2, take µc2c1 = E[fc2c1(x)]. For c11, c12 =

1, . . . , s1, c21, c22 = 1, . . . , s2, take covc21c11c22c12 = cov[fc21c11(x), fc22c12(x)],

which becomes σ2
c21c11 = var[fc21c11(x)] if c21 = c22 and c11 = c12. The goal

here is to run each fij at m selected input values for the purpose of estimating

µij . For 0 ≤ λij ≤ 1, i = 1, . . . , s2, j = 1, . . . , s1, the following linear combina-

tions are of interest:

η =

s2∑
i=1

s1∑
j=1

λijµij ,

ηi =

s1∑
j=1

λijµij , i = 1, . . . , s2. (3.1)

Definition 1. Suppose m, s, s1, and s2 are positive integers with n = ms =

ms1s2.

(i) IID is a scheme that takes an independent and identically distributed sample

of m runs for each fij , with the s samples generated independently.

(ii) LH is a scheme that obtains s independent ordinary Latin hypercube designs

of m runs, each of which is associated with one fij .

(iii) SLH-ORG (original SLH) is a scheme that produces an n× d SLHD with s

slices by using the method in Qian (2012), where each slice is a smaller LHD

with m levels and is assigned to one fij .

(iv) SLH-IND(independent SLH) is a scheme that independently produces s2
ms1×d SLHD’s, each of which has s1 slices using the method in Qian (2012).

For i = 1, . . . , s2, j = 1, . . . , s1, jth slice in the ith SLHD is assigned to fij .

(v) SLH-SPL(split slices of SLH) is a scheme that generates an n×d SLHD with

s2 slices using the method in Qian (2012), where each slice is a smaller LHD
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with ms1 levels. For i = 1, . . . , s2, the ith slice is randomly split into s1
subsets of size m and each of the subsets is assigned to one variant of the ith

computer model.

(vi)DSLH is a scheme that produces a DSLHD(m,s2,s1,d), with, for i = 1, . . . , s2,

j = 1, . . . , s1, Dij assigned to fij .

Expectation, variance and covariance under these schemes (in the same order) are

denoted by the subscripts IID, LH, SLH-ORG, SLH-IND, SLH-SPL and DSLH,

respectively. For any of these schemes, let Dij denote the design set for fij ,

i = 1, . . . , s2, j = 1, . . . , s1. Denote by d
(c)
ij the cth row of Dij and d

(ck)
ij the

(c, k)th entry of Dij . For i = 1, . . . , s2, j = 1, . . . , s1, µij is estimated by

µ̂ij =m−1
m∑
c=1

fij(d
(c)
ij ), (3.2)

ηi by

η̂i =

s1∑
j=1

λijµ̂ij , (3.3)

and η by

η̂ =

s2∑
i=1

s1∑
j=1

λijµ̂ij . (3.4)

For later development, we describe the ANOVA decomposition of integrable

functions on [0, 1]d (Owen (1992); Loh (1996)). With F the uniform measure on

(0, 1]d, let dF =
∏d

k=1 dFk and dF−k =
∏

l ̸=k dFl. If f :Rd → R is a measurable

function of x = (x1, . . . , xd) and E[f(x)]2 is well defined and finite, then f can

be decomposed as

f(x) = µ+

d∑
k=1

f−k(xk) + r(x), (3.5)

where µ =
∫
f(x)dF is the grand mean and the functional main effect of xk is

f−k(xk) =

∫
[f(x)− µ]dF−k. (3.6)

For k = 1, . . . , d,
∫
f−kdFk = 0 and∫

r(x)dF−k = 0. (3.7)

For an SPM(s1, s2; m) associated with a DSLHD(m,s2,s1,1), the vector can

be partitioned into s1s2 segments, each of which has m elements and is assigned

to one of the Dijs in (2.1) in the order D11, . . . ,D1s1 , . . . ,Ds2s1 . For ease of

notation, define an m× s2 × s1 doubly sliced permutation matrix (DSPM) such
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that DSPM(:,i,j) is the vector assigned to Dij . We present some results on

the joint probability mass functions of the elements of a DSPM, beginning with

results on SLHD, Lemmas 1 and 2 in Qian (2012).

Lemma 1. Let H be a SPM(m, t) on Zn, where n = mt, and hij is the (i, j)th

entry of H. For u, v ∈ Zn, we have the following

(i) For i = 1, . . . ,m, j = 1, . . . , t, the probability mass function for hij is

Pr(hij = u) =
1

n
.

(ii) For i1, i2 = 1, . . . ,m, i1 ̸= i2 and j = 1, . . . , t, the joint probability mass

function for hi1j and hi2j is

Pr(hi1j = u, hi2j = v) =

{
[n(n− t)]−1, ⌈ut ⌉ ̸= ⌈vt ⌉,
0, otherwise.

(3.8)

(iii)For i1, i2 = 1, . . . ,m, j1, j2 = 1, . . . , t, j1 ̸= j2, the joint probability mass

function for hi1j1 and hi2j2 is

Pr(hi1j1 = u, hi2j2 = v) =


n−2, ⌈ut ⌉ ̸= ⌈vt ⌉,
[n(n−m)]−1, ⌈ut ⌉ = ⌈vt ⌉ and u ̸= v,

0, otherwise.

(3.9)

Lemma 2. Let D be an SLHD with t slices, D1, . . . ,Dt. Then Dc is statistically

equivalent to an m× d ordinary Latin hypercube design for each c = 1, . . . , t.

Now we present results on DSPM.

Lemma 3. Let H be a DSPM and let hijk be its (i, j, k)th entry. For u, v, w ∈
Zn, let

B1 =
{
(u, v)|⌈ u

s2s1
⌉ ̸= ⌈ v

s2s1
⌉
}
; (3.10)

B2 =
{
(u, v)|⌈ u

s2s1
⌉ = ⌈ v

s2s1
⌉, ⌈(u− ⌊u/s2s1⌋)

s2
⌉ ≠ ⌈(v − ⌊v/s2s1⌋)

s2
⌉
}
; (3.11)

B3 =
{
(u, v)|⌈ u

s2s1
⌉ = ⌈ v

s2s1
⌉, ⌈(u− ⌊u/s2s1⌋)

s2
⌉ = ⌈(v − ⌊v/s2s1⌋)

s2
⌉
}
. (3.12)

(i) For i = 1, . . . ,m, j = 1, . . . , s2, k = 1, . . . , s1, the probability mass function

for hijk is

Pr(hijk = u) =
1

n
. (3.13)
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(ii) For i1, i2 = 1, . . . ,m, i1 ̸= i2, and j = 1, . . . , s2, k = 1, . . . , s1, the joint

probability mass function for hi1jk and hi2jk is

Pr(hi1jk = u, hi2jk = v) =

{
[n(n− s2s1)]

−1, (u, v) ∈ B1,

0, otherwise.
(3.14)

(iii)For i1, i2 = 1, . . . ,m, j = 1, . . . , s2, k1, k2 = 1, . . . , s1, k1 ̸= k2, the joint

probability mass function for hi1jk1 and hi2jk2 is

Pr(hi1jk1 = u, hi2jk2 = v) =


[n(n− s2m)]−1, (u, v) ∈ B2,

n−2, (u, v) ∈ B1,

0, otherwise.

(3.15)

(iv)For i1, i2 = 1, . . . ,m, j1, j2 = 1, . . . , s2, j1 ̸= j2, k1, k2 = 1, . . . , s1, the joint

probability mass function for hi1j1k1 and hi2j2k2 is

Pr(hi1j1k1 =u, hi2j2k2 =v) =


n−2, (u, v) ∈ B1 or B2,

[n(n−ms1)]
−1, (u, v) ∈ B3,

0, otherwise.

(3.16)

When s1 = 1, (ii) and (iv) reduce to (ii) and (iii) of Lemma 1 in Qian (2012),

respectively, so the present result can be viewed as an extension of that result.

Let D be an n × d DSLHD with parameters m, s2, s1, and d, and Drc be

as in (2.1), where r = 1, . . . , s2, and c = 1, . . . , s1. The sampling distribution of

Drc and Dr =
∪s1

c=1Drc is given next.

Lemma 4. For positive integers m, s2, and s1 with n = ms2s1, Drc at (2.1)

is statistically equivalent to an m × d ordinary Latin hypercube design; Dr is

statistically equivalent to an SLHD (constructed using the method in Qian (2012))

of s1 slices, each of which is an ordinary Latin hypercube design with m levels.

Lemma 5. For a DSLHD(m, s2, s1, 1) D, the covariance between any point in

Di1j1 and any point in Di2j2, i1 ̸= i2, is non-positive.

We have results on µ̂ij in (3.2), η̂i in (3.3), and η̂ in (3.4) under doubly sliced

Latin hypercube sampling.

Theorem 1. Suppose that, for i = 1, . . . , s2, j = 1, . . . , s1, fij(x) is monotonic

in each argument xk of x = (x1, . . . , xd), and any pair of functions fi1j1 and fi2j2
is jointly increasing or decreasing in each argument xk of x. For the six schemes

of Definition 1, we have the following.
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(i) For i = 1, . . . , s2, j = 1, . . . , s1, and µ̂ij,

varDSLH(µ̂ij) = varLH(µ̂ij) = varSLH−ORG(µ̂ij) = varSLH−IND(µ̂ij)

≤ varIID(µ̂ij). (3.17)

(ii) varDSLH(η̂i) = varSLH−IND(η̂i) ≤ varLH(η̂i) ≤ varIID(η̂i). (3.18)

(iii) For η̂,

varDSLH(η̂) ≤ varSLH−IND(η̂) ≤ varLH(η̂) ≤ varIID(η̂). (3.19)

By dropping the monotonicity assumptions in Theorem 1, we have a more

general result for µ̂ij , η̂i and η̂ under doubly sliced Latin hypercube sampling.

Theorem 2. Suppose that the E[fij(x)]
2 are well defined and finite. Let f−k

ij be

the functional main effect for the variable xk of x = (x1, . . . , xd) in the ANOVA

decomposition of fij at (3.6). Let m, s, s1 and s2 be positive integers with n = ms

and s = s1s2. For the six schemes of Definition 1, as n → ∞ with s1 and s2
fixed, we have the following

(i) For i = 1, . . . , s2, j = 1, . . . , s1, and µ̂ij based on the slice Dij,

varDSLH(µ̂ij) = varSLH−ORG(µ̂ij) = varSLH−IND(µ̂ij) = varLH(µ̂ij)

= σ2
ij

s1s2
n

− s1s2
n

d∑
k=1

∫ 1

0
[f−k

ij (xk)]
2dxk + o(n−1). (3.20)

(ii) For η̂i associated with the slices Di =
∪s1

j=1Dij,

varDSLH(η̂i) = varSLH−IND(η̂i)

=
s1s2
n

s1∑
j=1

λ2
ijσ

2
ij −

s1s2
n

s1∑
j=1

{
λ2
ij

d∑
k=1

∫ 1

0
[f−k

ij (xk)]
2dxk

}
+o(n−1). (3.21)

(iii)For η̂ associated with all Dijs,

varDSLH(η̂) =
s1s2
n

s2∑
i=1

s1∑
j=1

λ2
ijσ

2
ij −

s1s2
n

s2∑
i=1

s1∑
j=1

{
λ2
ij

d∑
k=1

∫ 1

0
[f−k

ij (xk)]
2dxk

}
+o(n−1). (3.22)

In (i), (ii) and (iii) of the theorem, the main effects f−k
ij (xk) are filtered

out, thus achieving variance reduction similar to an ordinary LHD. When all the

fijs are the same and λij = (s1s2)
−1, we have σ2 = σ2

ij = var[f(x)] and (iii)
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Table 1. RMSEs of µ̂11 in Example 3.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.4671 0.4756 0.4597 0.8002
m = 10 0.2310 0.2306 0.2337 0.5215
m = 20 0.1154 0.1134 0.1192 0.3646
m = 40 0.0576 0.0584 0.0608 0.2527

Table 2. RMSEs of η̂1 in Example 3.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.1177 0.1403 0.1137 0.1183
m = 10 0.0579 0.0720 0.0586 0.0585
m = 20 0.0284 0.0355 0.0298 0.0299
m = 40 0.0150 0.0177 0.0147 0.0145

Table 3. RMSEs of η̂ in Example 3.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.1140 0.1143 0.1640 0.1203
m = 10 0.0570 0.0579 0.0811 0.0574
m = 20 0.0296 0.0288 0.0412 0.0295
m = 40 0.0146 0.0145 0.0210 0.0149

reduces to varDSLH(η̂) = σ2/n − (1/n)
∑d

k=1

∫ 1
0 [f−k(xk)]

2dxk + o(n−1), which

is similar to that of an SLHD of n runs as given in Qian (2012) and that of an

ordinary LHD of n runs as given in Stein (1987) and Loh (1996). For the case

of different functions, the LH scheme, the SLH scheme, and the DSLH scheme

are asymptotically equivalent in the sense that varLH(η̂), varSLH(η̂) (defined in

Qian (2012)), and varDSLH(η̂) are all O(n−1).

4. Numerical Illustration

In this section, we provide numerical experiments to illustrate some theoret-

ical results in Section 3. We focus on the comparison between DSLH and the

three schemes related to SLH since it was illustrated in Qian (2012) that SLH

outperforms LH and IID as a sampling method.

Example 3. This example uses the five-dimensional function (Drew and Homem-

de Mello (2005))

f(x) = log(x1x2x3x4x5), (4.1)

where x = (x1, x2, x3, x4, x5) is uniformly distributed on [0, 1]5. Suppose we

want to run this model in a batch sequential mode with a fixed batch size. The

objective is to estimate the mean of the output given the distribution of the

inputs. Suppose we would like to run the experiments in four batches with a
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Table 4. RMSEs of µ̂11 in Example 4.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.1165 0.1149 0.1161 0.1581
m = 10 0.0629 0.0577 0.0620 0.1055
m = 20 0.0326 0.0338 0.0329 0.0710
m = 40 0.0184 0.0184 0.0178 0.0495

fixed batch size m. We are interested in the statistical properties of the sample

average of the output after running one batch, two batches, and four batches.

Let µ be the true mean of the function. Let µ̂11, µ̂12, µ̂21 and µ̂22 be the sample

average of the output for the first batch, the second batch, the third batch and

the fourth batch respectively. Let λ11 = λ12 = λ21 = λ22 = 0.25. Therefore, we

are interested in the statistical properties of µ̂11 and the quantities

η̂1 = λ11µ̂11 + λ12µ̂12,

η̂ = λ11µ̂11 + λ12µ̂12 + λ21µ̂21 + λ22µ̂22.

We compare DSLH, SLH-ORG, SLH-IND, and SLH-SPL for this purpose. For

DSLH, we generated a DSLHD(m, 2, 2, 5) and assigned D11 as the first batch,

D12 as the second batch, D21 as the third batch, D22 as the fourth batch.

For SLH-ORG, we generated an SLHD of four slices, each with size m and then

treated the four slices as four batches. For SLH-IND, we independently generated

two SLHDs, each with two slices of slice size m. We then treated the first slice in

the first SLHD as the first batch, the second slice in the first SLHD as the second

batch, the first slice in the second SLHD as the third batch and the second slice

in the second SLHD as the fourth batch. For SLH-SPL, we generated an SLHD

of two slices, each with size 2m. We then randomly split the first slice into two

subsets of m runs and used the first subset as the first batch and the second

subset as the second batch. Similarly we randomly split the second slice into

two subsets of m runs and use the first subset as the third batch and the second

subset as the fourth batch.

For each scheme, we computed µ̂11, η̂1 and η̂ for m = 5, 10, 20, 40. This

was replicated 2,000 times. Tables 1, 2, and 3 present the root mean square

error (RMSE) of µ̂11, η̂1, and η̂ over these 2,000 replications. They clearly show

that, for each value of m, the DSLH scheme achieves the most variance reduction.

However, the three SLH schemes all have their drawbacks. Specifically, µ̂11 under

the SLH-SPL scheme has a significantly larger variance than that under the

other schemes; η̂1 under the SLH-ORG scheme has a significantly larger variance

than the other schemes; η̂ under the SLH-IND scheme has a significantly larger

variance than the other schemes.
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Table 5. RMSEs of η̂1 in Example 4.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0320 0.0367 0.0320 0.0300
m = 10 0.0171 0.0185 0.0166 0.0173
m = 20 0.0092 0.0104 0.0091 0.0089
m = 40 0.0050 0.0060 0.0051 0.0049

Table 6. RMSEs of η̂2 in Example 4.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0287 0.0359 0.0318 0.0312
m = 10 0.0158 0.0197 0.0165 0.0169
m = 20 0.0090 0.0102 0.0094 0.0092
m = 40 0.0051 0.0057 0.0053 0.0052

Table 7. RMSEs of η̂ in Example 4.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0337 0.0344 0.0454 0.0331
m = 10 0.0181 0.0186 0.0235 0.0188
m = 20 0.0103 0.0103 0.0132 0.0105
m = 40 0.0059 0.0059 0.0073 0.0060

Table 8. RMSEs of η̂1 in Example 4 with different λ’s.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0344 0.0372 0.0352 0.0386
m = 10 0.0187 0.0211 0.0178 0.0237
m = 20 0.0102 0.0115 0.0099 0.0148
m = 40 0.0056 0.0064 0.0059 0.0096

Table 9. RMSEs of η̂2 in Example 4 with different λ’s.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0357 0.0389 0.0351 0.0399
m = 10 0.0185 0.0201 0.0182 0.0233
m = 20 0.0105 0.0111 0.0107 0.0153
m = 40 0.0057 0.0063 0.0057 0.0100

Table 10. RMSEs of η̂ in Example 4 with different λ’s.

DSLH SLH-ORG SLH-IND SLH-SPL
m = 5 0.0399 0.0396 0.0500 0.0483
m = 10 0.0221 0.0213 0.0259 0.0295
m = 20 0.0122 0.0119 0.0148 0.0197
m = 40 0.0070 0.0070 0.0083 0.0131
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Example 4. This example uses the four functions f11(x) = log(1/
√
x1+1/

√
x2),

f12(x) = log(0.98/
√
x1 +0.95/

√
x2), f21(x) = log(1.02/

√
x1 +1.02/

√
x2), f22(x)

= log(1/
√
x1+1.03/

√
x2). Suppose f11 and f12 are two variants of a first computer

model, and f21 and f22 are two variants of a second. Let µ11, µ12, µ21, µ22 denote

the mean of f11, f12, f21, f22, respectively. We are interested in the mean of each

variant and the quantities η = (µ11+µ12+µ21+µ22)/4, η1 = (µ11+µ12)/2, η2 =

(µ21 + µ22)/2. We compared SLH-ORG, SLH-IND, SLH-SPL and DSLH using

the setup of Example 3. The RMSEs of µ̂11, η̂1, η̂2 and η̂ are shown in Tables

4−7, respectively. The main conclusion is that the DSLH scheme works well for

estimating all four parameters, while SLH-ORG does not estimate η1 and η2 as

efficiently, SLH-IND does not estimate η as efficiently, and SLH-SPL does not

estimate µij as efficiently, i, j = 1, 2.

The results in Example 4 are for equal λ’s. But others can be of interest. For

illustration purposes, we let λ11 = 1/3, λ12 = 1/6, λ21 = 1/3 and λ22 = 1/6. The

simulation was then run with the same setup as for equal λ’s. The RMSEs are

shown in Tables 8−10. We do not show the results for µij ’s as they are exactly

the same as before. While the same conclusions emerge, the advantage of DSLH

over SLH-SPL is more pronounced in the case of different λ’s; SLH-SPL cannot

guarantee the design for each function is an LHD, while DSLH can.

5. Discussion

We have proposed general sliced Latin hypercube designs that have multi-

ple layers, at each of which there are multiple LHDs that can be further sliced

into even smaller LHDs at the next layer. An ordinary LHD and an SLHD

(Qian (2012)) are general sliced Latin hypercube designs with zero layer and

one layer, respectively. A special case of general sliced Latin hypercube designs

with two layers, doubly sliced Latin hypercube design (DSLHD), is studied in

detail. Potential applications of DSLHD, other than computer experiments, in-

clude cross-validation, stochastic optimization, and tuning parameter selection

in smoothing splines or similar nonparametric regression methods.

In numerical experiments DSLHD outperforms SLHD for collective evalua-

tion of computer models when we have more than one computer model and each

has the same number of variants. DSLHD also provides more flexibility for batch

sequential estimation of the mean of a single computer model. These advantages

stem from the more flexible structure of DSLHD.

One research direction is to apply the sliced structure to construct designs

for computer experiments with both quantitative and qualitative factors. The

number of layers can depend on the number of qualitative factors. Ideally they

should be the same. See Qian, Wu, and Wu (2008) for details of Gaussian process

modeling for both quantitative and qualitative factors.
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Another interesting research direction is to obtain a central limit theorem

for doubly sliced Latin hypercube sampling. Central limit theorems for Latin

hypercube sampling have been given in simpler situations (Stein (1987); Owen

(1992); Loh (1996)). The central limit theorem for doubly sliced Latin hyper-

cube sampling is technically more involved because of the complicated covariance

structure among the sampled points.
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