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Abstract: We study sequential monitoring procedures that detect instabilities of

the regression operator in an underlying (fully) functional regression model allow-

ing for dependence. These open-end and closed-end procedures are built on a

functional principal components analysis of both the predictor and response func-

tions, thus giving rise to multivariate detector functions, whose fluctuations are

compared against a curved threshold function. The main theoretical result of the

paper quantifies the large-sample behavior of the procedures under the null hypoth-

esis of a stable regression operator. To establish these limit results, classical results

on functional principal components analysis are generalized to a dependent setting,

which may be of interest in its own sake. In an accompanying empirical study we

illustrate the finite sample properties, while an application to environmental data

highlights practical usefulness. To the best of our knowledge this is the first paper

that combines sequential with functional data methodology.
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1. Introduction

Let N denote the set of positive integers. We are concerned with the func-

tional linear model

Yk(t) =

∫ 1

0
Xk(s)Ψk(s, t)ds+ εk(t), t ∈ [0, 1], k ∈ N, (1.1)

where Yk, Xk, εk are random functions defined on a compact interval, which we

assume to be [0, 1], without loss of generality, and Ψk is a possibly time dependent

(in k) sequence of operators. More specific assumptions are imposed in the next

section. These are general enough to include the important case of functional

autoregressive processes.

Scientific and economic theories are often based directly on linear models or

on approximations of a more complex truth by means of linear models. In or-

der to apply regression techniques, the operators Ψk are typically required to be
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identical for all k. In this paper, we propose a sequential monitoring procedure

for functional linear models that aims at checking the constancy of the Ψk. The

sequential setting may be more appropriate whenever a stochastic process is to

be monitored in real time and a decision made promptly in order to adjust proce-

dures to potential instabilities in the observed system. Examples include financial

markets, where stock prices, volatilities of speculative assets, and exchange rates

are monitored with high frequency so that daily curves or functional observations

naturally arise in this context. Related empirical work includes Cyree, Griffiths,

and Winters (2004) and Elazović (2009). Another area of potential applications

is stochastic process control, where one monitors outputs of various industrial

processes. A summary of recent developments may be found in Stoumbos et al.

(2000). In this paper, we focus on an environmental data set with half-hourly

observations measuring the concentration of particulate matter with an aerody-

namic diameter of less than 10µm (PM10) in ambient air at Klagenfurt, Austria.

Since epidemiological and toxicological studies have pointed to negative health

effects, European Union (EU) regulation sets pollution standards for the level

of the concentration. Policy makers have to ensure compliance with these EU

rules and need reliable statistical tools to determine, and justify to the public,

appropriate measures such as partial traffic regulation (see Stadlober, Hörmann,

and Pfeiler (2008)). We propose a fully functional linear model to monitor PM10

concentration in Section 4.4 below.

To see whether or not the functional linear relationship suggested by (1.1)

holds with the same operator for all observations, we test the null hypothesis

H0 : Ψ ≡ Ψ1 = Ψ2 = . . . (1.2)

against the general alternative

HA : There is k∗ ≥ 1 such that Ψ ≡ Ψ1 = · · · = Ψm+k∗−1,

but Ψ∗ ≡ Ψm+k∗ = Ψm+k∗+1 = · · ·

with Ψ ̸= Ψ∗. The formulation of the hypotheses implicitly ensures the existence

of a calibration sample of size m for which the linear relationship (1.1) is stable

(Ψ ≡ Ψ1 = . . . = Ψm). The calibration sample can be used to adjust the

monitoring procedures to the null model. It also allows us to express limit results

in the form m→ ∞.

The functional observations Yk and Xk are infinite dimensional objects and

can therefore not be entirely recovered based on a finite number of observations.

For statistical estimation, we settled on using functional principal components

analysis to compress the data. Moreover, since we aim to apply our method-

ology to data sampled sequentially in time (such as daily stock price curves),
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we allow the bivariate sequence (Xk, εk) to be a functional time series. How to

establish in this context the functional principal components analysis under a set

of nonrestrictive conditions is discussed in Section 2. The functional principal

components analysis is performed with a fixed number of projections for both

predictor and response function. To modify the analysis to allow for an increasing

number of projections is a delicate question, as one would need to re-establish the

results of the present paper in a triangular array setting. While both interesting

and challenging, pursuing this task is beyond the scope of this article. We refer

here only to the recent paper Fremdt et al. (2013).

The rest of this paper is organized as follows. Section 3 contains the definition

of the monitoring procedure which consists of a stopping rule that rejects the null

if a suitably constructed detector crosses a (curved) threshold function. The large

sample properties of the monitoring procedure are derived. The main difficulty

in establishing limit theory is that the detector is based on asymptotically biased

estimators, thereby introducing additional components in the limit that need

careful balancing. Finite sample properties and an application to environmental

data are presented in Section 4, while proofs and additional technical results are

given in Sections 5 and 6.

We list at the end of this section some general conventions and fix notation.

All random elements are defined on a common probability space (Ω,A, P ). We

henceforth often simply write X for a functional variable (X(t) : t ∈ [0, 1]). All

random functions are assumed to have realizations in L2 = L2([0, 1],B[0, 1], λ),
the (real) Hilbert space of square integrable functions with respect to Lebesgue

measure and with inner product ⟨f, g⟩ =
∫ 1
0 f(t)g(t)dt. The latter determines

the L2-norm ∥f∥ = (⟨f, f⟩)1/2. If X is a random element with values in L2 and if

∥X∥ is in Lp(Ω,A, P ), then in case p ≥ 1, we write νp(X) = (E[∥X∥p])1/p for the

Lp-norm. We use E[X] to abbreviate (E[X(t)] : t ∈ [0, 1]) and, if E[X] = 0, the

right-hand side is meant to be the zero element in L2. All random functionals

are assumed to be measurable, which implies for example that terms such as∫ 1
0 E[|X(t)|]dt make sense and can be computed with the help of Fubini’s theo-

rem. Another convention and slight abuse of notation is that we identify X with

Y , denoted X(t) = Y (t), if ∥X − Y ∥ = 0. We refer the interested reader to Bosq

(2000) and Gohberg, Golberg, and Kaashoek (1990) for relevant background on

random elements in functions spaces and functional analysis, respectively.

2. Estimation in Dependent Functional Linear Models

In this section, we introduce functional principal component analysis in the

dependent setting and introduce the biased estimators that are used in the defi-

nition of the monitoring procedure to be introduced in Section 3. The literature
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for linear models with functional covariates and functional responses under in-
dependence assumptions has been discussed by a number of authors. Practical
and computational aspects are, for example, discussed in Ramsay and Silver-
man (2005), while asymptotic consistency results have been obtained by Cuevas,
Febrero, and Fraiman (2002). Generalizing the existing contributions, the first
assumption quantifies the notion of dependence that is allowed in our setting.
Let Z denote the set of integers.

Assumption 1. ((Xk, εk) : k ∈ Z) is a stationary and ergodic sequence satisfying
E[X1] = 0, E[ε1] = 0, Xk and εk are pairwise independent, and ν2µ(X1) +
ν2µ(ε1) <∞ for some µ > 2.

Starting with the predictor functions Xk, it follows readily from Assumption
1 that

C(s, t) = E[Xk(s)Xk(t)]

exists and is independent of k ∈ Z. The eigenvalues, say, λ1 ≥ λ2 ≥ . . . of
C are necessarily non-negative, and we denote the corresponding orthonormal
eigenfunctions by v1, v2, . . .. Projecting the Xk onto the subspace spanned by
v1, . . . , vp, we can expect to explain the major contributions to the variation in
theXk provided that p is selected accordingly. In applications, C and its p largest
eigenvalues λ1, . . . , λp along with their eigenfunctions v1, . . . , vp are unknown and
need to be estimated from the available data. Utilizing the calibration sample,
we choose to work with

Ĉm(s, t) =
1

m

m∑
k=1

Xk(s)Xk(t)

for the statistical inference. It is clear that, for any s, t ∈ [0, 1], Ĉm(s, t) is
an unbiased estimator of C(s, t). Let λ̂1,m ≥ λ̂2,m ≥ . . . ≥ λ̂p,m denote the p
largest eigenvalues of Ĉm and v̂1,m, v̂2,m. . . . , v̂p,m the corresponding orthonor-
mal eigenfunctions. While the projections of Xk into the subspaces spanned by
v̂1,m, . . . , v̂p,m or v1, . . . , vp explain a large part of the randomness in the pre-
dictors, they may reveal little about the variation in the response functions Yk.
Let

D(s, t) = E[Yk(s)Yk(t)],

and denote its eigenvalues and orthonormal eigenfunctions by τ1 ≥ τ2 ≥ . . .
and w1, w2, . . ., respectively. Estimation is then performed with the empirical
counterpart

D̂m(s, t) =
1

m

m∑
k=1

Yk(s)Yk(t)

on the calibration sample. The q largest eigenvalues of D̂m and their orthonormal
eigenfunctions are denoted by τ̂1,m ≥ τ̂2,m ≥ . . . ≥ τ̂q,m and ŵ1,m, ŵ2,m, . . . , ŵq,m.
We make the following standard assumption (see Bosq (2000)).
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Assumption 2. The p largest eigenvalues of the covariance operator C satisfy

λ1 > . . . > λp > λp+1, and the q largest eigenvalues of the covariance operator D

satisfy τ1 > . . . > τq > τq+1.

Thus, up to signs, v1, . . . , vp and w1, . . . , wq are uniquely defined.

Assumption 3. The Hilbert-Schmidt norm ∥ · ∥S of the operator Ψ satisfies

∥Ψ∥2S =

∫ 1

0

∫ 1

0
ψ2(s, t)dsdt <∞,

where ψ denotes some kernel function in L2([0, 1]2,B[0, 1]2, λ2).

Since the product functions (viwj : i, j ∈ N) constitute an orthonormal basis

of L2([0, 1]2,B[0, 1]2, λ2) we get the L2-expansion

Ψ(s, t) =

∞∑
i=1

∞∑
j=1

ψi,jvi(s)wj(t)

with square-summable coefficients (ψi,j : i, j ∈ N). Using inner product notation,

we get, under the null hypothesis H0, that

Yk(t) =
∞∑
i=1

∞∑
j=1

ψi,j⟨Xk, vi⟩wj(t) + εk(t)

=

p∑
i=1

q∑
j=1

ψi,j⟨Xk, vi⟩wj(t) + ek(t), (2.1)

where

ek(t) = εk(t) +

∞∑
i=p+1

q∑
j=1

ψi,j⟨Xk, vi⟩wj(t) +

∞∑
i=1

∞∑
j=q+1

ψi,j⟨Xk, vi⟩wj(t)

= εk(t) + ρk,1(t) + ρk,2(t).

Let ζk,j = ⟨Yk, wj⟩ and ξk,i = ⟨Xk, vi⟩ be the principal component scores, and

take ηk,j = ⟨ek, wj⟩. Projecting both sides of (2.1) onto the subspace spanned by

w1, . . . , wq, we obtain the multivariate regression model

ζk =Wξk + ηk, (2.2)

where ζk = (ζk,1, . . . , ζk,q)
′, ξk = (ξk,1, . . . , ξk,p)

′, ηk = (ηk,1, . . . , ηk,q)
′ are princi-

pal component scores vectors, and W = (ψi,j : i = 1, . . . , p, j = 1, . . . , q). Here

and in the following ′ signifies transposition. Through (2.2) we have transformed

the testing problem to a problem that checks whether or not the q × p matrix

W remains constant. Thus, we monitor only the most important (in terms of

variation in both the predictor and response functions) coefficients ψi,j in the
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expansion of Ψ. Note that the regression in (2.2) is nonstandard, since the re-

gressors ξk are random and possibly correlated with the errors ηk.

The regression (2.2) cannot be used directly for statistical inference on W .

Since the eigenfunctions v1, . . . , vp and w1, . . . , wq are unknown, one has to work

with the sample eigenfunctions v̂1,m, . . . , v̂p,m and ŵ1,m, . . . , ŵq,m instead. The

latter are unique only up to random signs and one can merely expect that v̂i,m
(ŵj,m) is close ĉi,mvi (d̂j,mwj), where ĉi,m = sign⟨v̂i,m, vi⟩ (d̂j,m = sign⟨ŵj,m, wj⟩).
Hence (2.1) can be replaced with

Yk(t) =

p∑
i=1

q∑
j=1

ĉi,mψi,j d̂j,m⟨Xk, v̂i,m⟩ŵj,m(t) + êk(t), (2.3)

where the new error functions can be decomposed as

êk(t) = ek(t) +

p∑
i=1

q∑
j=1

ψi,j⟨Xk, vi − ĉi,mv̂i,m⟩wj(t)

+

p∑
i=1

q∑
j=1

ψi,j⟨Xk, ĉi,mv̂i,m⟩
[
wj(t)− d̂j,mŵj,m(t)

]
= εk(t) + ρk,1(t) + ρk,2(t) + ϕ

(m)
k,1 (t) + ϕ

(m)
k,2 (t). (2.4)

The residual term êk exhibits the different sources of errors: the original noise in

the system given by the innovations εk; the error occurring through replacement

of predictor and response functions with their finite dimensional projections (cap-

tured in ρk,1 and ρk,2, which do not have an additional m superscript); the error

coming from the deviations of the sample eigenfunctions from their population

counterparts (captured in the remaining terms ϕ
(m)
k,1 and ϕ

(m)
k,2 ).

Dropping the dependence on m, we write v̂i = v̂i,m, ŵj = ŵj,m, ĉi = ĉi,m,

and d̂j = d̂j,m in the following. Let ζ̂k,i = ⟨Yk, ŵj⟩ and ξ̂k,i = ⟨Xk, v̂i⟩ and

η̂k,j = ⟨êk, ŵj⟩. Using the projection arguments as in (2.2), we are led to the new

multivariate regression

ζ̂k = Ŵ ξ̂k + η̂k, (2.5)

where, in analogy to (2.2), ζ̂k = (ζ̂k,1, . . . , ζ̂k,q)
′, ξ̂k = (ξ̂k,1, . . . , ξ̂k,p)

′, η̂k =

(η̂k,1, . . . , η̂k,q)
′ and Ŵ = (ĉiψi,j d̂j : i = 1, . . . , p, j = 1, . . . , q). The signs ĉ1, . . . , ĉp

and d̂1, . . . , d̂q are fixed, so that our testing procedure can be reduced to checking

the stability of Ŵ . To this end, let

β = vec
(
Ŵ ′), (2.6)

where the vec-operator creates a column vector by stacking the columns of a ma-

trix below one another. Our monitoring procedure is based on estimating β via

least squares on the calibration sample (Y1, X1), . . . , (Ym, Xm), and to compare
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the resulting calibration to least squares estimators β̃ℓ computed from the sam-

ples (Ym+1, Xm+1), . . . , (Ym+ℓ, Xm+ℓ) as ℓ increases. A violation of H0 should be

visible in statistically significant differences of these least squares estimators.

We introduce further notation. For n < N , let Ẑn,N = (ζ̂′n+1, . . . , ζ̂
′
N )′,

Ên,N = (η̂′
n+1, . . . , η̂

′
N )′, and Ξ̂n,N = (Ξ̂′

n+1, . . . , Ξ̂
′
N )′ with Ξ̂k = Iq ⊗ ξ̂′k, where

⊗ is the Kronecker product and Iq the q×q identity matrix. Then the regression

in (2.5) for the variables (Yn+1, Xn+1), . . . , (YN , XN ) is

Ẑn,N = Ξ̂n,Nβ + Ên,N , (2.7)

for which the least squares estimator is

βn,N = (Ξ̂′
n,N Ξ̂n,N )−1Ξ̂′

n,N Ẑn,N . (2.8)

We use the notation β̂m = β0,m and β̃ℓ = βm,m+ℓ to denote the least squares

estimator of the calibration sample and the monitoring period, respectively. In

addition to the dependence of the regressors Ξ̂n,N and the errors Ên,N , βn,N is

no longer an unbiased estimator. This introduces additional technical challenges.

We allow for dependent stationary and ergodic sequences (Xk : k ∈ Z) and

(εk : k ∈ Z), and further specify their structure.

Assumption 4. There are functionals a : S∞
1 → L2 and b : S∞

2 → L2 such that

Xk = a(ωk, ωk−1, . . .) and εk = b(δk, δk−1, . . .),

where (ωk : k ∈ Z) and (δk : k ∈ Z) are independent, identically distributed (i.i.d.)

sequences of random elements with values in some measurable spaces S1 and S2,

respectively.

Assumption 4 states that Xk and εk are Hilbert space valued Bernoulli shifts.

We can assume that the innovations ωk and δk take values in some general space,

usually S1 = S2 = L2. We admit only weakly dependent random processes here.

Assumption 5. There are c0 ≥ 0 and κ > 2, µ > 2 such that, for all ℓ ∈ N,

ν2µ(Xk −X
(ℓ)
k ) ≤ c0ℓ

−κ, (2.9)

ν2µ(εk − ε
(ℓ)
k ) ≤ c0ℓ

−κ, (2.10)

with

X
(ℓ)
k = a(ωk, ωk−1, . . . , ωk−ℓ+1, ω

(ℓ)
k−ℓ, ω

(ℓ)
k−ℓ−1, . . .), (2.11)

where (ω
(ℓ)
k : k, ℓ ∈ Z) are iid copies of ω0. The (ε

(ℓ)
k : k, ℓ ∈ Z) are defined

analogously.
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From Assumption 4, the norms in (2.9) and (2.10) do not depend on k .

Assumption 5 states that (Xk, εk) can be approximated with the ℓ-dependent

sequences (X
(ℓ)
k , ε

(ℓ)
k ), k ∈ Z, and this approximation improves at rate ℓ−κ as

ℓ increases. This method to describe dependence is in the spirit of Ibragimov

(1962) and Billingsley (1968). The crucial idea is to approximate the original

process with auxiliary processes whose asymptotics are known. This approach

was recently used in Aue et al. (2009a) and Hörmann and Kokoszka (2010) to

examine, respectively, multivariate time series and functional time series. The

latter paper and Aue et al. (2012) also contain a number of examples of processes

that satisfy Assumptions 4 and 5, these notably including functional autoregres-

sive processes.

We have a result on the long-run behavior of β̂m and β̃ℓ.

Theorem 1. If Assumptions 1−5 are satisfied, then it holds under H0 that

β̂m = β +∆m,1 +Rm +Op

(
m−1

)
β̃ℓ = β +∆m,ℓ,1 +Rm +Op

(
m−1 + (log ℓ)4ℓ−1

)
,

where
√
mB̂∆m,1 and

√
ℓB̂∆m,ℓ,1 are asymptotically normal (m, ℓ → ∞), with

B̂ a matrix depending only on the random signs ĉi and d̂j, |Rm| = OP (m
−1/2).

Thus the bias of our estimators, caused by the estimation of eigenfunctions,

is not negligible. A common part of the bias for β̂m and β̃ℓ is captured in

the vector Rm and depends on the differences v̂i − ĉivi and ŵj − d̂jwj . Even

if this bias is taken into account, the differences β̂m − β and β̃ℓ − β are not

asymptotically normal because the estimation of the eigenfunctions is unique

only up to the random signs. To accommodate these findings, our functional

monitoring procedure is based on a CUSUM-type detector, for which the bias of

Theorem 1 and the random signs cancel.

3. Functional Monitoring

In this section, we give the monitoring procedure and state its large sample

properties. We define a detector function that measures the variation in suitably

normalized differences β̃ℓ − β̂m for increasing ℓ. Under H0 these fluctuations are

said to be in control. Significant deviations from the in-control level that lead to

a rejection of H0 are quantified in terms of a threshold function. The approach

we take is in the spirit of Chu, Stinchcombe, and White (1996), a paper which

has been the foundation for many subsequent developments in the sequential

monitoring of stochastic processes. Contributions to the area include, but are

not limited to, Leisch, Hornik, and Kuan (2000), Zeileis et al. (2005), Aue et

al. (2006), and Hušková, Prašková, and Steinebach (2007). A recent survey of

research in the area is given in Aue and Horváth (2013).
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To begin, by (2.7) and (2.8) we have

βn,N =
(
Ξ̂′
n,N Ξ̂n,N

)−1
Ξ̂′
n,N Ẑn,N = β +

(
Ξ̂′
n,N Ξ̂n,N

)−1
Ξ̂′
n,N Ên,N , (3.1)

and thus we need to investigate the large sample behavior of Ξ̂′
n,N Ξ̂n,N and

Ξ̂′
n,N Ên,N . We show in Lemma 5 that (N − n)−1Ξ̂′

n,N Ξ̂n,N is close to the matrix

Q = Iq⊗Λ, with Λ = diag(λ1, . . . , λp). So roughly speaking, if Q̂m is an estimator

for Q obtained from the calibration sample, then Q̂m(β̂m − β̃ℓ) is close to

1

m
Ξ̂′
0,mÊ0,m − 1

ℓ
Ξ̂′
m,m+ℓÊm,m+ℓ. (3.2)

Both terms in (3.2) are vector-valued partial sums processes. The summands are

of the form

ĝk = (ξ̂k,1η̂k,1, . . . , ξ̂k,pη̂k,1, . . . , ξ̂k,1η̂k,q, . . . , ξ̂k,pη̂k,q)
′.

To derive asymptotic normality we have to take their dependence into account

in the standardization.

Let γk = vec(Γk), where the matrices Γk = (Γk(i, j) : i = 1, . . . , p, j =

1, . . . , q) are

Γk(i, j) = ξk,iηk,j = ξk,i(η
∗
k,j + θk,j), (3.3)

where η∗k,j = ⟨εk, wj⟩, θk,j = ⟨Xk, uj⟩, and

uj =
∞∑

i=p+1

ψi,jvi. (3.4)

Thus the γk are the theoretical counterparts of ĝk, with v̂i and ŵj replaced

by the true eigenfunctions vi and wj . Since E[ξk,iθk,j ] = λi(ψp+1,j⟨vi, vp+1⟩ +
ψp+2,j⟨vi, vp+2⟩+ . . .) = 0 and E[ξk,iη

∗
k,j ] = 0, each Γk(i, j) is centered. Let

Σ = E[γ0γ
′
0] +

∞∑
k=1

E[γ0γ
′
k + γkγ

′
0].

To establish an estimator (up to random signs) for Σ, also based on the calibration

sample, let

ε̂k = Yk −
p∑

i=1

q∑
j=1

ψ̂i,j ξ̂k,iŵj

denote the residuals, where vec((ψ̂i,j : i = 1, . . . , p, j = 1, . . . , q)′) = β̂m. Then we

can define the sample version of Γk by Γ̂k = (Γ̂k(i, j) : i = 1, . . . , p, j = 1, . . . , q)

via

Γ̂k(i, j) = ξ̂k,iη̂
∗
k,j −

1

m

m∑
k′=1

ξ̂k′,iη̂
∗
k′,j ,
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where η̂∗k,j = ⟨ε̂k, ŵj⟩. It follows from Lemma 6 that Γ̂k(i, j) is close to ĉid̂jΓk(i, j).

Let γ̂k = vec(Γ̂k). We define the lag-window estimator

Σ̂m = Ĝ0,m +

bm∑
k=1

wk,m(Ĝk,m + Ĝ′
k,m),

where, for k = 0, 1, . . . , bm,

Ĝk,m =
1

m

m−k∑
k′=1

γ̂k′+kγ̂
′
k′ .

The wk,m are weights and bm is a bandwidth that tends to ∞ slowly compared

to m. For further information on lag-window estimators and specific examples,

such as the Bartlett estimator and the flat-top kernel, we refer to Section 10.4 of

Brockwell and Davis (1991). If the weights wk,m and the smoothing parameter bm
are chosen appropriately, it can be shown that Σ̂m is close to (d̂⊗ ĉ)Σ, where ĉ =
diag(ĉ1, . . . ĉp) and d̂ = diag(d̂1, . . . d̂q). Instead of providing explicit conditions

for this, we make the following assumption.

Assumption 6. |Σ̂m − (d̂⊗ ĉ)Σ| = oP (1) as m→ ∞.

Utilizing this, it makes sense to define the detector

V̂ℓ = V̂ℓ,m = (β̃ℓ − β̂m)′Q̂mΣ̂−1
m Q̂m(β̃ℓ − β̂m).

Due to the quadratic nature of V̂ℓ, it is independent of the random signs ĉi and

d̂j . The task is now to compare the detector against a boundary function, so if

hℓ = hℓ,m is the value of the threshold function at lag ℓ, then H0 is rejected if

V̂ℓ > hℓ. Thus one is interested in finding the first (random) time lag, say τ ,

for which this is the case. Typically τ is referred to as a stopping time and one

generally distinguishes between open-end procedures, τ o, for which monitoring

continues as long as H0 is not rejected, and closed-end procedures, τ c, for which

monitoring is terminated after a pre-specified maximal number of observations

have not led to a violation of H0. In the present setting this amounts to

τ om = inf{ℓ ∈ N : V̂ℓ,m > hℓ,m},
τ cm = min{ℓ = 1, . . . , ⌊mT ⌋ : V̂ℓ,m > hℓ,m},

emphasizing the dependence on the calibration sample sizem. Using a parameter

T > 0, the maximal number ⌊mT ⌋ of observations obtained before termination

is parametrized in terms of m as well. We use the general specification

hℓ = hℓ,m =
cm

ℓ2

(
1 +

ℓ

m

)2

g2
(

ℓ

m+ ℓ

)
(3.5)
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for the threshold, where c = c(α) is a critical constant ensuring that the moni-

toring procedure has level α ∈ (0, 1) and g : [0, 1] → R is a function. We assume

the following conditions on g to be satisfied.

Assumption 7. (i) g is continuous on [0, 1];

(ii) there are C > 0 and γ < 1/2 such that Cxγ ≤ g(x) for all x ∈ (0, 1].

Examples of threshold functions can be found in Chu, Stinchcombe, and

White (1996), Horváth et al. (2004) and Aue, Horváth, and Reimherr (2009b),

among others. We have the limit behavior of both the open-end and the closed-

end procedures under the null hypothesis.

Theorem 2. Let Assumptions 1−7 be satisfied, then, under H0,

lim
m→∞

P
(
sup
ℓ≥1

V̂ℓ,m
hℓ,m

> 1
)
= P

(
sup

0≤x≤1

V(x)
cg2(x)

> 1
)

and, for any T > 0,

lim
m→∞

P
(

max
1≤ℓ≤⌊mT ⌋

V̂ℓ,m
hℓ,m

> 1
)
= P

(
sup

0≤x≤T/(1+T )

V(x)
cg2(x)

> 1
)
,

where

(V(x) : x ∈ [0, 1])
D
=

( pq∑
j=1

W 2
j (x) : x ∈ [0, 1]

)
,

with (W1(x) : x ∈ [0, 1]), . . . , (Wpq(x) : x ∈ [0, 1]) denoting independent standard

Brownian motions.

Theorem 3. Let Assumptions 1−7 be satisfied. If W ∗ is analogous to W in

(2.2) and HA holds with W ̸= W ∗, then P (τ om <∞) → 1 and P (τ cm < mT ) → 1

as m→ ∞.

The proofs of Theorems 2 and 3 are presented in Section 6. Theorem 3 could

be formulated so that k∗ is allowed to depend onm in a certain way. It would also

be of interest to derive a theoretical result on the delay time of the detector as

was done in Aue and Horváth (2004) for a simple change in location model, and

in Aue, Horváth, and Reimherr (2009b) for more complex time series regressions.

However, this is beyond the scope of the current account. A heuristic argument

can be provided as follows. First, assume for simplicity that the change-point

is at k∗ = 1, the case of arbitrary k∗ following from similar reasoning. The

detector V̂ℓ,m is based on a quadratic form with argument β̂m − β̃ℓ. Referring to

Theorem 1,

β̂m − β̃ℓ = δ +OP

(
1√
m

+
1√
ℓ

)
,
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where δ denotes the difference between the pre-change and post-change values of

β. When

∥δ∥ ≻ 1√
m

+
1√
ℓ
, (3.6)

we have that

V̂ℓ,m = (β̂m − β̃ℓ)
′Q̂mΣ̂−1

m Q̂m(β̂m − β̃ℓ) ≈ δ′Σ−1δ.

Note that ∥δ∥2 ≪ δ′Σ−1δ ≪ ∥δ∥2, since ∥x∥Σ :=
√
x′Σ−1x defines a norm in

Rpq. Now suppose g(x) = xγ , with γ < 1/2. Then a change-point is indicated

once, for some ℓ,
mV̂ℓ,m

cγ (1 +m/ℓ)2(1−γ)
> 1. (3.7)

The constant cγ is determined via the limiting result in Theorem 2. Assume that

∥δ∥ ≫ m−α, for some 0 ≤ α < 1/2. Further let 1/2 > α′ > α. There are two

possibilities: either (3.7) happens with ℓ ≤ m2α′
, in which case the delay time is

≤ m2α′
. If the change has not yet been detected for ℓ ≤ m2α′

, then we are in

situation (3.6), meaning roughly that V̂ℓ,m in (3.7) can be replaced by δ′Σ−1δ.

Then, basic manipulations imply that ℓ has to satisfy

ℓ > m

[(
mδ′Σ−1δ

cγ

)1/[2(1−γ)]

− 1

]−1

≈
(
cγ ×

m1−2γ

δ′Σ−1δ

)1/[2(1−γ)]

.

For example, if ∥δ∥ ≫ 1, one can choose α′ = [1 − 2γ]/[4(1 − γ)]. For γ < 1/2

we see that 0 < α′ < 1/2 as required. It follows that the standardized delay

time is proportional to m−1/[2(1−γ)]. Hence, asymptotically, the closer γ to 1/2,

the faster the change-point is detected. In turn, the risk of a false alarm also

increases with γ. The other interesting situation is when α approaches 1/2. Then,

by similar arguments, one can see that the standardized delay time converges to

a positive constant.

4. Empirical Performance

In this section, we evaluate the finite sample performance of the monitoring

procedure with a particular focus on the impact of functional principal compo-

nents. We do not aim for completeness in this. The section is organized as

follows. In Section 4.1, we provide a table with critical values necessary in order

to apply the procedure. In Section 4.2, we describe the setting used for the sim-

ulations, while Section 4.3 presents and discusses the results of the Monte Carlo

study. An application to environmental data is given in Section 4.4, and Section

4.5 offers a brief conclusion.
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4.1. Critical values

The limit distribution in Theorem 2 depends on the choice of threshold

function h, variously the choice of the function g : [0, 1] → R, for which only

general requirements are formulated in Assumption 7. We focus here on the

class of functions

g(x) = xγ , x ∈ [0, 1], γ < 1/2. (4.1)

These functions are parameterized in terms of a sensitivity parameter γ which

can be adjusted with respect to the specific goal of monitoring. For more details

on this see, for example, Aue, Horváth, and Reimherr (2009b). More precisely,

critical values are provided for the values γ = −0.5, 0.1, 0.25, and 0.45 in the

following.

The process

V(x) =
pq∑
j=1

W 2
j (x), x ∈ [0, 1],

was simulated by an approximation of the Brownian motions (Wj(x) : x ∈ [0, 1])

on a grid of 5,000 equidistant points on [0, 1]. We chose a number of reasonable

values for the upper limit pq which is related to the number of functional principal

components used to evaluate the detector. The last parameter to choose is the

length of monitoring quantified in terms of T . We report critical values for

T = 1, 2, 3 (closed-end procedures) and T = ∞ (open-end procedure). The

results for the three nominal levels α = 0.10, 0.05, and 0.01 are summarized in

Table 1, based on 50,000 repetitions.

4.2. Simulation setting

In the simulation study, we used the following specifications for the functional

linear model (1.1). The predictor functions were

Xk(t) =

5∑
j=1

ϑkjj
−1/2 sin(jπt), t ∈ [0, 1], (4.2)

with the ϑkj standard normal. This specification has been used, albeit for the

errors, in Gabrys, Horváth, and Kokoszka (2010). Here, we generated the errors

from the equations

εk(t) =

∫ 1

0
Bk(s)ΨE(s, t)ds, t ∈ [0, 1], (4.3)

where ΨE(s, t) = d cos(2π(s+ t)− 1
2), with d chosen such that ∥ΨE∥S = 1, and

(Bk(t) : t ∈ [0, 1]) a standard Brownian bridge. All functions were converted

from discrete observations to functional objects represented in a cubic B-spline
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Table 1. Asymptotic critical values for various configurations with r = pq.

γ = −0.50 γ = 0.10 γ = 0.25 γ = 0.45

r T\α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

1 1 0.832 1.121 1.816 2.288 2.962 4.611 3.121 3.984 5.998 5.881 7.068 9.810

2 1.493 2.008 3.281 2.885 3.738 5.737 3.597 4.597 6.919 6.118 7.343 10.346

3 1.892 2.541 4.177 3.152 4.092 6.391 3.812 4.806 7.413 6.155 7.409 10.409

∞ 3.358 4.496 7.303 3.975 5.168 8.077 4.402 5.613 8.543 6.369 7.704 10.920

2 1 1.324 1.681 2.463 3.425 4.241 6.126 4.584 5.592 7.867 8.091 9.431 12.550

2 2.366 2.986 4.377 4.332 5.368 7.627 5.283 6.436 9.134 8.383 9.804 13.092

3 2.983 3.795 5.623 4.772 5.919 8.524 5.657 6.892 9.722 8.508 9.959 13.171

∞ 5.257 6.643 9.838 6.001 7.376 10.578 6.532 7.936 11.109 8.722 10.217 13.692

3 1 1.720 2.114 2.968 4.454 5.369 7.363 5.826 6.938 9.332 9.944 11.412 14.767

2 3.094 3.780 5.378 5.618 6.759 9.253 6.774 8.067 10.985 10.356 11.944 15.243

3 3.914 4.795 6.734 6.144 7.437 10.218 7.184 8.551 11.596 10.369 11.903 15.552

∞ 6.964 8.545 12.154 7.741 9.322 12.843 8.291 9.918 13.553 10.814 12.296 16.015

4 1 2.114 2.534 3.457 5.317 6.334 8.559 6.955 8.190 10.819 11.680 13.240 16.758

2 3.750 4.520 6.306 6.713 7.948 10.705 8.071 9.472 12.494 12.046 13.660 17.333

3 4.798 5.779 7.913 7.387 8.726 11.704 8.529 9.998 13.261 12.205 13.940 17.549

∞ 8.577 10.280 14.091 9.290 10.998 14.557 9.870 11.576 15.306 12.635 14.283 17.969

6 1 2.834 3.310 4.389 7.033 8.166 10.643 9.076 10.419 13.342 14.736 16.504 20.267

2 5.079 5.923 7.834 8.874 10.246 13.268 10.514 12.029 15.597 15.169 17.033 20.996

3 6.387 7.469 9.852 9.704 11.312 14.709 11.178 12.916 16.463 15.318 17.120 21.147

∞ 11.415 13.442 17.610 12.226 14.149 18.553 12.885 14.839 19.007 15.877 17.833 21.856

9 1 3.864 4.433 5.636 9.369 10.662 13.267 12.030 13.551 16.762 18.845 20.852 25.232

2 6.866 7.874 9.978 11.863 13.464 16.737 13.906 15.729 19.591 19.500 21.536 25.941

3 8.641 9.862 12.489 12.985 14.754 18.443 14.719 16.591 20.885 19.710 21.805 26.326

∞ 15.411 17.677 22.333 16.374 18.629 23.176 17.063 19.246 24.007 20.334 22.459 26.889

basis with 20 basis functions (using the R package fda). We used as regression

operator the banded cosine-taper integral kernel

Ψ(s, t) =

{
d{1 + cos(b−1π[s− t])}, s, t ∈ [0, 1] : |s− t| ≤ b,

0, else,
(4.4)

where the bandwidth parameter b controls which “off-diagonal” values contribute

to the regression and d is again used to normalize Ψ. We obtain the response

functions from
Yk(t) =

∫ 1

0
Xk(s)Ψ(s, t)ds+ εk(t),

as prescribed by (1.1). Different realizations of these functions are displayed in

Figure 1 of the supplement Aue et al. (2014). It can be seen there that the

bandwidth parameter b controls how close the response is to the predictor. If

b = 0.2, as in the left panel of the figure, then response functions can be viewed

as a somewhat smoother version of the predictors. Response functions are more

different from (and smoother than) the predictors if b = 0.5.
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Table 2. Empirical levels for m = 120 (left) and m = 240 (right), b = 0.2,
γ = −0.50, and various values of p and q. In each cell, the top, middle,
and bottom values refer to the nominal levels α = 0.10, 0.05, and 0.01,
respectively.

q/p 1 2 3
1 0.115 0.091 0.078

0.061 0.051 0.043
0.016 0.009 0.004

2 0.111 0.095 0.084
0.045 0.057 0.059
0.013 0.013 0.014

3 0.069 0.092 0.107
0.038 0.041 0.070
0.010 0.009 0.022

q/p 1 2 3
1 0.129 0.091 0.089

0.069 0.049 0.045
0.019 0.005 0.008

2 0.095 0.107 0.084
0.052 0.044 0.044
0.007 0.013 0.014

3 0.068 0.093 0.099
0.033 0.046 0.055
0.011 0.010 0.008

4.3. Empirical level and power

To assess the empirical level under the null hypothesis (2.1), we conducted

simulations with the functional data as described in the previous section. We took

the calibration sample sizes m = 120 and m = 240. In both cases, monitoring

was stopped according to the stopping rule τ cm with monitoring horizon specified

by T = 1. We used the threshold function from (4.1) with sensitivity parameter

γ = −0.50. To hold to nominal levels, we recommend an adjustment to the

threshold function hℓ in (3.5). We let h̃ℓ,m = amhℓ where am → 1 does not change

the large-sample behavior, and worked with a120 = 1.4 and a240 = 1.2. The

resulting empirical levels are in Tables 2 (for the bandwidth parameter b = 0.2)

and 3 (for b = 0.5) and are based on 1,000 repetitions of the experiment. The

nominal levels are held quite nicely as long as the amount of variability explained

by the chosen principal components is in reasonable balance, and in particular

for the cases p = q.

To assess the power, we investigated how sensitive our procedure is to changes

in the bandwidth parameter b in (4.4) in relation to the time of change k∗.

Throughout, we used p = 3 and q = 3. We chose b = 0.2 as the null bandwidth

prior to k∗ and b = 0.3, 0.4, and 0.5 as post-break values. We evaluated the

procedures for early changes, k∗ = 1, intermediate changes, k∗ = m/2 + 1, and

late changes, k∗ = 2m/3 + 1. With calibration sample sizes of m = 120 or

m = 240, and based on 1,000 repetitions, results are reported in Tables 4 and

5. Table 4 summarizes the power of the procedures and shows the percentage

of correctly identified and not identified changes. It can be seen that, even for

m = 120, the power is always high, with the exception of the cases for which the

bandwidth change is small and the change does not occur early. Most of the low
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Table 3. Empirical levels for m = 120 (left) and m = 240 (right), b = 0.5,
γ = −0.50, and various values of p and q. In each cell, the top, middle,
and bottom values refer to the nominal levels α = 0.10, 0.05, and 0.01,
respectively.

q/p 1 2 3
1 0.132 0.079 0.069

0.069 0.088 0.042
0.018 0.008 0.013

2 0.085 0.088 0.070
0.051 0.036 0.052
0.007 0.010 0.010

3 0.076 0.094 0.096
0.034 0.043 0.053
0.007 0.012 0.007

q/p 1 2 3
1 0.110 0.098 0.086

0.064 0.041 0.048
0.015 0.004 0.022

2 0.074 0.101 0.088
0.043 0.035 0.038
0.007 0.017 0.014

3 0.094 0.087 0.082
0.043 0.040 0.040
0.009 0.010 0.007

Figure 1. Histograms of false alarms under H0 (top left) and of delay times
under HA with b = 0.3 (top right), b = 0.4 (bottom left), and b = 0.5
(bottom right) for m = 120, p = 3, q = 3, γ = −0.50. Shown are only the
parts after the intermediate change occurs at k∗ = 61.

power cases are alleviated in the m = 240 scenario. In Table 5 we give estimates

for the standardized mean and median delay times

τ̄ cm =
E[τ cm]− k∗

m

conditional on the correct identification of a break, thereby omitting the false

alarm and no detection cases in the computations. Overall, there is a marked

decrease in the (relative) average detection time when the test period is increased

from m = 120 to m = 240. Moreover, mean and median average delay times are

always close, hinting at a somewhat symmetric distribution. This conjecture is

underlined in Figures 1 and 2 that display histograms for a few selected situations.

In the final part of the simulation study, we looked at the influence of the

numbers of principal components p and q on the performance of the procedure.
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Figure 2. Histograms of delay times under HA with b = 0.4 for the early
change k∗ = 1 (top), the intermediate change k∗ = 61 (middle) and late
change k∗ = 81 (bottom), and for m = 120, p = 3, q = 3, and γ = −0.50.

We chose situations for which essentially all stopping rules involved have power

one, namely a change from b = 0.2 to b = 0.5 at either k∗ = 1 or k∗ = m/2 + 1.

The results can be found in Tables 6 and 7. They reveal this message: in order

to detect changes quickly, one should use p = 3 and q = 3; this combination

provides the quickest reaction times in all cases. We only considered this case in

the power study above.

Additional simulations with the processes used in the empirical study of

Gabrys, Horváth, and Kokoszka (2010), namely various combinations of Brown-

ian motions and Brownian bridges as predictors and errors in conjunction with

Wiener, Gaussian, and parabolic regression kernels, have led to similar conclu-

sions and the results are not reported here.

4.4. Monitoring particle matter concentrations

European Union (EU) regulation aims at limiting the concentration (mea-

sured in µgm−3) of particulate matter of aerodynamic diameter less than 10µm
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Table 4. Empirical percentages for correctly detected (cd) changes and not
detected (nd) changes for m = 120 (top) and m = 240 (bottom), p = 3,
q = 3, γ = −0.50, and various values of k∗ and b. In each cell, the top,
middle, and bottom values refer to the nominal levels α = 0.10, 0.05, and
0.01, respectively.

k∗ 1 61 81
b cd nd cd nd cd nd
0.3 1.000 0.000 0.831 0.169 0.583 0.405

1.000 0.000 0.805 0.195 0.552 0.447
0.997 0.003 0.670 0.330 0.398 0.602

0.4 1.000 0.000 0.997 0.000 0.961 0.024
1.000 0.000 0.999 0.001 0.948 0.047
1.000 0.000 0.997 0.003 0.900 0.099

0.5 1.000 0.000 0.999 0.000 0.987 0.000
1.000 0.000 0.999 0.000 0.996 0.000
1.000 0.000 1.000 0.000 0.993 0.004

k∗ 1 121 161
b cd nd cd nd cd nd
0.3 1.000 0.000 0.991 0.009 0.861 0.132

1.000 0.000 0.987 0.013 0.834 0.165
1.000 0.000 0.968 0.032 0.770 0.229

0.4 1.000 0.000 1.000 0.000 0.989 0.000
1.000 0.000 1.000 0.000 0.996 0.000
1.000 0.000 1.000 0.000 0.998 0.002

0.5 1.000 0.000 0.998 0.000 0.996 0.000
1.000 0.000 1.000 0.000 0.999 0.000
1.000 0.000 1.000 0.000 1.000 0.000

Table 5. Standardized conditional empirical mean and median delay times
(E[τ ] − k∗)/m for m = 120 (top) and m = 240 (bottom), p = 3, q = 3,
γ = −0.50, and various values of k∗ and b. In each cell, the top, middle,
and bottom values refer to the nominal levels α = 0.10, 0.05, and 0.01,
respectively.

k∗ 1 61 81
b mean med mean med mean med
0.3 0.342 0.333 0.250 0.250 0.175 0.175

0.350 0.342 0.283 0.292 0.183 0.183
0.400 0.392 0.283 0.292 0.200 0.208

0.4 0.183 0.183 0.141 0.133 0.133 0.125
0.192 0.192 0.158 0.150 0.142 0.142
0.208 0.208 0.183 0.175 0.167 0.167

0.5 0.133 0.133 0.092 0.092 0.092 0.083
0.141 0.141 0.100 0.100 0.100 0.092
0.150 0.150 0.117 0.108 0.117 0.117

k∗ 1 121 161
b mean med mean med mean med
0.3 0.213 0.213 0.183 0.167 0.154 0.150

0.229 0.225 0.196 0.183 0.167 0.167
0.254 0.250 0.225 0.217 0.183 0.183

0.4 0.125 0.125 0.088 0.083 0.083 0.079
0.133 0.133 0.100 0.096 0.096 0.092
0.142 0.142 0.108 0.104 0.113 0.108

0.5 0.992 0.096 0.058 0.054 0.054 0.050
0.096 0.100 0.067 0.063 0.063 0.058
0.104 0.108 0.071 0.071 0.075 0.075

(PM10) in ambient air. At locations suffering from severe temperature inversions,

such as the basin areas of the Alps, the limits set by the EU are often exceeded

and local policy makers are then forced to impose additional measures (for exam-

ple traffic regulation) to counteract high PM10 concentrations and the ensuing

negative health effects, especially in the cold season (see Stadlober, Hörmann,

and Pfeiler (2008)). PM10 can, similar to NO and NO2 (NOx), be attributed to

a large amount to traffic. While NOx is caused by combustion processes, PM10

concentrations are additionally amplified by abration (of breaks, tarmac, road

salt, etc.) and road dust resuspension. Preventive methods are therefore aimed

at reducing the pollution levels of the sources (e.g. using Diesel particle filters),
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Table 6. Standardized conditional empirical mean and median delay times
(E[τ ]−k∗)/m for m = 120 (top) and m = 240 (bottom), k∗ = 1, γ = −0.50,
and various values of p and q. In each cell, the top, middle, and bottom
values refer to the nominal levels α = 0.10, 0.05, and 0.01, respectively.

p 1 2 3
q mean med mean med mean med
1 0.192 0.183 0.200 0.192 0.200 0.192

0.217 0.200 0.225 0.208 0.217 0.208
0.267 0.250 0.258 0.250 0.250 0.242

2 0.208 0.200 0.175 0.175 0.175 0.175
0.225 0.217 0.192 0.183 0.192 0.183
0.275 0.258 0.217 0.217 0.208 0.208

3 0.217 0.208 0.175 0.175 0.133 0.133
0.283 0.225 0.183 0.183 0.142 0.142
0.275 0.258 0.217 0.208 0.150 0.150

p 1 2 3
q mean med mean med mean med
1 0.125 0.121 0.138 0.138 0.142 0.142

0.142 0.138 0.154 0.150 0.154 0.154
0.167 0.163 0.179 0.175 0.179 0.175

2 0.146 0.142 0.125 0.121 0.129 0.129
0.154 0.154 0.133 0.133 0.138 0.138
0.183 0.179 0.150 0.150 0.154 0.154

3 0.150 0.150 0.129 0.129 0.092 0.096
0.163 0.163 0.142 0.138 0.096 0.100
0.188 0.183 0.154 0.154 0.104 0.108

Table 7. Standardized conditional empirical mean and median delay times
(E[τ ] − k∗)/m for m = 120 (top) and m = 240 (bottom), k∗ = m/2 + 1,
γ = −0.50, and various values of p and q. In each cell, the top, middle,
and bottom values refer to the nominal levels α = 0.10, 0.05, and 0.01,
respectively.

p 1 2 3
q mean med mean med mean med
1 0.192 0.175 0.183 0.175 0.167 0.158

0.217 0.200 0.208 0.200 0.192 0.183
0.258 0.250 0.242 0.233 0.225 0.217

2 0.200 0.192 0.150 0.142 0.125 0.125
0.217 0.217 0.200 0.158 0.150 0.142
0.258 0.250 0.192 0.183 0.175 0.167

3 0.200 0.183 0.133 0.133 0.083 0.083
0.217 0.200 0.150 0.142 0.092 0.092
0.258 0.250 0.175 0.167 0.100 0.108

p 1 2 3
q mean med mean med mean med
1 0.113 0.108 0.113 0.108 0.108 0.104

0.129 0.121 0.133 0.129 0.125 0.121
0.158 0.146 0.158 0.154 0.150 0.146

2 0.117 0.113 0.092 0.086 0.086 0.083
0.138 0.133 0.104 0.100 0.100 0.096
0.167 0.163 0.121 0.117 0.117 0.113

3 0.125 0.121 0.092 0.086 0.054 0.050
0.142 0.133 0.100 0.100 0.063 0.058
0.167 0.158 0.121 0.117 0.071 0.067

but also at avoiding resuspension through an efficient road cleaning process or

by lowering speed limits during periods of high contamination. In the context

of the EU-Life project CMA+, the city of Klagenfurt, Austria has started to

use Calcium Magnesium Acetate, CMA, as a deicer in place of sodium chloride

road salt. While the latter is itself a source of PM10, one hopes that CMA may

help lower pollution levels by virtually ‘glueing’ dust particles to the ground and

weaken the distortion effect. Since January 11, 2012 CMA is used area-wide in

the central city. In practice it may be difficult to evaluate the effect of such

measures. The main reason is that meteorological processes play a dominant

role in determining concentration levels. Unfavorable meteorological conditions,
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Figure 3. Five-day averages (Monday-Friday) of diurnal square root PM10
(black) and square root NOx (gray) curves at Völkermarkterstrasse for differ-
ent seasonal periods: (from left to right) March 14-18, June 13-17, September
12-16 and December 12-16, 2011.

for example long temperature inversion periods or substantial periods without

precipitation, may completely obliterate the efficacy of any preventive method.

What we suggest, then, is to set up a functional monitoring scheme for two

pollutant concentrations, in our case obtained at a measuring station located

in Völkermarkterstraße of Klagenfurt, Austria. The data consists of 12,960 half-

hourly PM10 concentrations (response) and NOx concentrations (predictor) from

05/01/2011 to 01/25/2012. The pollutants have a similar diurnal pattern (see

Figure 3) but NOx, being an aerially pollutant, is not affected by ‘road treat-

ment’ (such as application of CMA). In view of this, we are interested in checking

whether the assumed functional relationship between PM10 and NOx is constant

over time. If a structural change is detected, it is hoped that it can be related

to application of a particular measure such as CMA, street sweeping, or partial

speed limits. The raw data is skewed to the right and a square root transfor-

mation is applied to symmetrize the observations. The observations have also

been detrended (concentrations are higher in the cold season) and deseasonal-

ized (we have a clear ‘weekend effect’) by application of a moving average filter.

Particulate matter concentrations follow a diurnal pattern and we therefore view

the collection of 48 intra-daily data points as one of a combined 270 functional

observations. As in the simulation study, functional objects are represented in a

cubic B-spline basis using 25 basis functions. The resulting centered functions

are displayed in Figure 2 of the supplement Aue et al. (2014).

After a preliminary retrospective analysis, we chose the calibration set size

m = 90 (05/01/2011–07/29/2011) to estimate the functional regression param-

eter β̂m, and then, using hℓ in (3.5) with (4.1) and γ = −0.50, 0.10, 0.25, and

0.45, ran the closed-end monitoring procedures

τ cm = min{ℓ = 1, . . . , L : V̂ℓ,m > hℓ}, V̂ℓ = (β̃ℓ − β̂m)′Q̂mΣ̂−1
m Q̂m(β̃ℓ − β̂m),
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Figure 4. Behavior of stopping rules τ cm form = 90 at the 10% level (left) and
the 5% level (right). Plotted are the ratios V̂ℓ,m/hℓ, where hℓ is determined
by (4.1), for γ = −0.50 (solid), 0.10 (dashed), 0.25 (dotted), and 0.45 (dash-
dots). Crossing of the horizontal line indicates rejection of the null. The
vertical line indicates the start of CMA use for deicing.

on the remaining L = 180 observations. We used p = 3 and q = 3 functional

principal components to explain roughly 80% of the variation in both predictor

and response functions. Critical values can be obtained from Table 1 with T = 2.

We followed the recommendation of Section 4.3 and multiplied these by 1.4. An

in-depth correlation analysis, that may be requested from the authors, revealed

that the estimator Σ̂m of Assumption 6 can be computed reasonably well with

a bandwidth set to bm = 3. Our findings corroborated the outcomes of the

simulation study. First, with the exception of the procedure based on γ = 0.45,

all procedures rejected at the 10% significance level, thereby providing evidence

for a structural change in the relationship between PM10 and NOx concentrations

in Völkermarkterstraße. Only the procedure based on γ = −0.50 rejected at the

5% significance level. All other procedures were close to but did not reject. The

results are displayed in Figure 4. There is a visible jump in the sample path of

the test statistic shortly after CMA was introduced as a deicer (vertical line in

the graph). Our analysis therefore seems to weakly support the hypothesis of

a change in functional relationship between PM10 and NOx shortly after this

measure was realized. It is worthwhile noting that this conclusion was obtained

from only 15 available observations with CMA. A deeper analysis on the potential

reasons for, and implications of, this behavior should be performed once more

recent data are available. Results obtained using NO2 as predictor in place of

NOx lead to the same conclusions and are thus not reported here.

4.5. Conclusions

To the best of our knowledge this paper is the first to combine sequential

methodologies with functional data techniques. We have proposed a monitoring
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scheme for data that can be described by a possibly dependent functional linear

model, and have given a comprehensive theoretical treatment. In this empirical

section, we have demonstrated that the procedure can be applied in practice,

for example to environmental data, and that its performance can be satisfactory.

More empirical work is yet to be done.

5. Functional Principal Components in the Dependent Setting

We summarize some basic properties of random processes in Hilbert spaces.

Throughout this section we assume that H0 holds. In the first lemma, we provide

convergence rates for the eigenvalue and eigenfunction estimators. Under the

assumptions made here, it turns out that they are the same as in the independent

case.

Lemma 1. If Assumptions 1, 2, 4, and 5 are satisfied, then

max
1≤i≤p

|λ̂i,m − λi| = OP

(
1√
m

)
, max

1≤i≤p
∥v̂i,m − ĉi,mvi∥ = OP

(
1√
m

)
,

max
1≤j≤q

|τ̂j,m − τj | = OP

(
1√
m

)
, max

1≤j≤q
∥ŵj,m − d̂j,mwj∥ = OP

(
1√
m

)
,

where ĉj,m = sign⟨v̂i,m, vi⟩ and d̂j,m = sign⟨ŵj,m, wj⟩ are random signs.

Proof. All assertions follow from Theorem 3.1 in Hörmann and Kokoszka (2010),

and Corollary 1.6 of Gohberg, Golberg, and Kaashoek (1990, p.99).

We now give uniform approximations of C and D by Ĉℓ and D̂ℓ, respectively.

Lemma 2. If Assumptions 1, 4, and 5 hold, then

sup
ℓ>1

ℓ

(log ℓ)β
∥Ĉℓ − C∥2S = OP (1) and sup

ℓ>1

ℓ

(log ℓ)β
∥D̂ℓ −D∥2S = OP (1).

for any β > 3.

Proof. We prove only the first statement as the second follows along the same

lines. It suffices to show that

P
(
∥Ĉℓ − C∥2S >

(log ℓ)β

ℓ
i.o.
)
= 0, (5.1)

where i.o. stands for infinitely often. A moment’s reflection yields that (5.1)

follows from

P
(

max
2n−1≤ℓ≤2n

∥ℓ(Ĉℓ − C)∥2S > nβ2n−1 i.o.
)
= 0.

We verify the stronger statement

P
(

max
1≤ℓ≤2n

∥ℓ(Ĉℓ − C)∥2S > nβ2n−1 i.o.
)
= 0. (5.2)
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Let Uk(s, t) = Xk(s)Xk(t) − E[Xk(s)Xk(t)] so U1 + . . . + Uℓ = ℓ(Ĉℓ − C).

Following the proof of Theorem 3.1 in Hörmann and Kokoszka (2010), define a

non-negative function ρ(s, t) such that, for all 0 ≤ L < M ,

E
[(
UL+1(s, t) + . . .+ UM (s, t)

)2] ≤ (M − L)ρ(s, t)

and ∥ρ∥2S <∞. Hence by Menshov’s inequality, see Billingsley (1968, p.102),

E
[

max
1≤ℓ≤N

(
U1(s, t) + . . .+ Uℓ(s, t)

)2] ≤ 4N(log 4N)2ρ(s, t).

In combination with an application of Markov’s inequality,

P
(

max
1≤ℓ≤2n

∥U1 + . . .+ Uℓ∥2S > nβ2n−1
)
≤ 2n+2(log 2n+2)2

nβ2n−1
∥ρ∥2S .

Since the right-hand side is summable in n on account of β > 3, (5.2) is estab-

lished with the Borel-Cantelli lemma.

We consider approximations for the sample correlations of the projections.

Lemma 3. If Assumptions 1, 4, and 5 hold, and if x1 and x2 are elements in

L2, then there is a constant C0 which does not depend on ℓ such that(
E
[∣∣⟨X1, x1⟩⟨ε1, x2⟩ − ⟨X(ℓ)

1 , x1⟩⟨ε(ℓ)1 , x2⟩
∣∣µ])1/µ

≤ C0

(
ν2µ(X1 −X

(ℓ)
1 ) + ν2µ(ε1 − ε

(ℓ)
1 )
)
, (5.3)(

E
[∣∣⟨X1, x1⟩⟨X1, x2⟩ − ⟨X(ℓ)

1 , x1⟩⟨X(ℓ)
1 , x2⟩

∣∣µ])1/µ
≤ C0 ν2µ(X1 −X

(ℓ)
1 ). (5.4)

Proof. We prove only (5.3), the proof of (5.4) is the same. By the Minkowski

and Cauchy-Schwarz inequalities we have(
E
[∣∣⟨X1, x1⟩⟨ε1, x2⟩ − ⟨X(ℓ)

1 , x1⟩⟨ε(ℓ)1 , x2⟩
∣∣µ])1/µ

≤
(
E
[∣∣⟨X1 −X

(ℓ)
1 , x1⟩⟨ε1, x2⟩

∣∣µ])1/µ +
(
E
[∣∣⟨ε1 − ε

(ℓ)
1 , x2⟩⟨X(ℓ)

1 , x1⟩
∣∣µ])1/µ

≤
(
E
[∣∣∥X1 −X

(ℓ)
1 ∥∥x1∥∥ε1∥∥x2∥

∣∣µ])1/µ
+
(
E
[∣∣∥ε1 − ε

(ℓ)
1 ∥∥x2∥∥X(ℓ)

1 ∥∥x1∥
∣∣µ])1/µ .

The result follows from another application of the Cauchy-Schwarz inequality.
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Lemma 4. If Assumptions 1, 4, and 5 hold, then, for each m, there are two inde-
pendent, identically distributed Gaussian processes (Γ

(1)
m (t) : t ≥ 0) and (Γ

(2)
m (t) :

t ≥ 0), with E[Γ
(1)
m (t)] = E[Γ

(2)
m (t)] = 0 and E[Γ

(1)
m (s)(Γ

(1)
m (t))′] = E[Γ

(2)
m (s)

(Γ
(2)
m (t))′] = min{s, t}Σ, such that∣∣∣∣ m∑

k=1

γk − Γ(1)
m (m)

∣∣∣∣ = OP (m
1/2−κ),

sup
ℓ≥1

1

ℓ1/2−κ

∣∣∣∣ m+ℓ∑
k=m+1

γk − Γ(2)
m (ℓ)

∣∣∣∣ = OP (1),

with some κ > 0, where γk = vec(Γk) with Γk as in (3.3).

Proof. An application of Lemma 3 and Assumption 5 shows that the vectors
(γk : k ∈ Z) satisfy the conditions of Theorem S2.1 in the supplement Aue et al.
(2014) The proof of that theorem also yields that the partial sums

∑m
k=1 γk and∑m+ℓ

k=m+1 γk can be approximated with independent processes. Since the strong
approximation of Theorem S2.1 in the supplement Aue et al. (2014) implies the
(uniform) weak approximations of this lemma, the proof is complete.

6. Proofs

We provide the proofs for Theorems 1, 2 and 3. It is assumed throughout
that the null hypothesis H0 holds. We use |A| = sup |ai,j | for a generic matrix A
whose entries are ai,j .

Lemma 5. If Assumptions 1−5 hold, then∣∣∣∣ 1m Ξ̂′
0,mΞ̂0,m −Q

∣∣∣∣ = OP

(
1√
m

)
, (6.1)

sup
ℓ>1

(
(log ℓ)β/2√

ℓ
+

1√
m

)−1 ∣∣∣∣1ℓ Ξ̂′
m,m+ℓΞ̂m,m+ℓ −Q

∣∣∣∣ = OP (1), (6.2)

for all β > 3, where Q = Iq ⊗ Λ and Λ = diag(λ1, . . . , λp).

Proof. Recalling the definition of Ξ̂m,m+ℓ above (2.7), it can be seen that the only
non-zero elements of Ξ̂′

m,m+ℓΞ̂m,m+ℓ are sums of estimated principal component

scores,
∑m+ℓ

k=m+1 ξ̂k,iξ̂k,i′ . Elementary arguments give the decomposition

m+ℓ∑
k=m+1

ξ̂k,iξ̂k,i′ = ĉiĉi′
m+ℓ∑

k=m+1

ξk,iξk,i′ +

m+ℓ∑
k=m+1

(
ξ̂k,i − ĉiξk,i

)
ξ̂k,i′

+

m+ℓ∑
k=m+1

ĉiξk,i
(
ξ̂k,i′ − ĉjξk,i′

)
.
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Since the (vi : i ∈ N) are the orthonormal eigenfunctions of the covariance
operator C, we conclude that E[ξ2n,i] = E[⟨Xn, vi⟩2] = λi and E[ξn,iξn,i′ ] =
E[⟨Xn, vi⟩⟨Xn, vi′⟩] = 0 for i ̸= i′. The stationarity of (Xk : k ∈ Z) and an
application of Lemma 2

sup
ℓ>1

1√
ℓ(log ℓ)β

∣∣∣∣∣
m+ℓ∑

k=m+1

(
ξk,iξk,i′ − E[ξk,iξk,i′ ]

)∣∣∣∣∣
D
= sup

ℓ>1

1√
ℓ(log ℓ)β

∣∣∣∣∣
ℓ∑

k=1

(
ξk,iξk,i′ − E[ξk,iξk,i′ ]

)∣∣∣∣∣
= OP (1).

Similarly, by Lemmas 1 and 2, we have via the Cauchy-Schwarz inequality

sup
ℓ>1

1

ℓ

∣∣∣∣∣
m+ℓ∑

k=m+1

(
ξ̂k,i − ĉiξk,i

)
ξ̂k,i′

∣∣∣∣∣= ∥v̂i − ĉivi∥ sup
ℓ>1

1

ℓ

m+ℓ∑
k=m+1

∥Xk∥2 = OP

(
1√
m

)
,

since (1/ℓ)
∑m+ℓ

k=m+1 ∥Xk∥2
D
= (1/ℓ)

∑ℓ
k=1 ∥Xk∥2 = OP (1) by stationarity and the

Ergodic Theorem. Using the same arguments one can also verify that

sup
ℓ>1

1

ℓ

∣∣∣∣∣
m+ℓ∑

k=m+1

ĉiξk,i
(
ξ̂k,i′ − ĉi′ξk,i′

)∣∣∣∣∣ = OP (1),

completing the proof of (6.2). The proof of (6.1) is similar to that of (6.2) if we
use Theorem 3.1 of Hörmann and Kokoszka (2010) in place of Lemma 2.

We state a lemma that establishes the asymptotics for the terms Ξ̂′
n,N Ên,N .

The proof requires a number of auxiliary results that are given in the supplement
Aue et al. (2014). We notice the explicit form of Ξ̂′

n,N Ên,N = vec(Ĝ), where the

matrix Ĝ consists of the entries Ĝi,j =
∑N

k=n+1 ξ̂k,iη̂k,j . Let

Tn,N (i, j) = ĉid̂j

N∑
k=n+1

ξk,iηk,j . (6.3)

Lemma 6. If Assumptions 1−5 hold, then
m∑
k=1

ξ̂k,iη̂k,j = T0,m(i, j) +mRm(i, j) +OP (1),

m+ℓ∑
k=m+1

ξ̂k,iη̂k,j = Tm,m+ℓ(i, j) + ℓRm(i, j) + U
(1)
ℓ,m(i, j) + U

(2)
ℓ,m(i, j),

where Rm(i, j) = OP (m
−1/2),

sup
ℓ>1

|U (1)
ℓ,m(i, j)|√
ℓ(log ℓ)β

= OP

(
1√
m

)
and sup

ℓ>1

|U (2)
ℓ,m(i, j)|
ℓ

= OP

(
1

m

)
.
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Proof. Recognizing that Tn,N = T
(1)
n,N + T

(2)
n,N with T

(1)
n,N and T

(2)
n,N defined in

Lemmas S3.1 and S3.2 of the supplement Aue et al. (2014) that Sm is defined

in Lemma S3.1, and that one can set Rm = R
(1)
m + . . .+ R

(4)
m , U

(1)
ℓ,m = Um,1(ℓ) +

Um,3(ℓ)+Um,5(ℓ)+Um,7(ℓ) and U
(2)
ℓ,m = Um,2(ℓ)+Um,4(ℓ)+Um,6(ℓ)+Um,8(ℓ), with

the terms on the respective right-hand sides being defined in Lemmas S3.1–S3.5,

the statements of this lemma are implied by the results of Appendix S3 in the

supplement Aue et al. (2014).

We start to establish Theorems 1 and 2. To simplify notation, let

f(x) = (1 + x)g

(
x

1 + x

)
.

Lemma 7. If Assumptions 1−5 and 7 hold, then

sup
ℓ≥1

ℓ√
mf(ℓ/m)

∣∣(Ξ̂′
0,mΞ̂0,m)−1 − (mQ)−1

∣∣∣∣Ξ̂′
0,mÊ0,m

∣∣ = OP

(
1√
m

)
, (6.4)

sup
ℓ>1

ℓ√
mf(ℓ/m)

∣∣(Ξ̂′
m,m+ℓΞ̂m,m+ℓ)

−1 − (ℓQ)−1
∣∣∣∣Ξ̂′

m,m+ℓÊm,m+ℓ

∣∣ = oP (1), (6.5)

where Q is defined in Lemma 5.

Proof. We prove only (6.5), since (6.4) follows from similar arguments. Lemma

5 implies that |(Ξ̂′
m,m+ℓΞ̂m,m+ℓ)

−1 − (ℓQ)−1| ≤ rm,1(ℓ) + rm,2(ℓ), where

sup
ℓ>1

ℓ3/2√
(log ℓ)β

|rm,1(ℓ)| = OP (1) and sup
ℓ≥1

ℓ|rm,2(ℓ)| = OP

(
1√
m

)
.

Invoking Lemmas 4 and 6 yields |Ξ̂′
m,m+kÊm,m+k| ≤ rm,3(k) + rm,4(k), where

sup
ℓ>1

1√
ℓ(log ℓ)β

|rm,3(ℓ)| = OP (1) and sup
ℓ>1

1

ℓ
|rm,4(ℓ)| = OP

(
1√
m

)
.

Combining the previous statements, we get

sup
ℓ>1

ℓ√
mf(ℓ/m)

∣∣(Ξ̂′
m,m+ℓΞ̂m,m+ℓ)

−1 − (ℓQ)−1
∣∣∣∣Ξ̂′

m,m+ℓÊm,m+ℓ

∣∣
= OP (1) sup

ℓ≥1

ℓ√
mf(ℓ/m)

(√
(log ℓ)β

ℓ3/2
+

1√
mℓ

)(√
ℓ(log ℓ)β +

ℓ√
m

)
= OP (1)(rm,5 + rm,6 + rm,7),

where

rm,5 = sup
ℓ>1

(log ℓ)β√
mf(ℓ/m)

, rm,6 = sup
ℓ>1

√
ℓ(log ℓ)β

mf(ℓ/m)
and rm,7 = sup

ℓ>1

ℓ

m3/2f(ℓ/m)
.
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It remains to show that rm,5, rm,6, and rm,7 converge to zero as m tends to ∞.

Using Assumption 7 in various places, in addition to a number of basic estimation

steps, one can show that

rm,5 ≤ sup
ℓ≤m

(log ℓ)β√
ℓ

√
ℓ/m

f(ℓ/m)
+ sup

ℓ>m

√
m(log ℓ)β

ℓ
sup

1/2≤x≤1

1

g(x)

= O(1)

(
sup
ℓ≤m

(log ℓ)β√
ℓ

(
ℓ

m

)1/2−γ

+
(logm)β√

m

)
= O(1)(logm)βmγ−1/2

= o(1).

Using similar arguments, it follows that

rm,6 ≤
√

(logm)β

m
sup

1/m≤x≤1

√
x

g(1 + x)
+ sup

ℓ>m

√
(log ℓ)β

ℓ
sup

1/2≤x≤1

1

g(x)
= o(1).

Since the function x 7→ x/f(x) is bounded on [0,∞) we conclude that

rm,7 ≤
1√
m

sup
x>0

x

f(x)
= o(1),

thus completing the proof of (6.5).

Lemma 8. If Assumptions 1−5 and 7 hold, then

sup
ℓ≥1

1√
mf(ℓ/m)

∣∣∣∣∣
(
Ξ̂′
m,m+ℓÊm,m+ℓ −

ℓ

m
Ξ̂′
0,mÊ0,m

)
−
( m+ℓ∑

k=m+1

γk −
ℓ

m

m∑
k=1

γk

)∣∣∣∣∣
= oP (1). (6.6)

Proof. With γk = vec(Γk), where Γk(i, j) = ξk,i(η
∗
k,j + θk,j), utilizing the result

of Lemma 6 it suffices to verify that

sup
ℓ≥1

1√
mf(ℓ/m)

(√
ℓ(log ℓ)β

m
+

ℓ

m

)
= o(1).

But the rate on the left-hand side is bounded from above by rm,6 + rm,7, as

defined in Lemma 7, and the claim follows.

Lemma 9. If Assumptions 1−5 and 7 hold, then

sup
ℓ≥1

1√
mf(ℓ/m)

∣∣∣∣∣
( m+ℓ∑

k=m+1

γk −
ℓ

m

m∑
k=1

γk

)
−
(
Γ(2)
m (ℓ)− ℓ

m
Γ(1)
m (m)

)∣∣∣∣∣ = oP (1),

where (Γ
(1)
m (x) : x ∈ [0, 1]) and (Γ

(2)
m (x) : x ∈ [0, 1]) are the Gaussian processes

defined in Lemma 4.
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Proof. The rate of convergence of the respective partial sums of the γk to the

Gaussian processes (Γ
(1)
m (x) : x ∈ [0, 1]) and (Γ

(2)
m (x) : x ∈ [0, 1]) established in

Lemma 4 dictates that we only need to show that

sup
ℓ≥1

(k/m)m1/2−κ

√
mf(ℓ/m)

= o(1) and sup
ℓ≥1

ℓ1/2−κ

√
mf(ℓ/m)

= o(1). (6.7)

To prove the second statement, by Assumption 7 we have

sup
ℓ≤m

ℓ1/2−κ

√
mf(ℓ/m)

=O(1) sup
ℓ≤m

ℓ1/2−κ

√
m(ℓ/m)γ

=O(1) sup
ℓ≤m

ℓ1/2−κ−γ

m1/2−γ
=O(1) sup

ℓ≤m
ℓ−κ=o(1)

as well as

sup
ℓ>m

ℓ1/2−κ

√
mf(ℓ/m)

= O(1)
√
m sup

ℓ>m
ℓ−1/2−κ = o(1).

Since similar arguments also yield the first statement in (6.7), the lemma is

established.

Proof of Theorem 1. We only derive the asymptotics of β̂m. Take Ξ0,m as

the theoretical version of Ξ̂0,m. The matrix E0,m is defined analoguously. Then

Ξ′
0,mE0,m =

∑m
j=k γk. By (3.1) we have β̂m = β +

(
Ξ̂′
0,mΞ̂0,m

)−1
Ξ̂′
0,mÊ0,m and(

Ξ̂′
0,mΞ̂0,m

)−1
Ξ̂′
0,mÊ0,m

= (mQ)−1Ξ′
0,mE0,m(d̂⊗ ĉ) +

[(
Ξ̂′
0,mΞ̂0,m

)−1 − (mQ)−1
]
Ξ̂′
0,mÊ0,m

+(mQ)−1
[
Ξ̂′
0,mÊ0,m − Ξ′

0,mE0,m(d̂⊗ ĉ)
]
.

Using (6.4) with ℓ→ ∞ we see that∣∣∣[(Ξ̂′
0,mΞ̂0,m

)−1 − (mQ)−1
]
Ξ̂′
0,mÊ0,m

∣∣∣ = OP

(
1

m

)
.

By Lemma 6

(mQ)−1
[
Ξ̂′
0,mÊ0,m − Ξ′

0,mE0,m(d̂⊗ ĉ)
]
= Q−1vec(Rm) +OP

(
1

m

)
,

where Rm = (Rm(i, j) : i = 1, . . . , p, j = 1, . . . , q). Take Rm = Q−1vec(Rm). The

asymptotic normality of (mQ)−1Ξ′
0,mE0,m can be established from Lemma 4.

Combining these results completes the proof.

Proof of Theorem 2. We prove only the first part of Theorem 2, the proof

of the second part is somewhat simpler. Combining the results of Appendix S3
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in the supplement Aue et al. (2014) with Lemmas 6−9 and Assumption 6 shows

that, in order to establish the limit distribution for supℓ V̂ℓ,m/hℓ,m, it suffices to

show that

sup
ℓ≥1

Vℓ,m
mf2(ℓ/m)

D→ sup
x>0

V(x)
f2(x)

, (6.8)

where

Vℓ,m =

(
Γ(2)
m (ℓ)− ℓ

m
Γ(1)
m (m)

)′
Σ−1

(
Γ(2)
m (ℓ)− ℓ

m
Γ(1)
m (m)

)
,

V(x) =
(
Γ(2)(x)− xΓ(1)(1)

)′
Σ−1

(
Γ(2)(x)− xΓ(1)(1)

)
,

with ((Γ(1)(x),Γ(2)(x)) : x ≥ 0)
D
= ((Γ

(1)
m (x),Γ

(2)
m (x)) : x ≥ 0) for all m. Since the

scale transformation implies that(
1√
m

(
Γ(1)
m (ℓ),Γ(2)

m (ℓ)
)
: ℓ ≥ 1

)
D
=
((

Γ(1)(ℓ/m),Γ(2)(ℓ/m)
)
: ℓ ≥ 1

)
, (6.9)

we can use the continuity of (Γ(1)(x) : x ≥ 0) and (Γ(2)(x) : x ≥ 0) to establish,

for all fixed 0 < T1 < T2 <∞, the convergence

sup
mT1≤ℓ≤mT2

Vℓ,m
mf2(ℓ/m)

D→ sup
T1≤x≤T2

V(x)
f2(x)

. (6.10)

On the other hand, the Law of Iterated Logarithm and Assumption 7 yield that

lim sup
T1→∞

sup
0<x≤T1

V(x)
f2(x)

= 0 a.s. and lim sup
T2→∞

sup
T2≤x<∞

V(x)
f2(x)

= 0 a.s.,

so that (6.8) follows from (6.9) and (6.10). Computing the covariance function,

one can easily verify that the coordinates of (Σ−1/2(Γ(2)(x)−xΓ(1)(1)) : x ≥ 0) are

independent and identically distributed processes having the same distribution

as (W (x) − xZ : x ≥ 0), where (W (x) : x ≥ 1) is a standard Brownian motion

and Z a standard normal random variable, independent of (W (x)− xZ : x ≥ 0).

It is well known that(
(1 + x)W

(
x

1 + x

)
: x ≥ 0

)
D
=
(
W (x)− xZ : x ≥ 0

)
.

Hence (
sup
x>0

V(x)
f2(x)

: x ≥ 0

)
D
=

( pq∑
j=1

W 2
j

(
x

1 + x

)
g−2

(
x

1 + x

)
: x ≥ 0

)
,

where (W1(x) : x ≥ 0), . . . , (Wpq(x) : x ≥ 0) are independent standard Brownian

motions. A change of variables from x/(1 + x) to x completes the proof of

Theorem 2.
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Proof of Theorem 3. Under the specified alternative we have that β̃ℓ converges

to β∗ = vec ((W ∗)′). This is because of Theorem 2 and the fact that β̃ℓ is an

average (see (3.1)). The first k∗ terms in this average that yield convergence to

β have no impact on the limit. Hence

(β̂m − β̃Tm)/V
1/2
Tm,m =

√
mT

T + 1

β̂m − β̃mT

g (T/(T + 1))
∼

√
mT

T + 1

β − β∗

g (T/(T + 1))
.

The latter term is divergent, so the proof follows.
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Gabrys, R., Horváth, L. and Kokoszka, P. (2010). Tests for error correlation in the functional
linear model. J. Amer. Statist. Assoc. 106, 1113-1125.

Gohberg, I., Golberg, S. and Kaashoek, M. A. (1990). Classes of Linear Operators. Operator
Theory: Advances and Applications 49. Birkhäuser, Boston.
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