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Abstract: For modeling orientation data represented as 3 × 3 rotation matrices,

we develop a wrapped trivariate normal distribution (wTND) under which random

rotations have simple geometric construction as symmetric errors about a mean.

While of interest in its own right, the wTND also provides simple and effective

approximations to the isotropic Gaussian distribution on rotations, with some ad-

vantages over approximations based on other commonly used models. We develop

non-informative Bayes inference for the wTND via Markov Chain Monte Carlo

methods that allow straightforward computations in a model where maximum like-

lihood is undefined. Credible regions for model parameters (including a fixed 3× 3

mean rotation) are shown to possess good frequentist coverage properties. We il-

lustrate the model and inference method with orientation data collected in texture

analysis from materials science.

Key words and phrases: CLT, credible set of cones, isotropic Gaussian distribution,

MCMC, UARS model.

1. Introduction

Three-dimensional orientation data are of interest in such fields as human

kinematics, vectorcardiography, structural geology, robotics and materials sci-

ence (cf., Downs (1972); Chang (1998); Matthies, Muller, and Vinel (1988);

Rancourt, Rivest, and Asselin (2000); Stavdahl et al. (2005); Bingham, Nord-

man, and Vardeman (2009a)); see Mardia and Jupp (2000, Sec. 13.2.1) for an

introduction. With such data, each observation is represented by a 3 × 3 rota-

tion matrix in SO(3), the set of orthogonal matrices with determinant 1, and

typically denotes the orientation of some object after rotating its reference frame

in R3 away from some “world” reference frame. For clarity in what follows, we

refer to a probability model for a random 3 × 3 rotation matrix as a rotational

distribution.

In many applications involving orientation data, the rotational distributions

used are symmetric or isotropic (having central or rotationally invariant densi-

ties) about a central rotation in SO(3), and intended to model the variability in

orientation data as due to directionally symmetric random perturbations about
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an underlying mean rotation parameter. Using such rotational distributions is

akin to using errors ε, symmetrically distributed around 0 in a standard location

model Y = µ+ ε for real-valued data. In the statistical literature, the oldest and

most common distribution on SO(3) of this form is the isotropic version of the

Matrix Fisher distribution (cf., Downs (1972); Khatri and Mardia (1977)). Other

such models include the isotropic Cayley distribution (León, Massé, and Rivest

(2006, Sec. 5.2)), Bunge’s Gaussian distribution (Bunge (1982)), the Lorentzian

distribution (Matthies (1982)), the de la Vallée Poussin distribution (Schaeben

(1997)) and the isotropic Gaussian distribution on SO(3) (cf., Nikolayev and

Savyolova (1997)). All of these belong to a general class of isotropic distribu-

tions on SO(3), referred to here as “uniform-angle-random-spin” (UARS) distri-

butions, that have intuitive interpretation as random “rotational errors,” as well

as a simple geometric construction in terms of Euler’s axis-angle representation

of rotations; see, for example, Bingham, Nordman, and Vardeman (2009a) and

Hielscher, Schaeben, and Siemes (2010).

Our purposes in this manuscript are two-fold. First, we wish to clarify the

isotropic Gaussian distribution (IGD) on SO(3), a rotational distribution from

texture analysis that is not widely appreciated in the statistical literature. An ap-

pealing property of this distribution for modeling orientations is its position as a

type of “normal” distribution for rotations, by serving as the distributional limit

for compositions of large numbers of independent, small random rotations. How-

ever, since its proposal (Savyolova (1984); Matthies, Muller, and Vinel (1988)),

the IGD on SO(3) has been criticized as having no motivation through a meaning-

ful central limit theorem (CLT) argument with rotations (cf., Schaeben (1992)).

We point out that there is indeed a simple, rigorous argument showing that the

IGD on SO(3) does have a CLT-related motivation for modeling orientation data,

giving it the same kind of justification as is usually provided for the normal and

log-normal distributions in other statistical modeling applications.

Our second and main aim here is to develop a new family of isotropic dis-

tributions on SO(3), referred to as the wrapped trivariate normal distribution

(wTND) family. These rotational distributions are motivated by a CLT in R3,

rather than a CLT in SO(3) directly, along with an exponential mapping of R3

onto SO(3). One major motivation for the wTND is that it has a fairly simple

distributional form for statistical inference, unlike the IGD on SO(3) that has

a rather complicated density (as do several other UARS models shown in Sec-

tion 2.1, e.g., Bunge’s Gaussian, Lorentzian). Additionally, the wTND turns out

to closely approximate the IGD on SO(3) in many practical situations, more so

than many other commonly used isotropic models for rotations. Such approxi-

mations are useful, not only because the IGD on SO(3) has CLT motivations,

but also because any highly concentrated UARS distribution for rotational er-

rors with a continuously differentiable density will follow the IGD on SO(3)
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(see Section 2.2), and so the wTND model can become a tractable substitute

for highly concentrated orientations. Implicit assumptions involving trivariate

normal distributions have also appeared for approximating highly concentrated

Matrix Fisher distributions (Rancourt, Rivest, and Asselin (2000)) that we more

formally and directly characterize. We then describe one-sample Bayes inference

for the wTND, using non-informative priors on the two parameters of the dis-

tribution: one (location) parameter is a fixed mean rotation S ∈ SO(3), and

the other parameter κ ∈ (0,∞) controls the variability of random rotations from

the wTND. We use Bayes inference because the approach is computationally

straightforward and well-defined, unlike maximum likelihood. Simulations also

indicate that, with non-informative priors, the resulting Bayes credible regions

have excellent frequentist properties.

The rest of the manuscript is organized as follows. Section 2 describes the

UARS-framework for isotropic distributions on SO(3) and provides a CLT mo-

tivation for the IGD on SO(3). Section 3 provides the wTND, along with some

simulation studies indicating the effectiveness of its approximation to the IGD

on SO(3) compared to some competing approximations. We outline one-sample

Bayes inference for the wTND in Section 4 and examine the procedure through

simulation in Section 5. Section 6 illustrates an application of the wTND to

orientation data collected in texture analysis, and Section 7 provides concluding

remarks. An on-line Supplementary Appendix contains additional results.

2. Preliminaries: UARS models and the IGD on SO(3)

2.1. The UARS class: rotationally symmetric models on SO(3)

“Uniform-angle-random-spin” (UARS) distributions for random rotations

can be described using a stochastic version of Euler’s angle-axis representation

for rotations. For v = (v1, v2, v3)
T ∈ R3, define a mapping

A(v) =

 0 −v3 v2
−v3 0 −v1
−v2 v1 0


of R3 to the space so(3) of real-valued skew-symmetric 3×3 matrices, and define

the matrix exponential

exp(B) =

∞∑
k=0

1

k!
Bk

for B ∈ so(3). Then,

exp(A(v)) = (cos ∥v∥)I3 +
sin ∥v∥
∥v∥

A(v) +
1− cos ∥v∥

∥v∥2
vvT
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represents a rotation of the identity matrix I3, the set of standard coordinate

vectors in R3, by an angle of ∥v∥ about a vector or signed axis v ∈ R3 fol-

lowing the right-hand rule (cf., Mardia and Jupp (2000, p.287)). Then, letting

u = (u1, u2, u3)
T be uniformly distributed over the R3 unit sphere S2 and, in-

dependently, letting r denote a random draw from an angular distribution on

(−π, π] having a symmetric density g(·|κ) around zero whose spread is controlled

by the concentration parameter κ > 0, a random UARS rotation with mean

direction I3 is given by

M(r,u) ≡ exp(A(ru)) = (cos r)I3 + (sin r)A(u) + (1− cos r)uuT , (2.1)

a rotation by the random angle r about the random vector u ∈ R3. This con-

struction is then used to define a UARS distribution with (fixed) mean rotation

S ∈ SO(3) by O = S ·M(r,u) (or equivalently M(r,u) ·S), representing a direc-

tionally symmetric perturbation of S. We refer to the rotational distribution of

O as a UARS model with mean S ∈ SO(3) and angular density g(·|κ).
As an important feature of UARS models, each rotational distribution in

the UARS class is completely characterized by some angular distribution in the

definition (2.1), and all of the previously mentioned common families of isotropic

distributions on SO(3) correspond to different choices of angular densities g(·|κ)
defined on (−π, π]; these are listed in Table 1 (e.g., isotropic Matrix Fisher,

Cayley, Bunge’s Gaussian, and IGD). Given an angular density g(·|κ) on (−π, π]

and mean parameter S ∈ SO(3), a UARS rotation O has a corresponding density

on SO(3) given by

f(O|S, κ) = 4π

3− tr(STO)
g(arccos[2−1(tr(STO)− 1)]|κ), O ∈ SO(3), (2.2)

with respect to the uniform distribution on SO(3) which provides a dominating

measure on SO(3); taking g(r) = [1 − cos(r)]/[2π], r ∈ (−π, π] and S = I3 in

(2.2) gives the density f(O) = 1 of the uniform distribution on SO(3) (Miles

(1965)).

We thank referees for suggesting other generalizations and characterizations

of UARS distributions. If a random variable t has a density g̃(t) (with respect

to the Lebesgue measure on R) and, independently, u is uniformly distributed

on S2, the unit sphere in R3, then S exp(A(tu)) is UARS-distributed with mean

rotation S and the density of the wrapped angle r = t(mod2π) is

g(r) =

∞∑
m=−∞

g̃(r +m2π), r ∈ (−π, π], (2.3)

on the unit circle S1; this is relevant for the wrapped trivariate normal distri-

bution (wTND) described in Section 3.1. Any random orientation O having a
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Table 1. Angular density functions, with indicated concentration parame-
ters, for the random angle r ∈ (−π, π] defining common UARS models (2.1)
on SO(3). (Below Ii denotes the modified Bessel function of order i, C(·)
denotes a normalizing constant, and λ = λ(κL) = κL/2− 0.5 + 2/(κL + 2)2

puts the Lorentzian distribution on roughly the same scale as the others,
though the Lorentzian shape differs from the others for large concentrations
κL.)

Model Angular Density
aIsotropic Cayley (κC)

or bde la Vallée Poussin

1− cos r

2π

√
πΓ(2κ2

C + 2)(1 + cos r)2κ
2
C

22κ
2
CΓ(2κ2

C + 1/2)

cIsotropic Matrix Fisher (κF )
1− cos r

2π

exp(κ2
F cos r)

I0(κ2
F )− I1(κ2

F )

dBunge’s Gaussian (κBG)
1− cos r

2π
C(κBG) exp[−κ2

BG

r2

2
]

eLorentzian (λ = λ(κL))
1− cos r

2π
(1 + λ)

(1 + 2λ)2 + 4λ(λ+ 1) cos2(r/2)

[(1 + 2λ)2 − 4λ(λ+ 1) cos2(r/2)]2

f Isotropic Gaussian (κIG)
1−cos r

2π

∞∑
m=0

(2m+ 1) exp[−m(m+ 1)

2κ2
IG

]
sin[(m+ 1/2)r]

sin(r/2)

Wrapped Trivariate

Normal (κ)

∞∑
m=−∞

κ3

√
2π

(2mπ − r)2 exp[−κ2(2mπ − r)2

2
]

aLeón, Massé, and Rivest (2006, Sec. 3.2).
bSchaeben (1997).
cDowns (1972); Khatri and Mardia (1977); Matthies, Muller, and Vinel (1988); León, Massé,

and Rivest (2006, Sec. 3.2).
dBunge (1982); Matthies, Muller, and Vinel (1988); Bucharova and Savyolova (1993).
eMatthies (1982); Matthies, Muller, and Vinel (1988).
fSavyolova (1984); Matthies, Muller, and Vinel (1988); Nikolayev and Savyolova (1997);

Borovkov and Savyolova (2007).

density (2.2) on SO(3) with respect to the uniform distribution that depends

on O only through a function h[tr(O)], has a UARS distribution with mean

rotation I3 and an angle r with Lebesgue density h[1 + 2 cos r](1 − cos r)/(2π)

on r ∈ (−π, π]; the density for O is zonal/central on SO(3) in that h[tr(O)] =

h
[
tr(OT

1 OO1)
]
for O,O1 ∈ SO(3). If v has an isotropic (rotation-invariant or

spherically symmetric) distribution on R3, then exp(A(v)) has a UARS dis-

tribution and any UARS distribution can be obtained this way. Finally, as

unit quaternions (vectors on S3, the unit sphere in R4) can be equivalently

used to represent rotations, if u = (u1, u2, u3)
T and r denote the random Euler

axis-angle in the UARS formulation (2.1), then the Cayley-Klein map ρ(w) =

I3 + 2w1A((w2, w3, w4)
T ) + 2A((w2, w3, w4)

T )2 of the random quaternion w =



902 YU QIU, DANIEL J. NORDMAN AND STEPHEN B. VARDEMAN

(w1, w2, w3, w4)
T = (u1 sin(r/2), u2 sin(r/2), u3 sin(r/2), cos(r/2))

T has a UARS

distribution on SO(3) with mean rotation I3, and all distributions on unit quater-

nions which are rotationally symmetric about (0, 0, 0, 1)T induce UARS distribu-

tions on SO(3) through this mapping. For more on UARS distributions and map-

induced distributions on SO(3) via the exponential map on SO(3) or Cayley-

Klein map on S3, see Prentice (1986), Schaeben and Nikolayev (1998), Mardia

and Jupp (2000, Chap. 13.2), León, Massé, and Rivest (2006, Sec. 3.2), Bingham,

Nordman, and Vardeman (2009a), and Hielscher, Schaeben, and Siemes (2010).

2.2. A CLT motivation for the IGD on SO(3)

In critiquing several UARS models on SO(3) used in texture analysis, in-

cluding Bunge’s Gaussian, the Lorentzian and the isotropic Matrix Fisher dis-

tributions (cf., Table 1), Matthies, Muller, and Vinel (1988, p.85) argued that

it may be physically plausible to imagine crystal orientations observed in ma-

terials as built from composition of small, independent rotations in the texture

development and therefore reasonable to motivate a “normal” distribution for

orientation data by a CLT for rotations. Those authors informally provided a

density on SO(3) for the limit distribution of rotational compositions, and Savy-

olova (1984) derived the same density by characterizing a “normally” distributed

rotation as having an infinitely divisible distribution. This density corresponds to

the isotropic Gaussian distribution (IGD) on SO(3) (see Table 1), that has been

further studied and generalized by Nikolayev and Savyolova (1997). Schaeben

(1992) and Schaeben and Nikolayev (1998, Sec. 5) criticized the work of Matthies,

Muller, and Vinel (1988), arguing that no physically meaningful CLT argument

for rotations could motivate the IGD as “normal” on SO(3) and that no CLT

analog exists for compositions in SO(3) under assumptions similar to those for

the CLT in Euclidean spaces. But this is untrue, as seen in Proposition 1, which

straightforwardly combines a CLT result of Parthasarathy (1964) on SO(3) with

a triangular array of UARS-distributed rotations (see the Supplementary Mate-

rial for details).

Proposition 1. Suppose r1,n, . . . , rn,n are iid draws from a symmetric distribu-

tion on (−π, π] with variance σ2 > 0 and, independently, let u1,n, . . . ,un,n be iid

vectors, uniformly distributed on S2. Fix S ∈ SO(3) and define UARS rotations

O1,n, . . . ,On,n by forming Oi,n with angle ri,n/
√
n and axis ui,n in (2.1). Then,

the composition O(n) = S
∏n

i=1Oi,n converges in distribution to an isotropic

Gaussian distribution on SO(3) as n → ∞, a UARS model with mean rotation S

and the angular density in Table 1 having concentration parameter κN =
√
3/σ.

Hence, the IGD on SO(3) does indeed have a CLT-motivation as the limit

of many “small” i.i.d. physical rotations in 3-D, supporting the argument of
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Matthies, Muller, and Vinel (1988). Beyond Proposition 1, the composition of

independent UARS-distributed rotations is always UARS-distributed, the UARS

class of distributions is closed under composition (as proven in the Supplementary

Material). But more is true for the IGD on SO(3), because the convolution

of independent rotations with an IGD has again an IGD (cf., Nikolayev and

Savyolova (1997, Thm. 3)). In these ways, the IGD on SO(3) does behave like

the “normal” distributions associated with any Euclidean space.

The IGD on SO(3) is again characterized by an angular density (cf., Ta-

ble 1) in (2.1) which is not particularly tractable. Other angular densities with

analytically simpler forms, like those associated with Bunge’s Gaussian and the

isotropic Matrix Fisher distributions on SO(3), have been suggested as approxi-

mations for the IGD (cf., Nikolayev and Savyolova (1997)). But these have also

been criticized as having shortcomings (cf., Matthies, Muller, and Vinel (1988);

Bucharova and Savyolova (1993)). For example, the normalizing constant in the

angular density for Bunge’s Gaussian distribution is not expressible in a closed

form (cf., Table 1), and the Matrix Fisher-based approximation is not good ex-

cept for very large concentrations (see Section 3.2 and Figure 2). This motivates

us to consider a wrapped trivariate normal distribution (wTND) to provide a

simple distributional approximation to the IGD on SO(3).

Before leaving this section, we add that the criticisms of Schaeben (1992) and

Schaeben and Nikolayev (1998) largely concerned an operational definition of a

“normal” distribution on SO(3). As with the normal distribution on R, various
characterizations of “normality” exist for rotations. For example, Bunge’s (1982)

Gaussian distribution is an analog of the real-valued normal distribution in terms

of being a solution to a heat equation on manifolds (cf., Bucharova and Savyolova

(1993)). Schaeben (1992) commented that, statistically speaking, the isotropic

Matrix Fisher distribution could be argued to be “normal” due to its matrix

density representation (2.2),

f(O|S, κ) = exp[κ2F2
−1(tr(STO)− 1)]

I0(κ2F )− I1(κ2F )
, O ∈ SO(3),

which has an exponential form, decaying away from its mode S (as does a normal

distribution in Euclidean space). On the other hand, the Matrix Fisher rotational

distribution is itself not the limit distribution of small rotational compositions

and we do not know if this family is closed under convolutions (see the Supple-

mentary Material for evidence that it is not closed). As Schaeben and Nikolayev

(1998) also noted, the isotropic Matrix Fisher distribution closely matches the

IGD on SO(3) for highly concentrated orientations, which has close connections

to results for directional data on the Rp unit sphere Sp−1 (cf., Roberts and Ursell

(1960); Hartman and Watson (1974); Kent (1978); Mardia and Jupp (2000,
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p.173)). While true, for any concentrated UARS distribution with continuously

differentiable density and mean rotation I3, a Taylor expansion of the density

about I3 shows that it is close to that of an IGD on SO(3). And compared

to the Matrix Fisher and other UARS models, the wTND of the next section

can provide closer approximations to the IGD on SO(3) for a wider range of

concentration parameters.

3. Wrapped Trivariate Normal Distributions on SO(3)

3.1. Definition and motivation

Suppose x has a trivariate normal distribution N(03, κ
−2I3) on R3 with com-

ponent variance κ−2 > 0. Then, by wrapping R3 onto SO(3), as in Section 2.1,

S exp[A(x)] defines a wrapped trivariate normal distribution (wTND) on orienta-

tions with (fixed) mean rotation S ∈ SO(3) and concentration parameter κ > 0.

For a random variable b independent of x with P (b = 1) = P (b = −1) = 1/2,

one may decompose x = tu in terms of independent t = b∥x∥ and u = bx/∥x∥,
where u is uniformly distributed on S2, to see that the wTND is a UARS model

with an angle-axis construction (2.1) defined by u and r = t(mod2π). As κ2t2

has a chi-square distribution with 3 degrees of freedom, it follows from (2.3) that

a random “spin” or angle r ∈ (−π, π] has a (Lebesgue) density

gwTN (r|κ) = κ3√
2π

∞∑
m=−∞

(2mπ − r)2 exp
(
− κ2(2mπ − r)2

2

)
(3.1)

corresponding to a wrapped (symmetrized) Maxwell-Boltzmann distribution with

concentration parameter κ > 0 (up to scaling, the Maxwell-Boltzmann distribu-

tion is that of the square-root of a χ2
3 variable and appears in modeling particle

speeds in statistical mechanics, cf., Peckham and McNaught (1992)). The wTND

then has a particularly direct and simple path to simulation that can be attractive

for modelers. One may either simulate and wrap independent N(0, κ−2) values,

or simulate a random angle from the wTN angular density (3.1) for use in (2.1)

via r = (−1)b|κ−1w1/2 − π⌊κ−1w1/2/π⌋| with χ2
3 random variable w and an in-

dependent Bernoulli variable b (0 or 1 with equal probabilities). The wrapped

kernel in (3.1) also closely resembles that of the wrapped normal density (with

standard deviation δ > 0) on (−π, π],

g(r|δ) = 1√
2πδ

∞∑
m=−∞

exp
(
− (2mπ − r)2

2δ2

)
, r ∈ (−π, π]

which is a commonly used angular distribution for modeling for 2-D rotations.

The wTND has a CLT-related motivation because sums of iid small variance

quantities in R3 lead to trivariate normal distributions in Euclidean space which
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can then be wrapped onto SO(3). In particular, taking sn =
∑n

i=1 ri,nui,n with

iid u1,n, . . . ,un,n uniformly-distributed on S2 and iid random angles r1,n, . . . , rn,n
from a common distribution on (−π, π] having mean zero and variance σ2/n for

some σ > 0, exp[A(sn)] converges to wTND on SO(3) with mean rotation I3
and κ =

√
3/σ by the usual CLT in R3. Because exp[A(sn)] ≈

∏n
i=1M(ri,n,ui,n)

for small rotations in (2.1), the wTND also approximates the IGD on SO(3)

as the limit of a large number of compositions of “small” independent random

rotations (cf., Proposition 1), a phenomenon which is next investigated through

simulation.

3.2. Comparisons of the wTND to other UARS models

One expects the wTND (and other UARS models) to be close to the IGD

on SO(3) for sufficiently large concentrations κ. To gain some rough idea of how

large κ must be for effective approximations, in Figure 1 we plot the cumulative

distribution functions of |r| for a random angle r ∈ (−π, π] from the symmetric

angular density (3.1) of the wTND as well as the angular density from the IGD

on SO(3) with concentrations κ = 3, 2, 1, 0.5 (cf., Table 1), and we compare these

against the true sampling distribution of the absolute angle |rn| resulting from

the composition of n iid rotation matricesM(ri,n,ui,n) with the angles ri,n having

uniform(−3κ−1n−1/2, 3κ−1n−1/2) distributions for n = 4, 10. The comparisons

show that, at least when κ ≥ 2, the wTND effectively approximates the IGD’s

angular distribution, which is in turn a good approximation to the real angular

distribution that describes the composition. The central limit convergence of

products to a IGD limit appears to be remarkably fast, suggesting potentially

wide-spread applications for the family (and good approximations to it) where

observed physical orientations are plausibly modeled as derived from multiple

small random perturbations of a basic orientation.

Common rotational models belong to the UARS class and so can be described

in terms of their angular densities, listed in Table 1 (an alternative description of

UARS distributions through related densities is described in the Supplementary

Material). Where necessary, we have reparameterized the densities from their

most common forms so that all parameters κ are non-negative and control the

concentrations of the distributions in a similar manner. Except for the Lorentzian

case, the angular densities for the models in Table 1 nearly match that of the

IGD if the parameters κ are large enough. In Figure 2, we also compare the

(absolute) angular densities from Table 1 for the isotropic Cayley, a de la Vallée

Poussin distribution, Matrix Fisher, Bunge’s Gaussian, and wTN models to that

of the IGD on SO(3) for κ = 10, 5, 2, 1. We can see that the angular density from

the wTND approximates the angular density of the IGD much better than the

Cayley and Matrix Fisher-distributions, and at least as well as Bunge’s Gaussian



906 YU QIU, DANIEL J. NORDMAN AND STEPHEN B. VARDEMAN

Figure 1. Cumulative distribution functions (cdfs) of |r| for angles r ∈
(−π, π] from the symmetric angular densities associated with isotropic Gaus-
sian (IG) and wrapped trivariate normal (wTN) distributions on SO(3) with
different concentration parameters κ > 0. Also provided are the cdfs of the
absolute angle |rn| (approximated from 100,000 simulations) as determined
by the product of n = 4, 10 independent UARS-distributed rotation matrices
(each having uniform(−3κ−1n−1/2, 3κ−1n−1/2) angular distributions).

distribution when κ is small (though, as indicated in Table 1, the angular density

from the wTND has a closed form while the normalizing constant of Bunge’s

Gaussian distribution has to be numerically determined for each concentration

parameter κ in Figure 2).

4. One-sample Bayes Methods for wTND on SO(3)

From (3.1), we obtain the density (with respect to the uniform distribution)
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Figure 2. Densities for |r| when r ∈ (−π, π] follows the symmetric angular
density associated with the isotropic Gaussian (IG), wrapped trivariate nor-
mal (wTN), isotropic Matrix Fisher, isotropic Cayley, and Bunge’s Gaussian
rotational distributions.

for wTND on SO(3) as

f(O|S, κ) = 4π

3− tr(STO)
gwTN (arccos[2−1(tr(STO)− 1)]|κ), O ∈ SO(3)

(4.1)

from (2.2). The density (4.1) has a singularity at O = S. (The other models

represented in Table 1 do not have such singularities due to the term 1 − cos r

in their densities for r.) However, this does not prevent us from developing

useful Bayes inference, where maximum likelihood estimation would technically

be undefined. In fact, due to the non-regularity of the likelihood function, the

convergence rate of Bayes procedures for estimating S can be super-efficient and
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observably so in realistic sample sizes for small κ, as we will illustrate with

simulations in Section 5. At the same time, for sufficiently large concentration

parameters κ, the wTND can also behave “regularly” whereby the numerator of

its matrix density (4.1) decays to zero rapidly enough to effectively cancel out

the singularity; the simulations of Section 5 will also clarify this behavior.

For Bayes inference, we would like to identify potentially non-informative

prior distributions for the parameters S and κ of the wTND(S, κ), so that the

resulting credible regions have good frequentist coverage properties. To this

end, we use a prior selection approach as in Bingham, Vardeman, and Nordman

(2009b); Bingham, Nordman, and Vardeman (2009c). As a prior for the mean

rotation parameter S, we use the uniform distribution on SO(3) having density

p(S) = 1, S ∈ SO(3). For the concentration parameter κ, we use the Jeffreys

prior for the angular density. Here it is slightly more convenient for discussion and

plotting purposes to consider the corresponding prior for the spread parameter

η = − log κ, which has density

J(η) = exp(−η)
√

I(exp(−η)), η ∈ (−∞,∞)

for

I(κ) = E

[(
d

dκ
log gwTN (r|κ)

)2
]

= − 9

κ2
+

κ5√
2π

∫ π

−π

(∑∞
m=−∞(2mπ − r)4 exp(−κ2(2mπ − r)2/2)

)2∑∞
m=−∞(2mπ − r)2 exp(−κ2(2mπ − r)2/2)

dr.

While this density does not have a closed form, J(η) can be evaluated numerically

and we display this (improper) Jeffreys prior density in Figure 3. Because J(η) →
0 as η → ∞ and J(η) →

√
6 as η → −∞, to determine J(η) numerically in

simulations, we use J(η) ≈
√
6 when η < −0.5, J(η) ≈ 0 when η > 2 and, for

−0.5 ≤ η ≤ 2, we fit a cubic spline to approximate J(η) after calculating the

density at grid points −0.5 + 2.5/1000 · i, i = 0, 1, . . . , 1000. From Figure 3, we

see that the Jeffreys prior density, perhaps surprisingly, is not a simple monotone

or unimodal function; it has turning points around η = 0.5 and η = 0.85. The

non-monotonicity affects the behavior of samples simulated from the posterior

distribution, especially for small sample sizes.

For a random sample Oi, i = 1, . . . , n, from the wTND, the likelihood func-

tion for (S, η) is

L(S, η) ∝

n∏
i=1

gwTN (arccos[2−1(tr(STOi)− 1)]| exp(−η))

n∏
i=1

(3− tr(STOi))

,
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Figure 3. (Improper) Jeffreys prior density for η = − log κ.

by (4.1). Multiplying by prior densities p(S) and J(η) gives a posterior density

h(S, η) for (S, η) proportional to

( n∏
i=1

gwTN (arccos[2−1(tr(STOi)− 1)]| exp(−η))

n∏
i=1

(3− tr(STOi))

)
J(η).

We sample a sequence (Sj , ηj) from the posterior distribution using a Metropolis-

Hastings-within-Gibbs (MHG) algorithm with variablesO1, . . . ,On ∈ SO(3) and

the starting values S0, η0, as follows:

1. As a proposal for Sj , generate Sj∗ from the isotropic Matrix Fisher distri-

bution with location parameter Sj−1 and concentration κF , see the angular

density in Table 1 in (2.1). Here κF is a tuning parameter.

2. Compute r
(1)
j = h(Sj∗ , ηj−1)/h(Sj−1, ηj−1) and generate w

(1)
j ∼ Bernoulli

(min(1, r
(1)
j )). Take Sj = w

(1)
j Sj∗ + (1− w

(1)
j )Sj−1.

3. Generate normal ηj
∗ ∼ N(ηj−1, γ2). Here γ is a tuning parameter.

4. Compute r
(2)
j = h(Sj , ηj

∗
)/h(Sj , ηj−1) and generate w

(2)
j ∼ Bernoulli(min(1,

r
(2)
j )). Take ηj = w

(2)
j ηj

∗
+ (1− w

(2)
j )ηj−1.

Section 5 describes a simulation study of one-sample Bayes inference for the

wTND using this algorithm and we explain how posterior draws can be used to
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Table 2. Values of tuning parameters κF =
√
2ρ and γ expressed in terms of (ρ, γ).

n = 10 n = 30 n = 100 n = 300 n = 1000
ρ γ ρ γ ρ γ ρ γ ρ γ

η = 1.3 5 0.5 50 0.5 1000 0.4 5000 0.3 200000 0.25
η = 0.85 1 0.7 10 0.5 200 0.2 1500 0.15 4000 0.08
η = 0.5 0.5 0.7 0.7 0.5 2 0.3 4 0.2 20 0.1
η = 0 2 0.7 4 0.5 15 0.13 50 0.08 200 0.05
η = −0.347 5 0.4 20 0.23 50 0.13 150 0.07 500 0.04
η = −1.151 33 0.4 100 0.23 350 0.13 800 0.07 3000 0.04
η = −1.844 150 0.4 300 0.23 1200 0.13 4000 0.07 12000 0.04
η = −3.454 4000 0.4 10000 0.23 35000 0.13 80000 0.07 300000 0.04

construct credible regions for S ∈ SO(3) and η ∈ R.

5. Bayes Credible Regions and Coverage Accuracy

We conducted a simulation study for several different combinations (n, η). In

generating rotation data from the wTND(S, κ = exp[−η]), we set the true mean

rotation S to be I3, as the choice of S is irrelevant (cf., Bingham, Nordman, and

Vardeman (2009a)). The values for the spread parameter η were −3.454, −1.844,

−1.151, −0.347, 0, 0.5, 0.85, 1.3 and sample sizes were n = 10, 30, 100, 300,

1,000. For each combination (n, η), we simulated 4,000 data sets and, with each,

we generated N = 100, 000 samples from the posterior distribution using the

MHG algorithm after a 25, 000 iteration burn-in period. After inspecting several

different starting values and finding the simulation results to be insensitive to

this choice, we chose starting values for S0 and η0 in the simulation study to

be the true parameters. The tuning parameters κF and γ listed in Table 2 were

chosen to keep the Metropolis-Hastings jumping rates between 30% and 40%.

For the purpose of analysis, a 95% credible level was used. Two types of

credible intervals for η were obtained from the posterior sampling, equal-tail

(ET) intervals and shortest length (SL) intervals. Credible regions for S were

constructed using the method of “credible sets of cones” described by Bing-

ham, Nordman, and Vardeman (2009c). Thus if S1, . . . ,SN denote the posterior

samples, we define a Bayes point estimate SB of the mean rotation as the maxi-

mizer of
∑N

j=1 tr(S
T
BS

j), the Bayes estimator under a squared error loss function

tr[(SB − S)(SB − S)T ], and then define a credible region by a “set of cones”

of angle a around each column vector in SB, where a is the 95th percentile of

{a1, . . . , aN} and each aj represents the maximum arccosine value (between 0

and π) of the diagonal elements of ST
BS

j . Hence, a region for S can be graphi-

cally illustrated as in Figure 4 and the size of the region is defined in terms of

the angle between the centers (columns of SB) and edges of the cones.
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Figure 4. A 95% credible region for the parameter S with x, y and z
representing the orientation, column vectors, of the Bayes point estimate
SB = [x y z] for S.

After finding the credible regions for S and η for each of the 4,000 data sets

at each (n, η), we determined whether the regions for S and η contained the true

values. This provided the coverage rates for S and η for the (n, η) combinations

in Table 3. For both S and η, the frequentist coverage rates of Bayes regions are

consistent with their credible levels and as sample size increased, the coverage

rates converged to the nominal ones. This indicates that the current Bayes

approach is effective for obtaining good frequentist coverage accuracy.

We also considered median sizes for the 4,000 credible regions for S and η,

where we used the cone angle to characterize the size of a region for S and com-

puted lengths of both ET and SL credible intervals for η. Results are summarized

in Tables 4 and 5. From Table 4, the two methods for obtaining 95% intervals

for η produce similar results for all combinations (n, η). For a fixed η, as sample

size n increases, the intervals become narrower, as expected. However, for fixed

n, the width of interval for η is not strictly monotone decreasing in η due to the

effect of the prior shape and, in particular, for η < 0, concentration parameter

κ > 1, the width does not change as η decreases.

With credible regions for S, as seen in Table 5, the median cone angle de-

creases as n increases for any fixed η. However, for each η > 0, this convergence

rate (found by regressing the log of median angle over the log of n for n = 100, 300,

1,000) is approximately O(1/n) due to the non-regularity of the likelihood (cf., a

circular data case in Nordman, Vardeman, and Bingham (2009)). For η ≤ 0, the

empirical convergence rate is approximately O(1/
√
n). This is consistent with

our claim that for a large concentration parameter κ, the wTND effectively ap-

proximates the IGD on SO(3) (having regular behavior). Thus, for large κ, there

is effectively no wrapping involved in the angular density (3.1) from the wTND

and the only real contribution to the summation (3.1) is the m = 0 component,
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Table 3. Coverage rates (%) for S and η using 95% Bayes credible regions
for different combinations of (n, η); credible regions for η characterized here
are ET intervals (with SL intervals performing similarly).

(n, η) S η (n, η) S η
(10, 1.3) 95.5 95.6 (10,−0.347) 96.0 95.9
(30, 1.3) 95.9 93.9 (30,−0.347) 95.4 94.6
(100, 1.3) 92.9 94.9 (100,−0.347) 95.0 96.0
(300, 1.3) 95.2 95.4 (300,−0.347) 96.3 96.2
(1000, 1.3) 95.2 94.9 (1000,−0.347) 95.2 95.0
(10, 0.85) 93.2 98.6 (10,−1.151) 95.5 94.6
(30, 0.85) 95.9 98.2 (30,−1.151) 93.2 95.5
(100, 0.85) 95.1 95.5 (100,−1.151) 93.1 96.0
(300, 0.85) 94.9 94.5 (300,−1.151) 94.2 94.1
(1000, 0.85) 95.0 95.1 (1000,−1.151) 95.0 94.6

(10, 0.5) 93.5 96.4 (10,−1.844) 97.3 95.9
(30, 0.5) 96.7 95.6 (30,−1.844) 93.6 93.6
(100, 0.5) 95.3 95.2 (100,−1.844) 94.3 94.3
(300, 0.5) 94.7 94.9 (300,−1.844) 95.3 94.0
(1000, 0.5) 95.1 95.3 (1000,−1.844) 95.0 95.4

(10, 0) 95.9 94.4 (10,−3.454) 94.7 95.4
(30, 0) 95.5 95.9 (30,−3.454) 95.0 95.5
(100, 0) 95.5 92.7 (100,−3.454) 93.1 95.0
(300, 0) 94.7 93.9 (300,−3.454) 95.4 95.1
(1000, 0) 95.2 95.0 (1000,−3.454) 95.0 94.9

for which the r2 term there essentially behaves like 1 − cos r. Intuitively, this

1 − cos r factor allows the wTN density to “look like” the angular densities in

Table 1 corresponding to regular rotational distributions. Even for large con-

centrations, the wTN model is non-regular (due to the spikes in (4.1)) but this

aspect is not practically “seen” at even fairly large sample sizes.

6. An Application to Orientation Data from EBSD

Here we make use of part of a data set collected in the study of Bingham,

Lograsso, and Laabs (2010). That paper provides details of an electron back-

scatter diffraction (EBSD) experiment done to measure crystal orientations in a

nickel specimen. Fourteen repeat scans were made on a 2-D rectangular grid on

the specimen’s planar surface, at over 4,000 sites per scan. We use data from

a particular 4 × 28 sub-grid and a single scan. The EBSD measurement device

returned an orientation matrix (in terms of 3 Euler angles) at each location, and

we consider the characterization of variation in orientations across the grid.

We used the Bayes methods in Bingham, Nordman, and Vardeman (2009c)

and here to fit both isotropic Matrix Fisher and wTN models to the 112 observed
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Table 4. Median width of 95% Bayes credible intervals for η with different
combinations of (n, η) and both equal-tail (ET) and shortest-length (SL)
intervals.

(n, η) ET Width SL Width (n, η) ET Width SL Width
(10,1.3) 1.429 1.405 (10,−0.347) 0.559 0.554
(30,1.3) 0.574 0.566 (30,−0.347) 0.300 0.298
(100,1.3) 0.432 0.428 (100,−0.347) 0.161 0.160
(300,1.3) 0.351 0.348 (300,−0.347) 0.093 0.092
(1000,1.3) 0.282 0.276 (1000,−0.347) 0.051 0.051
(10, 0.85) 1.275 1.252 (10,−1.151) 0.543 0.538
(30, 0.85) 0.895 0.870 (30,−1.151) 0.299 0.297

(100, 0.85) 0.330 0.322 (100,−1.151) 0.161 0.160
(300, 0.85) 0.161 0.160 (300,−1.151) 0.093 0.092
(1000, 0.85) 0.086 0.086 (1000,−1.151) 0.051 0.051

(10, 0.5) 1.210 1.192 (10,−1.844) 0.543 0.538
(30, 0.5) 0.787 0.781 (30,−1.844) 0.298 0.297
(100, 0.5) 0.470 0.469 (100,−1.844) 0.161 0.160
(300, 0.5) 0.313 0.307 (300,−1.844) 0.092 0.092

(1000, 0.5) 0.157 0.153 (1000,−1.844) 0.051 0.050
(10, 0) 1.370 1.322 (10,−3.454) 0.542 0.538
(30, 0) 0.358 0.347 (30,−3.454) 0.298 0.297

(100, 0) 0.171 0.170 (100,−3.454) 0.161 0.160
(300, 0) 0.098 0.097 (300,−3.454) 0.092 0.092
(1000, 0) 0.053 0.053 (1000,−3.454) 0.051 0.050

orientations. Although the computations involved were much more complicated,
we also fit the IGD to the data by maximum likelihood. Estimated concentration
parameters for these fits were, respectively,

κ̂F = 1.365, κ̂ = 0.974, and κ̂IG = 0.932.

In texture analysis, the absolute value |r| of the random spin r ∈ (−π, π] in
a UARS rotation (2.1) is often referred to as a misorientation angle, the smallest
(non-negative) angle in an axis-angle representation needed to align a rotation
(2.1) back to a standard reference frame I3, cf., Randle (2003); note |r| has
a density on [0, π] that twice the angular density (for r) listed in Table 1 for
the isotropic Matrix Fisher distribution, the wTND, and the IGD. For each of
these models, Figure 5 plots the fitted cumulative distribution function for the
misorientation angle |r|. These are plotted against the empirical distribution

{|̂r|ij : i = 1, . . . , 4; j = 1, . . . , 28} of misorientation angles, computed as |̂r|ij =

arccos{[tr(ŜTOij)− 1]/2} using a non-parametric “moment” estimator Ŝ of the
mean rotation for de-trending, defined as the maximizer of

∑
i,j tr(S

TOij); this
estimation of misorientation angles uses the fact that a UARS orientation O =
S ·M(r,u) satisfies tr(STO) = tr(M(r,u)) = 1 + 2 cos |r|, from (2.1).
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Table 5. Median cone angle (in radians) of Bayes credible sets for S with
different combinations (n, η) and the apparent moderate sample size conver-
gence rate of the median angles for fixed η.

(n, η) Angle Apparent (n, η) Angle Apparent
Convergence Rate Convergence Rate

(10,1.3) 1.492 (10,−0.347) 0.667
(30,1.3) 0.346 (30,−0.347) 0.390
(100,1.3) 0.102 n−1.008 (100,−0.347) 0.211 n−0.505

(300,1.3) 0.031 (300,−0.347) 0.122
(1000,1.3) 0.010 (1000,−0.347) 0.066
(10, 0.85) 1.542 (10,−1.151) 0.288
(30, 0.85) 1.503 (30,−1.151) 0.161
(100, 0.85) 0.243 n−1.042 (100,−1.151) 0.088 n−0.497

(300, 0.85) 0.068 (300,−1.151) 0.050
(1000, 0.85) 0.022 (1000,−1.151) 0.028

(10, 0.5) 1.546 (10,−1.844) 0.141
(30, 0.5) 1.525 (30,−1.844) 0.080
(100, 0.5) 0.831 n−0.920 (100,−1.844) 0.044 n−0.499

(300, 0.5) 0.153 (300,−1.844) 0.028
(1000, 0.5) 0.098 (1000,−1.844) 0.014

(10, 0) 1.485 (10,−3.454) 0.028
(30, 0) 0.725 (30,−3.454) 0.016
(100, 0) 0.371 n−0.651 (100,−3.454) 0.009 n−0.476

(300, 0) 0.123 (300,−3.454) 0.005
(1000, 0) 0.082 (1000,−3.454) 0.003

The plot suggests that the fitted IGD and wTND are essentially identical,

and do a better job of describing the “texture” of the nickel specimen in terms

of variability in crystal orientations across this grid of locations than does the

fitted Matrix Fisher model. The methods of this paper further establish that

95% cones for the mean rotation S in the wTND have angle 22.86◦ and that 95%

limits for κ are 0.895 and 1.053. This illustrates the utility of the wTN model

and our method of non-informative Bayes inference.

7. Conclusion

We have provided a physical framework to motivate the isotropic Gaussian

distribution (IGD) on SO(3) as the limit distribution of a composition of large

number of small, independent rotational errors (specifically, rotationally sym-

metric errors from the uniform-angle-random-spin (UARS) class of rotational

distributions).

In part because the IGD has a complicated distributional form, we have

developed a new UARS model as the wrapped trivariate normal distribution
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Figure 5. For the EBSD nickel data, plot of the empirical distribution of
estimated misorientation angles and the cumulative distribution for |r| in
fitted models for the isotropic Matrix Fisher distribution, the wTND, and
the IGD on SO(3).

(wTND); it is tractable and provides natural approximations for the limit be-

havior of the composition of many small independent rotations. We have demon-

strated the straightforward implementation and effectiveness of non-informative

Bayes inference for these distributions.

There remains the question of conducting inference for the IGD directly. This

remains a topic of future research, but we believe that the appropriate Bayes ap-

proach may offer a practical solution. As with the wTND, Bayes inference for the

IGD is suggested purely on computational grounds, but more analytical work is

required to develop non-informative priors with this model. In general, however,

we expect the basic prescription of “product of uniform prior on S and Jeffreys

prior on κ” plus “MHG sampling to approximate posteriors” to be reasonable

for essentially any one-sample UARS model. As building blocks for more com-

plicated models, UARS families, including the wTND, and generalizations of the

one-sample Bayes analyses have their place in regression, time series, spatial, and

other kinds of statistical modeling and inference.
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León, C. A., Massé, J.-C., and Rivest, L.-P. (2006). A statistical model for random rotations.

J. Multivariate Anal. 97, 412-430.

Mardia, K.V. and Jupp, P.E. (2000). Directional Statistics. Wiley, New York.

Matthies, S. (1982). Form effects in the description of the orientation distribution function

(ODF) of texturized materials by model components. Physica Status Solidi (b) 112, 705-

716.

Matthies, S., Muller, J., and Vinel, G. W. (1988). On the normal distribution in the orientation

space. Textures Microstruct. 10, 77-96.

Miles, R. E. (1965). On random rotations in R3. Biometrika 52, 636-639.

Nikolayev, D. I. and Savyolova, T. I. (1997). Normal distribution on the rotation group SO(3).

Textures Microstruct. 29, 201-233.



NORMAL DISTRIBUTION AND BAYES INFERENCE FOR 3-D ROTATIONS 917

Nordman, D. J., Vardeman, S. B., and Bingham, M. A. (2009). Uniformly hyper-efficient Bayes

inference in a class of non-regular problems. Amer. Statist. 63, 234-238.

Parthasarathy, K. P. (1964). The Central limit theorem for the rotation group. Theory Probab.

Appl. 9, 273-282.

Peckham, G. D. and McNaught, I. J. (1992). Applications of the Maxwell-Boltzmann distribu-

tion. J. Chem. Educ. 69, 554-558.

Prentice, M. J. (1986). Orientation statistics without parametric assumptions. J. Roy. Statist.

Soc. Ser. B 48, 214-222.

Randle, V. (2003). Microtexture Determination and its Applications. Maney for The Institute

of Materials, Minerals and Mining, London.

Rancourt, D., Rivest, L. P., and Asselin, J. (2000). Using orientation statistics to investigate

variations in human kinematics. J. Roy. Statist. Soc. Ser. C 49, 81-94.

Roberts, P. H. and Ursell, H. D. (1960). Random walk on a sphere and on a Riemannian

manifold. Philos. Trans. R. Soc. Lond. A 252, 317-356.

Savyolova, T. I. (1984). Distribution functions of grains with respect to polycrystal orientations

and its Gaussian approximations. Ind. Lab. 50, 468-474.

Schaeben, H. (1992). “Normal” orientation distributions. Textures Microstruct. 19, 197-202.

Schaeben, H. (1997). The de la Vallée Poussin standard orientation density function Textures

and Microstructures 33, 365-373.

Schaeben, H. and Nikolayev, D. I. (1998). The central limit theorem in texture component fit

methods. Acta Appl. Math. 53, 59-87.

Stavdahl, O., Bondhus, A. K., Pettersen, K. Y. and Malvig, K. E. (2005). Optimal statistical

operators for 3-dimensional rotational data: Geometric interpretations and application to

prosthesis kinematics. Robotica 3, 283-292.

Department of Statistics, Iowa State University, Ames, IA, US 50011, USA.

E-mail: yuqiu1982@gmail.com

Department of Statistics, Iowa State University, Ames, IA, US 50011, USA.

E-mail: dnordman@iastate.edu

Departments of Statistics and Industrial and Manufacturing Systems Engineering, Iowa State

University, Ames, IA, US 50011.

E-mail: vardeman@iastate.edu

(Received September 2011; accepted April 2013)

yuqiu1982@gmail.com
dnordman@iastate.edu
vardeman@iastate.edu

	1. Introduction
	2. Preliminaries: UARS models and the IGD on SO(3)
	2.1. The UARS class: rotationally symmetric models on SO(3)
	2.2. A CLT motivation for the IGD on SO(3)

	3. Wrapped Trivariate Normal Distributions on SO(3)
	3.1. Definition and motivation
	3.2. Comparisons of the wTND to other UARS models

	4. One-sample Bayes Methods for wTND on SO(3)
	5. Bayes Credible Regions and Coverage Accuracy
	6. An Application to Orientation Data from EBSD
	7. Conclusion

