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Abstract: A result for the first passage densities of Brownian motion as t → ∞ was
given in Lerche (1986) for boundaries that grow faster than

√
t as t → ∞. From this

result the Kolmogorov–Petrovski–Erdős test near infinity has been derived. Here we
extend these results to first passage probabilities of random walks. The asymptotic
formulas are the same as for Brownian motion and, especially, no overshoot term
shows up.
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1. Introduction

In several publications Robbins and Siegmund (1970, 1973) derived bound-
ary crossing probabilities related to the law of the iterated logarithm. One of
their methods was to use mixture stopping rules; these stop when a certain mix-
ture of likelihood ratios crosses a certain level. Lai and Siegmund (1977, 1979)
successfully applied this method to calculate the operating characteristics of a
repeated significance test with a bounded horizon in a large deviation sense. For
random walks overshoot terms show up, which the authors could handle with
nonlinear renewal theory. A wide range of similar and related results can by
found in the monograph of Siegmund (1985).

Motivated by these results the second author wrote his monograph Lerche
(1986) using a different approach to curved boundary crossing. This approach
is closely related to the Kolmogorov–Petrovski–Erdős test (see Itô and McKean
(1974, p.33)) and to Strassen’s result on first exit times near zero of Brownian
motion (see Strassen (1967)). Theorem 3.5 there can be roughly stated as follows:
Let ψ denote a smooth boundary (with ψ(0) = 0) that is monotone and belongs
to the upper class near zero (in the sense of Itô–McKean). Let f denote the first
hitting time density at ψ. Then

f(t) =
Λ(t)

t3/2
φ

(
ψ(t)√
t

)
(1 + o(1)) as t→ 0. (1.1)
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Here Λ(t) = ψ(t) − tψ′(t) and φ(x) = (1/
√
2π)e−x

2/2. The expression on the

right-hand side is the hitting density at time t at the tangent of ψ at t according

to the Lévy–Bachelier formula (see Itô and McKean (1974, p.25)). The tangent

intercept is Λ(t). Strassen derived from this result the difficult half of the proof

of the Kolmogorov–Petrovski–Erdős test at zero.

Starting from (1.1), Lerche (1986) described a theory which leads to bound-

ary crossing probabilites quite similar to those derived by the method of mix-

ture stopping rules. Some results are given there (in Chapter I, Section 5 of

Lerche (1986)) which imply the Kolmogorov–Petrovski–Erdős test near infinity.

In contrast to Strassen’s approach, where one uses last entrance times (by time

inversion), they are formulated for first passage times.

The purpose of this note is to show that similar results hold for random

walks. One interesting point is that as the number of observations tends to infin-

ity the overshoot term vanishes to the first order. The main part concentrates on

the Gaussian random walk, but also some more general results are stated. Addi-

tionally, in those cases a central limit theorem effect turns up. This explains why

the asymptotic expressions are the same as for the Gaussian random walk. For

these more general situations one assumes that the moment generating function

exists in a vicinity of zero; this leads to rather strong local and global central

limit theorems. For their application see the Remark at the end of Section 4.1.

Finally we want to indicate the relations to other publications. At first we

point at the book of Aldous (1989) on Poisson clumping, which discussed the

tangent approximation on pg. 99–100. Further, there are more recent papers

on boundary crossing that are more or less closely related, like that of Kesten

and Maller (1998) on “Random Walks Crossing High Level Curved Boundaries”

and that of Chan and Lai (2003) on “Saddlepoint Approximations and Nonlinear

Boundary Crossing Probabilities of Markov Random Walks”. Perhaps closest in

the sense of integral tests is the paper of Hambly, Kersting, and Kyprianou (2003)

on “Law of the iterated logarithm for oscillating random walks conditioned to

stay non-negative”. We also mention Doney and Maller (2000). Recent work

on the law of iterated logarithm of random walks care more about the range in

higher dimensions (see Bass and Kumagai (2002) and Hamana (2006)) or discuss

more involved topics like local times of self intersections of planar random walks

(see Bass, Chen, and Rosen (2005)).

2. Results

Let Xi, i ≥ 1 denote a sequence of independent random variables that are

identically distributed according to N(0, 1). Let Sn =
∑n

i=1Xi, S0 = 0. Let

ψ be a nondecreasing continuously differentiable function ψ : [1,∞) → R. Let
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Tψ = inf{n ≥ 1 | Sn ≥ ψ(n)} denote the first passage time of the random walk
Sn of the boundary ψ, with Tψ = ∞ if the infimum is taken over the empty set.

For boundaries ψ that grow faster to infinity than
√
t if t → ∞, we study

the asymptotic behavior of P (Tψ = n) as n → ∞. A typical example is ψ(n) =√
2n log log n. Let Λ(n) = ψ(n) − nψ′(n) denote the intercept of the tangent at

the curve ψ in point n. The following result is the discrete version of Theorem 5.1
in Lerche (1986) on Brownian motion.

Theorem 1. Let ψ satisfy the conditions:

(i) ψ(t)/
√
t→ ∞ as t→ ∞;

(ii) there exists a constant α with 1/2 < α < 1, such that ψ(t)/tα is finally
decreasing;

(iii) for all ε > 0 there exists a δ > 0 and a t1 ≥ 1 such that
∣∣s/t− 1

∣∣ < δ implies∣∣Λ(s)/Λ(t)− 1
∣∣ < ε if s, t ≥ t1.

Then, as n→ ∞

P (Tψ = n) = P (Tψ ≥ n)
Λ(n)

n3/2
φ

(
ψ(n)√
n

)
(1 + o(1)). (2.1)

Remark 1. We note that for Gaussian random walks the formula on the right-
hand side is the same as that for Brownian motion, but evaluated at discrete
time points instead of continuous ones. This means that an overshoot term
does not show up. In Theorem 1 no restrictions are made concerning ultimate
crossing: P (Tψ < ∞) < 1 is as possible as P (Tψ < ∞) = 1, which means that
P (Tψ ≥ n) → 0 as n→ ∞.

It is possible to generalize the statement for the case P (Tψ < ∞) < 1 to
random walks whose increments have finite moment generating functions. This
is formulated in Theorem 2. For the case P (Tψ < ∞) = 1 one needs an extra
condition to have an inequality for the hazard functions. In the situation of
Theorem 1, where one has normally distributed increments, a hazard inequality
always holds:

hψ1(n) ≤ hψ2(n) (2.2)

with hi(n) = P (Tψi = n)/P (Tψi ≥ n). Here ψi : {1, . . . , n} → R+ for i = 1, 2,
with ψ1(j) ≤ ψ2(j) for j = 1, . . . , n− 1 and ψ1(n) = ψ2(n).

In more general situations one needs an extra condition for (2.2) to hold. It
is the total positivity of order 2 of the Lebesgue density of the increments of the
random walk. We discuss this in more detail in Section 3.

Let Xi, i ≤ 1 be independent identically distributed random variables whose
distribution has a density g1 with respect to the Lebesgue measure. Let Sn =∑n

i=1Xi. A condition is crucial and is always assumed in the following:

(∗) E exp(θX1) <∞ for all θ with |θ| < θ0 with θ0 > 0.
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Theorem 2. Let E(X1) = 0 and Var (X1) = 1. Let the density g1 satisfy
condition (∗) and let

(∗∗)
there exists a θ1 with 0 < θ1 < θ0 such that

sup
|θ|≤θ1

sup
x∈R

exp(θx)g1(x) <∞.

Suppose the boundary ψ satisfies the conditions:

(i) ψ(t)/
√
t is monotone increasing for sufficiently large t;

(ii) there exists a constant α with 1/2 < α < 2/3, such that ψ(t)/tα is finally
decreasing;

(iii) for all ε > 0 there exists a δ > 0 and a t1 ≥ 1 such that
∣∣s/t− 1

∣∣ < δ implies∣∣Λ(s)/Λ(t)− 1
∣∣ < ε if s, t ≥ t1.

If P (Tψ = ∞) > 0 holds then, as n→ ∞,

P (Tψ = n) = P (Tψ = ∞)
Λ(n)

n3/2
φ

(
ψ(n)√
n

)
(1 + o(1)). (2.3)

Remark 2. The right-hand sides of (2.1) and (2.3) are the same. This is a kind
of central limit effect in the situation of Theorem 2.

Now we formulate a result which gives up the restriction P (Tψ = ∞) > 0.
Families of distributions that satisfy the conditions of the next result are, for
instance, the double exponential.

Theorem 3. Let the conditions (∗), (∗∗) and (I)–(III) of Theorem 1 hold, and
let g1 be totally positive of order 2. Then, as n→ ∞,

P (Tψ = n) = P (Tψ ≥ n)
Λ(n)

n3/2
φ

(
ψ(n)√
n

)
(1 + o(1)). (2.4)

As a consequence of Theorems 1 and 3 one can state an asymptotic result
for survival probabilities.

Corollary 1. Let P (Tψ <∞) = 1. Then

P (Tψ ≥ n) = exp

[(
−

n−1∑
m=1

Λ(m)

m3/2
φ
(ψ(m)√

m

))
(1 + o(1))

]
. (2.5)

This can be seen as follows. For

hψ(m) =
P (Tψ = m)

P (Tψ ≥ m)
,

one has

P (Tψ ≥ n) =

n−1∏
m=1

(1− hψ(m)) = exp
(
−

n−1∑
m=1

log(1− hψ(m))
)
.
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But hψ(m) → 0 by (2.4), thus − log(1 − hψ(m)) = hψ(m)(1 + o(1)). By (2.4)

statement (2.5) follows.

Remark 3. For ψ(m) =
√

2m log log(m) we obtain

P (Tψ ≥ n) = exp

(
− 1

2
√
π
(log log n)3/2(1 + o(1))

)
.

We state a version of the Kolmogorov–Petrovski–Erdős test. For a version

with last entrance times see Lerche (1986, p.87).

Corollary 2. Let P (Tψ > n) > 0 for all n > 0 and let the conditions of Theorem

3 hold. Then P (Tψ <∞) < 1 if and only if
∑∞

n=1(ψ(n)/n
3/2)φ

(
ψ(n)/

√
n
)
<∞.

Proof. By (II) and the monotonicity of ψ, (1 − α)ψ(n) ≤ Λ(n) ≤ ψ(n). Thus∑
n≥1(ψ(n)/n

3/2)φ
(
ψ(n)/

√
n
)
<∞ is equivalent to

∑
n≥1(Λ(n)/n

3/2)φ
(
ψ(n)/

√
n
)

<∞. Let P (Tψ <∞) = 1. Then (2.5) implies∑
n≥1

Λ(n)

n3/2
φ

(
ψ(n)√
n

)
= ∞.

Conversely if P (Tψ <∞) < 1, then P (Tψ = ∞) > 0. Then by (2.3), as n′ → ∞,

P (n′ < Tψ <∞) =
∑
n≥n′

P (Tψ = n)

= P (Tψ = ∞)(1 + o(1))
∑
n≥n′

Λ(n)

n3/2
φ

(
ψ(n)√
n

)
.

This implies
∑

n≥1(Λ(n)/n
3/2)φ

(
ψ(n)/

√
n
)
<∞.

We will give a complete proof of Theorem 1. It follows the scheme of the

proof of (1.1), which is a statement for t→ 0. Strassen’s construction of the time

sections also works here for n → ∞. It is combined with results of Woodroofe

and with Donsker’s invariance principle.

The hazard inequality is discussed in Section 3. The proofs of Theorems

2 and 3 are rather lengthy and can be found in Kerkhoff (1990). See also the

Remark at the end of Section 4.1.

3. The Hazard Inequality

We prove that the hazard inequality (2.2) holds when the density g1 is totally

positive of order 2 (its definition follows). This latter assumption enables one

to prove monotonicity statements from which the hazard inequality follows. Let

ψi : {1, . . . , n} → R+ for i = 1, 2, with ψ1(j) ≤ ψ2(j). Then

P (Sn > z | Tψ1 > n) ≤ P (Sn > z | Tψ2 > n). (3.1)
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We show that (3.1) implies the hazard inequality (2.1). First

P (Tψ1 = n | Tψ1 ≥ n) ≤ P (Tψ2 = n | Tψ2 ≥ n).

Since ψ1(n) = ψ2(n) we have

P (Tψ1 = n | Tψ1 ≥ n) =

∫
P (Xn + x ≥ ψ1(n))P (Sn−1 ∈ dx | Tψ1 > n− 1)

=

∫
P (Xn + x ≥ ψ2(n))P (Sn−1 ∈ dx | Tψ1 > n− 1).

The integrand is nondecreasing in x, thus by (3.1) we get

P (Tψ1 = n | Tψ1 ≥ n) ≤
∫
P (Xn + x ≥ ψ2(n))P (Sn−1 ∈ dx | Tψ2 > n− 1)

= P (Tψ2 = n | Tψ2 ≥ n).

For (3.1) we appeal the notion of total positivity of order 2; for the concept

see Karlin (1968).

Definition 1. A measurable function h : R → R+ that is different from zero for

at least two points has property TP2 if∣∣∣∣∣ h(w2 − w1) h(z2 − w1)

h(w2 − z1) h(z2 − z1)

∣∣∣∣∣ ≥ 0

for all (z1, z2), (w1, w2) ∈ R2 with w1 ≤ z1 and w2 ≤ z2.

We turn to (3.1).

Lemma 1. Let ψi : {1, . . . , n} → R+ with ψ1 ≤ ψ2. Let X1, . . . , Xn be indepen-

dent and identically distributed with density g1 with respect to Lebesgue-measure.

Let g1 have property TP2. Then

P (Sn > z | Tψ1 > n) ≤ P (Sn > z | Tψ2 > n). (3.2)

Proof. For simplicity we write g instead of g1. We show, that we can apply a

FKG-type inequality (see e.g., Karlin and Rinott (1980)): Let hi, i = 1, 2, denote

densities on Rn with respect to the n-dimensional Lebesgue-measure λn. Then∫
fh1dλn ≤

∫
fh2dλn for any nondecreasing function f , if

h1(x)h2(y) ≤ h1(x ∨ y)h2(x ∧ y) (3.3)

holds for all x, y ∈ Rn. To apply the inequality we put

g̃(s1, . . . , sn) =

n∏
i=1

g(si − si−1), (3.4)
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with s0 = 0. This is the density of the joint distribution of (S1, . . . , Sn) with

respect to λn. We also put, for i = 1, 2,

hi :=
g̃I{Tψi>n}

P (Tψi > n)

and let f(s1, . . . , sn) = I(z,∞)(sn). Then (3.2) follows.

It is left to show (3.3) for the choice of hi. It is clear that

n∏
i=1

I(−∞,ψ1(i))(xi)I(−∞,ψ2(i))(yi) ≤
n∏
i=1

I(−∞,ψ1(i))(xi∧yi)I(−∞,ψ2(i))(xi∨yi). (3.5)

By the TP2 property of g one obtains for i = 2, . . . , n,

g(xi ∨ yi − xi−1 ∨ yi−1)g(xi ∧ yi − xi−1 ∧ yi−1)

≥ g(xi ∨ yi − xi−1 ∧ yi−1)g(xi ∧ yi − xi−1 ∨ yi−1)

= g(yi − yi−1)g(xi − xi−1). (3.6)

The last equality follows by distinction of cases. Using (3.4) and (3.6) yields

g̃(x)g̃(y) ≤ g̃(x ∨ y)g̃(x ∧ y).

This inequality combined with that of (3.5) yields (3.3) for our choice of hi.

Lemma 2. Let ψi : N → R+ for i = 1, 2 with ψ1(j) ≤ ψ2(j) for j = 1, . . . , n−1,

and ψ1(n) = ψ2(n). If g1 has the property TP2, then

P (Tψ1 = n | Tψ1 ≥ n) ≤ P (Tψ2 = n | Tψ2 ≥ n).

We remark that normal densities have the property TP2. This follows, for

instance, by a result of Schönberg (1951). We state it without proof and point

for further information to Karlin’s monograph (1968).

Theorem 4. A function h has property TP2 if and only if it can be written as

h = exp(−T ), where T is a convex function.

4. Proofs

4.1. The upper estimate

We prove Theorem 1. At first we show the upper estimate

P (Tψ = n) ≤ P (Tψ ≥ n)
Λ(n)

n3/2
φ

(
ψ(n)√
n

)
(1 + o(1)) as n→ ∞. (4.1)
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Let ε > 0 with α+ε < 1. Let s(n) := n
(
1− nε/(ψ(n))2ε

)
and k(n) := [s(n)]

be the largest natural number less than s(n). We apply Lemma 2 to ψ and ψk,

where ψk : N → R+ with ψk(i) ≡ ψ(k) for i ≤ k and ψk(i) = ψ(i) if i > k.

We obtain

P (Tψ = n | Tψ ≥ n)

≤ P (Tψk = n | Tψk ≥ n)

≤ P (Tψk ≥ n)−1P (Si < ψk(i) for i = 1, . . . , n− 1, Sn ≥ ψk(n)). (4.2)

We show that P (Tψk ≥ n) → 1. Since ψ is nondecreasing, we get further

P (Tψk ≥ n) ≥ P (Si < ψ(k) for i = 1, . . . , n− 1)

= P
( 1√

n− 1
max

1≤i≤n−1
Si <

ψ(k)
√
k√

k(n− 1)

)
. (4.3)

By Donsker’s invariance principle the right-hand side converges to the cor-

responding distribution of the maximum of Brownian motion, given by 2(Φ(x)−
1)+, where y+ = max(y, 0). But x here turns out to be infinity, since by the defi-

nition of k(n), we have k(n)/n→ 1 and by (I) it holds ψ(n)/
√
n→ ∞. Thus the

right-hand side of (4.3) tends to one. Then the inequality (4.2) can be written

further as

P (Tψ = n) ≤ P (Tψ ≥ n)P (Si ≤ ψ(i) for i = k, . . . , n− 1, Sn ≥ ψ(n))(1 + o(1)).

We show that

P (Si < ψ(i), i = k, . . . , n− 1, Sn ≥ ψ(n)) ≤ Λ(n)

n3/2
φ
(ψ(n)√

n

)
(1 + o(1)).

For simplicity write

gn(x) :=
1√
n
φ
( x√

n

)
.

Let Λ1 = sup{Λ(u) | u ∈ [k, n]}. Let h denote the straight line determined by

h(0) = Λ1 and h(n) = ψ(n). Then

P (Si < ψ(i) for i = k, . . . , n− 1, Sn ≥ ψ(n))

≤ P (Si < h(i) for i = k, . . . , n− 1, Sn ≥ ψ(n))

= gn(ψ(n))

∫ ∞

0
P (Si<h(i) for i=k, . . . , n−1 | Sn=h(n)+r)

gn(h(n)+r)

gn(h(n))
dr

= gn(ψ(n))

∫ ∞

0
I1(r)I2(r)dr. (4.4)
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Now

I1 = P (Si < h(i) for i = k, . . . , n− 1 | Sn = h(n) + r)

= P (Sn − Si > h(n)− h(i) + r for i = k, . . . , n− 1 | Sn = h(n) + r)

= P (Sj > h(n)− h(n− j) + r for j = 1, . . . , n− k | Sn = h(n) + r)

= P
(
Si >

(ψ(n)
n

− Λ1

n

)
i+ r for i = 1, . . . , n− k | Sn = ψ(n) + r

)
.

We use the fact that this conditional distribution does not depend on the drift

of the underlying distribution, by sufficiency of Sn. Let

gθn(x) :=
1√
n
φ
(x− nθ√

n

)
. (4.5)

We choose as drift θn = ψ(n)/n, and make a change of measure from that without

drift to that with drift θn, and indicate this by a subscript of the measure. Then

I1 = P
(
Si >

(ψ(n)
n

− Λ1

n

)
i+ r for i = 1, . . . , n− k | Sn = ψ(n) + r

)
= Pθn

(
Si >

(ψ(n)
n

− Λ1

n

)
i+ r for i = 1, . . . , n− k | Sn = ψ(n) + r

)
=

∫
dP

X1,...,Xn−k
θn

(s1, . . . , sn−k)I{si>(
ψ(n)
n

−Λ1
n

)i+r,i=1,...,n−k}

·
gθnk (ψ(n) + r − sn−k)

gθnn (ψ(n) + r)
.

We express I2 also with the drift θn. We have from (4.5)

gθ1n (x)

gθ2n (x)
=
φ ((x− nθ1)/

√
n)

φ ((x− nθ2)/
√
n)

= exp
(
(θ1 − θ2)x− n

2
(θ21 − θ22)

)
.

Thus

I2 =
gn(ψ(n) + r)

gn(ψ(n))
= exp(−θnr)

gθnn (ψ(n) + r)

gθnn (ψ(n))
.

Combining these expressions we get for the integral on the right-hand side

of (4.4),∫ ∞

0
I1(r)I2(r)dr ≤ (1 + o(1))

∫ r

0
dr

∫
dP

X1,...,Xn−k
θn

I{si>(ψ(n)/n−Λ1/n)i+r,i=1,...,n−k}

· exp
(
− (r − sn−k + [ψ(n)/n](n− k))2

2k

)
≤ (1 + o(1))

∫ r

0
drPΛ1/n(Si > r, i = 1, . . . , n− k)

= (1 + o(1))EΛ1/n(M
+
n−k).
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Here the expectation is taken with respect to the drift Λ1/n and M+
m :=

( min
1≤i≤m

Si)
+ denotes the positive part of the minimum. By Lemma 3 we have,

with S−
n−k := −min(Sn−k, 0), that

EΛ1/n(M
+
n−k) =

Λ1

n
+

1

n− k
EΛ1/n(S

−
n−k).

Here we can show that

1

n− k
EΛ1/n(S

−
n−k) = o

(
Λ1

n

)
(4.6)

holds, so ∫
I1(r)I2(r)dr ≤

Λ1

n
(1 + o(1)).

By (I) and (III), Λ1 can be substituted by Λ(n) asymptotically, from which (4.1)

follows.

By using Fubini’s theorem one obtains (4.6) as follows:

1

n− k
E(Λ1/n)(S

−
n−k) =

1

n− k

∫ ∞

0
dxP(Λ1/n)(−Sn−k ≥ x)

=
1

n− k

∫ ∞

0
dx

∫ ∞

−∞
du I{x≤u

√
n−k−(n−k)(Λ1/n)}φ(u)

=
1

n− k

∫ ∞

√
n−k(Λ1/n)

duφ(u)
(
u
√
n− k − (n− k)

Λ1

n

)

=
Λ1

n

[φ(√n− k(Λ1/n)
)

√
n− k(Λ1/n)

−
(
1− Φ

(√
n− k

Λ1

n

))]
= o

(
Λ1

n

)
for n→ ∞.

This follows since Λ1 ≥ Λ(n) and Λ(n) ≥ ψ(n)(1 − α) by (II) and, since

(ψ(n)/n)
√
n− k → ∞ by (I), the definition of k(n).

Remark 4. We want to indicate how one derives the upper bound of Theorem 2

and how the central limit theorem comes in there. By (∗) one can define a related

exponential family of measures with drift. This allows one to apply sufficiency

arguments as in the proof of Theorem 1, (4.5) and the following.

Let s, k, r, l be as in the proof of Theorem 1. Then

P (Tψ=n) ≤
∫ ψ(l)

−∞
P (Tψ > l, Sl ∈ dx)P l,x(Si<ψ(i), i=k, . . . , n− 1, Sn≥ψ(n)).
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One can show similarly to the proof of Theorem 1, that

P l,x
(
Si < ψ(i), i = k, . . . , n− 1, Sn ≥ ψ(n)

)
≤ gn−l(ψ(n)− x)

∫ ∞

0
drI1 · I2

≤ gn−l(ψ(n)− x)
(Λ(n)

n
+R

)
,

with gk the k-fold density of g1 and R is the remainder.

At this point one applies the central limit theorem twofold, to estimate R

with a global version and gn−ℓ(ψ(n)− x) with a local one.

4.2. The lower estimate

We want to show now, as n→ ∞,

P (Tψ = n) ≥ P (Tψ ≥ n)
Λ(n)

n3/2
φ
(ψ(n)√

n

)
(1 + o(1)). (4.7)

We partition the event {Tψ = n} into three time sections. The middle section

is to have low probability. The first and third sections contribute to the two terms

on the right-hand side of formula (4.7).

We now define the two splitting points k and l of the sections, essentially

following Strassen (1967). Let ε > 0 be chosen such that α + ε < 1. Let

s = n
(
1− nε/ψ(n)2ε

)
and k = [s], the largest integer smaller than s. Let β and

γ be chosen such that α + ε < 2β − 1 < γ < β < 1. Let r denote the solution

of the implicit equation ψ(k)2/k (r/k)γ = 1. Let l = [r] and let kl = ψ(k) (l/k)β.

Since k ∼ n and, by (I) l/k → 0 as n→ ∞. By the definition of β and γ and (I),

ψ(k)2

k

( l
k

)β
→ 0, (4.8)

ψ(k)2

k

( l
k

)2β−1
→∞. (4.9)

Let Pm,z{Tψ = n} denote the first passage probability of the curve ψ by the

random walk {Si; i ∈ N} that starts at time m in point z < ψ(m). Then one has

P (Tψ = n) ≥
∫ kl

−kl
P (Tψ > l, Sl ∈ dx)P l,x(Tψ = n)

≥ P (Tψ > l, |Sl| ≤ kl) inf
|x|≤kl

P l,x(Tψ = n). (4.10)

Now if

P (Tψ > l, |Sl| ≤ kl) ∼ P (Tψ > l), (4.11)
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one has

P (Tψ > l, |Sl| ≤ kl) = (1 + o(1))P (Tψ > l) ≥ (1 + o(1))P (Tψ ≥ n).

To show (4.11), we prove

lim
n→∞

P (Sl ≤ kl | Tψ > l) = 1. (4.12)

To derive this, we apply Lemma 1 to ψ and ψl, defined as ψl : N → R+ with

ψl(i) = ψ(l) for i = 1, . . . , l, and ψl(i) = ψ(i) for i > l. By the monotonicity of

ψ, ψ ≤ ψl on {1, . . . , l} we get from Lemma 1,

P (Sl ≤ kl | Tψ > l) ≥ P (Sl ≤ kl | Tψl > l) ≥ P (max1≤i≤l Si ≤ kl)

P (max1≤i≤l Si < ψ(l))
. (4.13)

Now, if n→ ∞, then l → ∞ and ψ(l)/
√
l → ∞ by assumption I). Further

kl√
l
=
ψ(k)√
l

( l
k

)β
=
ψ(k)√
k

( l
k

)β−1/2
→ ∞

by (4.9).

From Donsker’s invariance principle it follows, that the right-hand side of

(4.13) tends to 1 as n→ ∞, which implies (4.12).

We show now

lim
n→∞

P (Sl < −kl | Tψ > l) = 0. (4.14)

Let ψ1 : N → R+ with ψ1(i) = ψ(1) for i = 1, . . . , l and ψ1(i) = ψ(i) for

i > l. Then by the monotonicity of ψ, ψ ≥ ψ1 holds. By Lemma 1 one obtains

P (Sl ≤ −kl | Tψ > l) ≤ P (Sl ≤ −kl | Tψ1 > l) ≤ P (Sl ≤ −kl | Tε̃ > l).

Here ε̃ denotes the constant function with value ε at N, where 0 < ε ≤ f(1).

Since the inequality holds for every such ε, one obtains by symmetry for the

random walk

P (Sl ≤ −kl | Tψ > l)

≤ P (Sl ≤ −kl | Si ≤ 0, for i = 1, . . . , l)

=
P (Sl ≥ kl, Si ≥ 0 for i = 1, . . . , l)

P (Si ≤ 0, for i = 1, . . . , l)

≤ 1

kl

E(Sl;Si ≥ 0, for i = 1, . . . , l)

P (Si ≤ 0; for i = 1, . . . , l)

=

(
kl√
l

√
l P (Si ≤ 0, for i = 1, . . . , l)

)−1

· E(Sl;Si ≥ 0, for i = 1, . . . , l).
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But kl/
√
l → ∞ and there exists a positive constant K with

√
l P (Si ≤ 0, for i =

1, . . . , l) → K. See Feller (1971, p.415). By Lemma 4 the expectation term

remains bounded. Thus one obtains (4.14). But (4.12) together with (4.14)

yields (4.11).

To estimate inf |x|≤kl P
l,x(Tψ > n) at (4.10), we linearize the boundary ψ as

follows: Let λ1 = inf{Λ(u) | u ∈ [k, n]} and ν ∈ (0, 1], such that h1 is a straight

line with h1(0) = νλ1 and h1(n) = f(n). Let h2 denote the straight line with

h2(k) = ψ(k) and h2(l) = ψ(k) (l/k)α. Then

P l,x(Tψ = n)

≥
∫ h1(k)

−∞
P l,x(Tψ > k, Sk ∈ dy)P k,y(Th1 = n)

≥
∫ h1(k)

−∞
P l,x(Sk ∈ dy) (4.15)

·
[
1−P l,x(Si≥h2(i) for some i= l+1, . . . , k−1 | Sk=y)

]
P k,y(Th1 =n).

It now holds that

P l,x(Si ≥ h2(i) for some i = l + 1, . . . , k − 1 | Sk = y) = o(1) (4.16)

uniformly in |x| ≤ kl and y ≤ h1(k) for n → ∞. To see this, let W denote

Brownian motion. Then

P l,x(Si ≥ h2(i) for some i = l + 1, . . . , k − 1 | Sk = y)

≤ P l,x(Wt ≥ h2(t) for some t ∈ (l, k) |Wk = y)

= exp
(−2(h2(l)− x)(h2(k)− y)

k − l

)
≤ exp

(−2(h2(l)− kl)(h2(k)− h1(k))

k − l

)
. (4.17)

Since l, k, kl as well as h1 and h2 are slightly modified versions of r, s, and k in

the proof of Theorem 3.5 in Strassen (1967), one obtains with similar estimates

and an appropriate choice of ν (tending to 1),

(h2(l)− kl)(h2(k)− h1(k))

k − l
→ ∞.

This together with (4.17) implies (4.16).

It is therefore left to estimate the part regarding h1 in (4.15). We show

P l,x(Si < h1(i) for i = k, . . . , n− 1, Sn ≥ h1(n)) ≥ θ̃ngn−l(ψ(n)− x)(1 + o(1))

(4.18)
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with θ̃n = ν(λ1/n)− ψ(n)/n+ (ψ(n)− x)/(n− l) uniformly in |x| ≤ kl. By the

definition of kl and (II),

θ̃n ≥ ν
λ1
n

− kl
n− l

= ν
λ1
n
(1 + o(1))

uniformly for |x| ≤ kl. Since l = o(k) and (ψ(k)2/k) (l/k)β → 0 as n → ∞, it

follows that

gn−l(ψ(n)− x) ≥ gn−l(ψ(n) + kl) ≥
1√
n
φ

(
ψ(n)√
n

)
(1 + o(1)) (4.19)

uniformly for |x| ≤ kl. Since ν → 1 as n → ∞, by (I) and (III) λ1 can be

substituted by Λ(n). This and (4.18) together with (4.19) yield, for (4.15),

P l,x(Tψ = n) ≥ Λ(n)

n3/2
φ

(
ψ(n)√
n

)
(1 + o(1))

uniformly for |x| ≤ kl. This together with (4.10) and (4.11) yields (4.7).

It remains to show (4.18). The argument for that is similar to that for the

upper estimate of (4.4). We have

P l,x(Si < h1(i) for i = k, . . . , n− 1, Sn > h1(n)) = gn−l(ψ(n)− x)

∫ ∞

0
I1I2dr

(4.20)

with

I1 = P (Si > h1(n)− h1(n− i) + r for i = 1, . . . , n− k | x+ Sn−l = h1(n) + r)

= P

(
Si >

(
ψ(n)

n
− ν

λ1
n

)
i+ r, i = 1, . . . , n− k | Sn−l = ψ(n) + r − x

)
,

I2 =
gn−l(ψ(n) + r − x)

gn−l(ψ(n)− x)
= exp(−θnr)

gθnn−l(ψ(n) + r − x)

gθnn−l(ψ(n)− x)
.

Now choose the drift θn = (ψ(n)− x)/(n− l). Evaluating I1, noting n− l ∼
k − l and rewriting I2 with drift θn, yields

I1I2 = (1 + o(1)) exp(−θnr)
∫
dP

X1,...,Xn−k
θn

I{si>(ψ(n)/n−ν(λ1/n))i+r,i=1,...,n−k}

·
√
2π φ

(
ψ(n) + r − x− sn−k − (k − l)θn

(k − l)1/2

)
.
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With γn =

√
n− k√
k − l

,

S̃n−k =
Sn−k − (n− k)θ̃n√

n− k
,

rn =
√
n− k,

θ̃n = ν
λ1
n

− ψ(n)

n
+
ψ(n)− x

n− l
,

∫ ∞

0
dr I1I2 ≥ (1 + o(1))

∫ rn

0
dr exp{−θnr}

·
∫
dP

X1,...,Xn−k

θ̃n
I{si>r,i=1,...,n−k}(2π)

1/2φ

(
γn

(
−s̃n−k +

r

(n− k)1/2

))
≥ (1 + o(1))

∫ rn

0
dr exp{−θnr}

·
∫
dP

X1,...,Xn−k

θ̃n
I{si>r,i=1,...n−k}(2π)

1/2φ(γn(|s̃n−k|+ 1])).

By the definition of l and k and assumption (I), γn → 0 as n→ ∞. Let (εn;n ≥ 1)

be a sequence with εn > 0, εn → 0, and εn/γn → ∞ as n→ ∞. Then∫ ∞

0
drI1I2 ≥ (1 + o(1))

[∫ rn

0
dr exp(−θnr)Pθ̃n(Si > r for i = 1, . . . , n− k) +Wn

]
(4.21)

with

|Wn| ≤
∫ rn

0
dr

∫
dP

X1,...,Xn−k
θ̃n

(1− (2π)1/2φ(γn(|s̃n−k|+ 1)))I{si>r,i=1,...,n−k}.

Now we study Wn. One has

|Wn| ≤K1 sup
|u|≤εn

|(2π)1/2φ(u)− 1|
∫ ∞

0
dr Pθ̃nI{Si>r,i=1,...,n−k}

+K2

∫ ∞

0
dr

∫
dP

X1,...,Xn−k
θ̃n

I{γn(|s̃n−k|+1)>εn}I{si>r,i=1,...,n−k}

≤K(R1 +R2).

Since εn → 0, by Lemma 3 and (4.6) with Λ1/n replaced by θ̃n, we obtain

R1 = o(θ̃n). Note that θ̃n
√
n− k → ∞ since θ̃n ≥ ν(λ1/n) − x/(n− l) ≥

ν(λ1/n)− kl/(n− l). One further has ν → 1, (Λ1/n)
√
n− k → ∞, and kl/

√
n =
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ψ(k)/
√
n (l/k)β → 0 by (4.8). The estimate of R2 is done as follows:

R2 = Eθ̃n(M
+
n−kI{γn(|S̃n−k|+ 1) > εn})

= Eθ̃n(M
+
n−kI{Sn−k>(εn/γn−1)

√
n−k+(n−k)θ̃n})

+Eθ̃n(M
+
n−kI{0<Sn−k<−(εn/γn−1)

√
n−k+(n−k)θ̃n})

= R2,1 +R2,2.

Applying Lemma 5 and Fubini’s theorem to R2,1 yields

R2,1 =
1

n− k

(
θ̃n(n− k) +

(
εn
γn

− 1

)√
n− k

)
Pθ̃n

{
S̃n−k >

εn
γn

− 1

}
+(n− k)−1/2

∫ ∞

εn/γn−1
duPθ̃n{S̃n−k > u} = o(θ̃n),

since εn/γn → ∞ and θ̃n
√
n− k → ∞ as n → ∞. By Lemma 5 and Fubini’s

theorem, since εn/γn → ∞,

R2,2 = (n−k)−1/2

∫
(−θ̃n

√
n−k,−(εn/γn−1))

duPθ̃n

(
−

(εn
γn

−1
)
>S̃n−k>u

)
= o(θ̃n).

Thus we have shown that |Wn| = o(θ̃n), and, from (4.21),∫ ∞

0
dr I1I2 ≥ (1 + o(1))

∫ rn

0
exp(−θnr)Pθ̃n(Si > r for all i ∈ N)dr + o(θ̃n).

Now we want to increase the right-hand side by On to have an integral from 0

to infinity. By Theorem 2.7 of Woodroofe (1982) we see that the resulting error

is o(θ̃n).

Let τ+=inf{n ≥ 1 | Sn>0}. By the definition of rn and since θn
√
n− k→∞,

On =

∫ ∞

rn

dr exp{−θnr}Pθ̃n{Si > r for all i ∈ N}

= θ̃n

∫ ∞

rn

dr exp{−θnr}(Eθ̃nSτ+)
−1Pθ̃n{Sτ+ > r}

≤ θ̃n(rnθn)
−1 = o(θ̃n).

Thus we have∫ ∞

0
drI1I2≥(1+o(1))

∫ ∞

0
dr exp(−θnr)Pθ̃n(Si>r for all i∈N)+o(θ̃n). (4.22)
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We evaluate the right-hand side of (4.22) using Woodroofe’s formula and the

estimate exp(x) ≥ 1 + x.∫ ∞

0
dr exp(−θnr)Pθ̃n(Si > r for all i ∈ N)

≥
∫ ∞

0
dr Pθ̃n(Si > r for all i ∈ N)− θn

∫ ∞

0
dr rPθ̃n(Si > r for all i ∈ N)

= θ̃n

∫ ∞

0
drPθ̃n(Sτ+ > r)(Eθ̃nSτ+)

−1−θ̃nθn
∫ ∞

0
drrPθ̃n(Sτ+ > r)(Eθ̃n(Sτ+))

−1

= θ̃n

(
1− θn

1

2

Eθ̃n(S
2
τ+)

Eθ̃n(Sτ+)

)
. (4.23)

Now it holds

Eθ(S
i
τ+) <∞ with i = 1, 2, for all 0 ≤ θ < θ0 and lim

θ→0
Eθ(S

i
τ+) = E0(S

i
τ+)

by dominated convergence. Since E0(Sτr) > 0 the term Eθ̃n(S
2
τ+)/Eθ̃n(Sτ+) re-

mains bounded as n → ∞. Since θ̃n and θn tend to zero as n → ∞, it follows

from the right-hand side of (4.22) and (4.23) that
∫
I1I2dr ≥ θ̃n(1 + o(1)). By

(4.20) we get (4.18) and the proof is completed.

5. Several Lemmata

Lemma 3. Let Xi, 1 ≤ i ≤ m be independent identically distributed random

variables with E|X1| <∞. Then

E(M+
m) = E(X1) +

1

m
E(S−

m).

Proof. One has E(Mm) = E(M+
m)−E(M−

m) and

E(Mm) = E(X1) + E
(

min
1≤j≤m

(Sj −X1)
)
= E(X1)− E(M−

m−1).

From

−M−
m = min

0≤i≤m
Si and E

(
min

0≤i≤m
Si
)
= −

m∑
k=1

1

k
E(S−

k ),

the statement of the lemma follows. For the last equation see Siegmund (1985,

p.187).

Lemma 4. Let Xi, i ≥ 1 be independent identically distributed random variables

with E(X1) = 0 and Var (X1) = 1. Let S0 = 0 and Sn =
∑n

i=1Xi. Let N =

inf{n ≥ 1 | Sn < 0}. Then

lim
n→∞

E
(
SnI{Si≥0 for i=1,...,n}

)
= −E(SN ).
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Proof. One has

−SnI{Si≥0,i=0,...,n} = −
n−1∑
j=0

(
SjI{Si≥0,i=0,...,j} − Sj+1I{Si≥0,i=0,...,j+1}

)
.

Now take expectations on both sides. Since {Si, 1 ≤ i ≤ j} and Xj+1 are

independent and since EXj+1 = 0 we can write Sj+1 instead of Sj in the first

term on the right-hand side. We get

−E
(
SnI{Si≥0,i=1,...,n}

)
=

n∑
j=0

E
(
SiI{Si≥0,i=1,...,j−1,Sj+1<0}

)
= E(SNI{N≤n}).

For n→ ∞ the statement of the lemma follows.

Lemma 5. Let Xi, i = 1, . . . ,m be identically distributed with E(X1) <∞. Let

Mm = min1≤i≤m Si. Then, for any real z > 0,

E
(
M+
mI{Sm>z}

)
= E

(
X1I{Sm>z}

)
= E

(Sm
m
I{Sm>z}

)
.

The equality holds if {0 < Sm < z} replaces {Sn > z}.

Proof. On the one hand one has

E
(
M+
mI{Sm>z}

)
= E

(
MmI{Sm>z}

)
+ E

(
M−
m−1I{Sm>z}

)
,

on the other hand,

E
(
MmI{Sm>z}

)
= E

(
X1I{Sm>z}

)
+ E

(
min

1≤j≤m
(Sj −X1)I{Sm>z}

)
= E

(
X1I{Sm>z}

)
− E

(
M−
m−1I{Sm>z}

)
.

This implies the first equation, the second follows by conditioning.
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