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Abstract: We propose several methods of constructing a new type of design, called

a sliced orthogonal Latin hypercube design. Such a design is a special orthogonal

Latin hypercube design, of first-order or second-order, that can be divided into

slices of smaller orthogonal Latin hypercube designs of the same order. This type of

design is useful for computer experiments with qualitative and quantitative factors,

multiple experiments, data pooling, and cross-validation. Examples are given to

illustrate the proposed methods.

Key words and phrases: Computer experiment, experimental design, orthogonal

array, orthogonal design, space-filling design.

1. Introduction

Construction of exactly or nearly orthogonal Latin hypercube designs has

been actively studied in design of experiments. The rationales for using such

designs have been discussed by Ye (1998) and Joseph and Hung (2008), among

others. In particular, orthogonality is directly useful when polynomial models

are used, and exact or near orthogonality can be viewed as stepping stones to

space-filling designs.

The purpose of this article is to construct a new type of design, called a

sliced orthogonal Latin hypercube design. Such a design is a special orthogonal

Latin hypercube design, of first-order or second-order, that can be divided into

slices of smaller orthogonal Latin hypercube designs. This type of design is use-

ful for computer experiments with qualitative and quantitative factors, multiple

computer experiments, data pooling and cross-validation. The proposed designs

are different from several classes of sliced space-filling designs in the recent litera-

ture, including those in Qian and Wu (2009), Xu, Haaland, and Qian (2011), and

Qian (2012). Unlike the proposed designs, existing designs can only achieve low-

dimensional stratification but not small column-wise correlations. We introduce

two methods for constructing sliced first-order orthogonal Latin hypercubes and

one method for constructing sliced second-order orthogonal Latin hypercubes.

The two methods build large sliced first-order orthogonal Latin hypercubes based
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on smaller ones or first-order orthogonal sliced Latin hypercubes. The idea is

that construction of large designs can be focused on finding small designs that

are easier to generate.

The article is organized as follows. Section 2 provides the definition of sliced

orthogonal Latin hypercubes of first-order and second-order. Section 3 introduces

a method for constructing sliced first-order orthogonal Latin hypercubes using the

Kronecker product. Section 4 provides another method for such Latin hypercubes

based on orthogonal arrays and sliced Latin hypercubes. Section 5 proposes a

method for constructing sliced second-order orthogonal Latin hypercubes. Proofs

are deferred to the Appendix.

2. Sliced Orthogonal Latin Hypercubes of First-order and Second-

order

An n×p Latin hypercube is a matrix in which each column is a permutation

of n equally-spaced levels. For convenience, n equally-spaced levels are taken to

be {−(n−1), . . . , 0, . . . , (n−1)} for an odd n and {−(n−1), . . . ,−1, 1, . . . , (n−1)}
for an even n. For integers m and v, Qian (2012) defined a sliced Latin hypercube

of n = mv runs and v slices to be a Latin hypercube that can be divided into

v smaller Latin hypercubes of m levels. The m levels of each slice correspond

to the m equally-spaced intervals [−n,−n + 2v), [−n + 2v,−n + 4v), . . . , [n −
4v, n− 2v), [n− 2v, n). To ensure that the linear main effects are all orthogonal

to the grand mean, each column of each slice is assumed to have mean zero. The

sliced Latin hypercubes generated using sliced permutation matrices in Qian

(2012) have a one-dimensional stratification but not low correlations between

columns. We consider sliced Latin hypercubes with zero correlations between

columns. Two columns are said to be orthogonal if their correlation is zero. A

sliced Latin hypercube is called sliced first-order orthogonal Latin hypercube if

any two columns of each slice are orthogonal. A sliced Latin hypercube is called

sliced second-order orthogonal Latin hypercube if each slice satisfies: (a) any two

columns are orthogonal; (b) any column is orthogonal to the elementwise product

of any two columns, identical and distinct. From the modeling perspective, the

second-order orthogonality requires the orthogonality between any main effect

and any quadratic or two-factor interaction effect, in addition to the orthogonality

between any two main effects.

3. Construction of Sliced First-order Orthogonal Latin Hypercubes

Using the Kronecker Product

This section provides a method for constructing sliced first-order orthogonal

Latin hypercubes using the Kronecker product. This method is inspired by the
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approach in Lin et al. (2010) for the construction of first-order orthogonal Latin

hypercubes and cascading Latin hypercubes. The key issue here is to explore an

elaborate slicing structure.

Let A = (aij) be an n× p sliced first-order orthogonal Latin hypercube with

slices A1, . . . ,Av of m runs each. Let B = (bij) be a u × q column-orthogonal

matrix with entries ±1. For i = 1, . . . , v, let Ci be an m× p column-orthogonal

matrix with entries ±1. A matrix is said to be column-orthogonal if any two

columns have zero correlation but each column does not necessarily have mean

zero. Let D = (dij) be a u× q first-order orthogonal Latin hypercube. Put

Li = Ai ⊗B+ nCi ⊗D, for i = 1, . . . , v, (3.1)

where ⊗ represents the Kronecker product. Let L be a matrix formed by stacking

L1, . . . ,Lv row by row. LetC = (cij) be a matrix obtained by stackingC1, . . . ,Cv

row by row.

Proposition 1. Consider A = (aij) with slices A1, . . . ,Av, B, C = (cij) with

slices C1, . . . ,Cv, and D as in (3.1). Suppose

(i) either AT

iCi = 0 or BTD = 0 for i = 1, . . . , v,

(ii) at least one of

(a) A and C satisfy that, for any j and any pair (l, l′) such that alj = −al′j,

the relationship clj = cl′j holds,

(b) B and D satisfy that, for any k and any pair (t, t′) such that dtk = −dt′k,

the relationship btk = bt′k holds.

Then L is a sliced first-order orthogonal Latin hypercube of slices L1, . . . ,Lv,

where Li is an (mu) × (pq) orthogonal Latin hypercube. When projected onto

each dimension, each of the m equally-spaced intervals [−nu,−nu+ 2v), [−nu+

2v,−nu+ 4v), . . . , [nu− 4v, nu− 2v), [nu− 2v, nu) contains exactly one point of

each slice.

Essentially, Proposition 1 builds up a sliced first-order orthogonal Latin hy-

percube using small column-orthogonal matrices, a small orthogonal Latin hy-

percube and a small sliced first-order orthogonal Latin hypercube. The sliced

property of L stems from that of A. Given the orthogonality of the Ai, B, the

Ci, and D, condition (i) in Proposition 1 is necessary for the Li and L to be

first-order orthogonal. In (3.1), u and n/v are two or a multiple of four because

of the necessary conditions for the orthogonality of C1, . . . ,Cv, and B.
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Example 1. Let B = (1, 1)T and D = (1,−1)T. Here Proposition 1 (b) is

satisfied as for d11 = −d21 = 1, b11 = b21. Take

A1 =

 17 13 25 11 5 3 29 21−17−13−25−11 −5−3−29−21

−13 17−11 25−3 5−21 29 13−17 11−25 3−5 21−29

29−21 −5 3 25−11−17 13−29 21 5 −3−25 11 17−13

T

,

A2 =

 23 7 15 19 9 27 1 31−23 −7−15−19 −9−27−1−31

−7 23−19 15−27 9−31 1 7−23 19−15 27 −9 31 −1

1−31 −9 27 15−19−23 7 −1 31 9−27−15 19 23 −7

T

,

C1 =

 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1

−1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

T

,

C2 =

 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

T

.

Now let Li = Ai ⊗ B + 32Ci ⊗ D for i = 1, 2. Using these matrices, we have

BTD = 0 and part (b) in Proposition 1. Thus, L from Proposition 1 is a sliced

first-order orthogonal Latin hypercube that can be divided into two slices, L1

and L2, of 32 runs each.

4. Construction of Sliced First-order Orthogonal Latin Hypercubes

Based on Orthogonal Arrays and Small Sliced Latin Hypercubes

We present a method to produce sliced first-order orthogonal Latin hyper-

cubes by coupling orthogonal arrays with small first-order orthogonal sliced Latin

hypercubes. It is motivated by the method of Lin, Mukerjee, and Tang (2009).

Directly applying their method with an orthogonal array and a small sliced first-

order orthogonal Latin hypercube cannot yield a sliced first-order orthogonal

Latin hypercube. Small sliced Latin hypercubes used in the proposed approach

are first-order orthogonal for the whole design but the slices of such designs need

not be first-order orthogonal. They are easier to generate than sliced first-order

orthogonal Latin hypercubes. This method is complementary to the one in Sec-

tion 3 in terms of run sizes.

For integers u1 > u2 ≥ 1, let s1 = su1 and s2 = su2 be powers of the

same prime s and v = s1/s2. For i = 1, . . . , v2, let Ai be an orthogonal array

OA(s22, 2f, s2), of s
2
2 runs, 2f factors, s2 levels, and strength two (Hedayat, Sloane,

and Stufken (1999)). Stacking A1, . . . ,Av2 row by row gives a matrix A. Let

B denote an s1 × p2 sliced Latin hypercube that can be divided into B1, . . . ,Bv

of s2 runs each. For q = 1, . . . , v, let bq,ij denote the (i, j)th entry of Bq. The

proposed method has three steps.
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Step 1: For j = 1, . . . , p2, and k2 = 1, . . . , f , obtain an s21 × 2 matrix Ujk2 as
follows.

(a) For q = 1, . . . , v and t = (q − 1)s1s2, generate the first column of Ujk2 by
replacing 1, . . . , s2 in the {t + 1, . . . , t + s1s2}th entries of the (2k2 − 1)th
column of A with bq,1j , . . . , bq,s2j , respectively.

(b) For l = 1, . . . , v, q = 1, . . . v, and t = (l − 1)s1s2 + (q − 1)s22, generate the
second column of Ujk2 by replacing 1, . . . , s2 in the {t+1, . . . , t+s22}th entries
of the (2k2)th column of A with bq,1j , . . . , bq,s2j , respectively.

Step 2: Put

V =

(
1 −s1
s1 1

)
.

For j = 1, . . . , p2, take Mj =
[
(Uj1V), . . . , (UjfV)

]
and M = [M1, . . ., Mp2 ].

Step 3: Let W = (wjk) be a Latin square of order v. For i, j, k = 1, . . . , v, let

ξjk={[(j−1)v+k−1]s22+1, [(j−1)v+k−1]s22+2, . . . , [(j−1)v+k−1]s22+s22},

and let ηi be the collection of all ξjk’s with (j, k) satisfying wjk = i. Obtain a
design Li by taking the s1s2 rows of M corresponding to ηi. Let L be a matrix
formed by stacking L1, . . . ,Lv row by row.

Proposition 2. For L, we have

(i) for i = 1, . . . , v, the correlation matrix, say ρ(Li), of Li is ρ(B)⊗ I2f , where
ρ(B) is the correlation matrix of B and I2f represents the identity matrix of
order 2f ;

(ii) if B is a first-order orthogonal sliced Latin hypercube with slices B1, . . . ,Bv,
then L is a sliced first-order orthogonal Latin hypercube of slices L1, . . . ,Lv,
where Li is an (s1s2) × (2fp2) orthogonal Latin hypercube. When projected
onto each column, for each slice, each of the s1s2 equally-spaced intervals
[−s21,−s21+2v), [−s21+2v,−s21+4v), . . . , [s21−4v, s21−2v), [s21−2v, s21) contains
exactly one point.

Example 2. We apply the proposed method to construct a sliced first-order
orthogonal Latin hypercube L in 16 factors of two slices L1 and L2 of 32 runs
each. Let s1 = 8, s2 = 4, f = 2, p2 = 4 and v = 2. For i = 1, . . . , 4, take Ai

to be an OA(16, 4, 4) from a library of orthogonal arrays on the N. J. A. Sloane
webpage (2011). Let

B1 =

−3 5 7 1
−7 −1 −3 5
3 −5 −7 −1
7 1 3 −5

 , B2 =

 1 −7 5 3
5 3 −1 7

−1 7 −5 −3
−5 −3 1 −7

 and W =

(
1 2

2 1

)
.

Appendix B presents the two slices, L1 and L2, of L.
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5. Construction of Sliced Second-order Orthogonal Latin Hypercubes

This section provides a method for constructing sliced second-order orthogo-

nal Latin hypercubes, which are more difficult to construct than those in Sections

3 and 4 because of the required second-order orthogonality. This method is mo-

tivated by the method in Sun, Liu, and Lin (2009). For a matrix X of an even

number of rows, let X⋆ denote the matrix obtained by swapping the signs of the

top half. The foldover of a matrix X is(
X

−X

)
. (5.1)

As in Sun, Liu, and Lin (2009), take

S1 =

(
1 1

1 −1

)
and T1 =

(
1 2

2 −1

)
and, for an integer c ≥ 2, let

Sc =

(
Sc−1 −S⋆

c−1

Sc−1 S⋆
c−1

)
and Tc =

(
Tc−1 −(Tc−1 + 2c−1Sc−1)

⋆

Tc−1 + 2c−1Sc−1 T⋆
c−1

)
.

(5.2)

Note that Sc is the sign matrix of Tc. Let sij and tij be the (i, j)th entries of Sc

and Tc in (5.2), respectively. The method consists of four steps.

Step 1: For an integer c ≥ 1, use Sc and Tc in (5.2) to define Lc = 2Tc − Sc.

Step 2: Construct a matrix Hc with columns h1, . . . ,h2c as

Hc = Lc + Scdiag(0, 2
c+1, . . . , (2c − 1)2c+1),

where diag(v1, . . . , vp) denotes a diagonal matrix with diagonal elements v1, . . . , vp.

Step 3: For i, j = 1, . . . , 2c, substitute the entry tij of Tc by a vector sijh|tij | to

obtain a 22c × 2c matrix Dc =
(
sijh|tij |

)
.

Step 4: For r = 1, . . . , c and p = 1, . . . , 2r, let Dr,p denote the submatrix of Dc

consisting of rows p, 2r+p, . . . , (22c−r−1)2r+p of Dc. Let Er,p be the foldover of

Dr,p as defined in (5.1). Let Ec be the matrix obtained by stacking Er,1, . . . ,Er,2r

row by row.

Theorem 1. For Lc and Ec above, we have the following.

(i) The foldover of Lc is a 2c+1 × 2c second-order orthogonal Latin hypercube.

(ii) The design Ec is a 22c+1 × 2c sliced second-order orthogonal Latin hyper-

cube with slices Er,1, . . . , Er,2r for r = 1, . . . , c; each slice is a 22c−r+1 × 2c
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second-order orthogonal matrix and, when projected onto each column, each

of the 22c−r+1 equally-spaced intervals [−22c+1,−22c+1 + 2r+1), [−22c+1 +

2r+1,−22c+1+2r+2), . . . , [22c+1−2r+2, 22c+1−2r+1), [22c+1−2r+1, 22c+1) con-

tains exactly one point.

We call |Tc| and Hc the support matrix and the block matrix, respectively.

This construction substitutes each entry of the support matrix by the correspond-

ing vector of the block matrix.

Example 3. For c = 2, Theorem 1 gives a sliced second-order orthogonal Latin

hypercube Ec of 32 runs in 4 factors. Starting with

S2 =

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 and T2 =

1 2 3 4
2 −1 −4 3
3 4 −1 −2
4 −3 2 −1

 ,

Steps 1 and 2 give

L2 = 2T2 − S2 =

1 3 5 7
3 −1 −7 5
5 7 −1 −3
7 −5 3 −1

 and

H2 = L2 + S2diag(0, 8, 16, 24) =

1 11 21 31
3 −9 −23 29
5 15 −17 −27
7 −13 19 −25

 .

After Step 3, D2 (in transpose) is 1 3 5 7 11 −9 15 −13 21 −23 −17 19 31 29 −27 −25
11 −9 15 −13 −1 −3 −5 −7 31 29 −27 −25 −21 23 17 −19
21 −23 −17 19 −31 −29 27 25 −1 −3 −5 −7 11 −9 15 −13
31 29 −27 −25 21 −23 −17 19 −11 9 −15 13 −1 −3 −5 −7

 .

Partition D2 into D2,1,D2,2,D2,3 and D2,4 with rows 1, 5, 9, 13; 2, 6, 10, 14; 3, 7,

11, 15; and 4, 8, 12, 16, respectively. Then E2 is a 32 × 4 sliced second-order

orthogonal Latin hypercube with slices E2,1, . . . ,E2,4, where E2,p is the foldover

of D2,p, p = 1, . . . , 4.

Example 4. Take the odd and even rows of D2 in Example 3 to form D1,1 and

D1,2, respectively. Let E1,1 be the foldover of D1,1 and E1,2 be the foldover of

D1,2. The combined design E of E1,1 and E1,2 is a 32× 4 sliced second-order or-

thogonal Latin hypercube. Both E1,1 and E1,2 are 16×4 second-order orthogonal

matrices and, when projected onto each column, each of the 16 equally-spaced

intervals [−32,−28), [−28,−24), . . . , [24, 28), [28, 32) contains exactly one point.
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6. Concluding Remarks

Several approaches have been developed for constructing sliced orthogonal

Latin hypercube designs of first-order or second-order. Research in the future

will aim at obtaining such designs using other methods. For example, Li and

Qian (2012) constructs nested (nearly) orthogonal Latin hypercube designs by

exploiting some nested structure in the family of orthogonal Latin hypercube

designs in Steinberg and Lin (2006). Their method can be extended to obtain

sliced orthogonal Latin hypercube designs with different parameter values from

those constructed in this paper.
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Appendix A: Proofs

A.1. Proof of Proposition 1

For i = 1, . . . , v, note that

LT

i Li = (AT

i Ai)⊗ (BTB) + n(CT

i Ai)⊗ (DTB) + n(AT

i Ci)⊗ (BTD)

+n2(CT

i Ci)⊗ (DTD).

The orthogonality of Li follows by condition (i) in Proposition 1 and the or-

thogonality of A1, . . . ,Av, B, C1, . . . ,Cv and D. Let m = n/v. The Latin

hypercube structure of Li, i = 1, . . . , v, means that each column of Hi =

2
⌈
{Li + (nu + 1)}/(2v)

⌉
− (mu + 1) has mu distinct entries, as shown below.

Note that

Hi = 2
⌈Ai ⊗B+ nCi ⊗D+ (n+ 1)− (n+ 1) + (nu+ 1)

2v

⌉
− (mu+ 1)

= 2
⌈Ai ⊗B+ (n+ 1)

2v

⌉
− (m+ 1) +mCi ⊗D.

For an integer k > 0, take Sk = {−(k − 1),−(k − 3), . . . , (k − 3), (k − 1)}. Be-

causeA is a sliced Latin hypercube, the entries in each column ofHi are {j+mk :

j ∈ Sm, k ∈ Su} = {−(mu − 1),−(mu − 3), . . . , (mu − 3), (mu − 1)} = Smu. In
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addition, for i = 1, . . . , v, each column of Li has mean zero because all columns

of either Ai or D have mean zero. Moreover, by Lemma 1 in Lin et al. (2010),

L is a Latin hypercube if both A and D are Latin hypercubes and condition (ii)

in Proposition 1 holds. This completes the proof.

A.2. Proof of Proposition 2

Let {j1, . . . , jv} and {k1, . . . , kv} be arbitrary permutations of {1, . . . , v}, and
let ηjlkl,jj′ be all s22 ordered pairs of {bjl,1j , . . . , bjl,s2j} and {bkl,1j′ , . . . , bkl,s2j′}.
For part (i), decompose Li as [Li1,Li2, . . . ,Lip2 ], for i = 1, . . . , v. Note that

Lij = Qij(If ⊗ V), where any two columns of Qij contain all possible pairs

(αj ,βj) ∈
∪v

l=1 ηjlkl,jj
. Thus, for j = 1, . . . , p2 and j′ = 1, . . . , p2, the (j, j′)th

entry of LT

i Li is

LT

ijLij′ = (If ⊗V)T(QT

ijQij′)(If ⊗V). (A.1)

Now simplify QT

ijQij′ . Express its off-diagonal elements as αj · βj′ , where ·
denotes the dot product and (αj ,βj′) ∈

∪v
l=1 ηjlkl,jj′ . Since each column of Bi

has mean zero, these off-diagonal entries are zero.

Let ρjj′ denote the (j, j′)th entry of ρ(B). All diagonal elements of QT

ijQij′

equal s2
∑v

q=1

∑s2
p=1 bq,pjbq,pj′ . Because the sum of squares of the elements in

every column of B is s1(s
2
1 − 1)/3, these diagonal elements are s2{3−1s1(s

2
1 −

1)}ρjj′ . Thus,

QT

ijQij′ =
s1s2(s

2
1 − 1)

3
ρjj′I2f . (A.2)

Because VTV = (s21 + 1)I2, by (A.1) and (A.2), LT

ijLij′ = s1s2(s
4
1 − 1)ρjj′I2f/3,

which implies that LT

i Li = s1s2(s
4
1−1){ρ(B)⊗I2f}/3. Hence, ρ(Li) = ρ(B)⊗I2f .

For part (ii), the orthogonality of Li follows from part (i). It then suffices to

show that each column of Li has mean zero and Hi = 2
⌈
{Li + (s21 +1)}/(2v)

⌉
−

(s1s2 + 1) is a Latin hypercube. First, since each column of Bi has mean zero,

so does each column of Li. Next, we verify that for i = 1, . . . , v, when Li is

projected onto each column, each of the s1s2 equally-spaced interval [−s21,−s21+

2v), [−s21 + 2v,−s21 + 4v), . . . , [s21 − 4v, s21 − 2v), [s21 − 2v, s21) contains exactly one

point. This basically says that Hi = 2
⌈
{Li + (s21 + 1)}/(2v)

⌉
− (s1s2 + 1) is a

Latin hypercube, which is shown by identifying the entries in each column of

Hi. For i = 1, . . . , v, let ζi be all (j, k) with wjk = i. For k = 1, . . . , f and

j = 1, . . . , p2, express the {2f(j− 1)+2k− 1}th and {2f(j− 1)+2k}th columns

of Li, respectively, as

αk,j + s1βk,j and − s1αk,j + βk,j , (A.3)
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where (αk,j ,βk,j) ∈
∪v

l=1 ηjlkl,jj
and (jl, kl) ∈ ζi. Representing the columns of

Li using (A.3) gives

2
⌈αk,j + s1βk,j + (s21 + 1)

2v

⌉
− (s1s2 + 1)

= 2
⌈αk,j + (s1 + 1)− (s1 + 1) + s1βk,j + (s21 + 1)

2v

⌉
− (s1s2 + 1)

= 2
⌈αk,j + (s1 + 1)

2v

⌉
− (s2 + 1) + s2βk,j . (A.4)

Similarly,

2
⌈−s1αk,j + βk,j + (s21 + 1)

2v

⌉
− (s1s2 + 1)

= 2
⌈βk,j + (s1 + 1)

2v

⌉
− (s2 + 1)− s2αk,j . (A.5)

Because of the sliced property of B, using (A.4) and (A.5) for all (αk,j ,βk,j) of∪v
l=1 ηjlkl,jj

yields {−(s1s2 − 1),−(s1s2 − 3), . . . , (s1s2 − 3), (s1s2 − 1)}, which
indicates Hi is a Latin hypercube.

For k2 = 1, . . . , f , let Uk2 be a matrix formed by stacking U1k2 , . . . ,Up2k2

row by row, containing all possible pairs from {−(s1 − 1),−(s1 − 3), . . . , (s1 −
3), (s1 − 1)} exactly once. Clearly, L is a Latin hypercube. Part (ii) then follows

by the definition of a sliced first-order orthogonal Latin hypercube.

A.3. Proof of Theorem 1

We give three lemmas useful for proving Theorem 1, with Lemma A.2 taken

from Sun, Liu, and Lin (2009). Let J2c be a 2c × 2c matrix of all 1’s. For

i, j, p = 1, . . . , 2c, let sij , tij , lij , and d
(p)
ij be the (i, j)th entries of Sc, Tc, Lc,

and Dc,p, respectively. For p = 1, . . . , 2c, (|tp1|, . . . , |tp2c |) is the pth row of |Tc|.
Let Qc,p be a 2c × 2c matrix with the jth column being the |tpj |th column of

|Tc|, and let Mc,p = (m
(p)
i,j ) be a 2c × 2c matrix with the (i, j)th entry m

(p)
i,j =

|d(p)ij | − 2c+1(|tij | − 1).

Lemma A.1. For an integer c ≥ 1 and p = 1, . . . , 2c, (Mc,p + J2c)/2 = Qc,p.

Proof. Let q
(p)
ij denote the (i, j)th entry of Qc,p. From the construction, for

i, j, p = 1, . . . , 2c, we have that |d(p)ij | = |hp|tij ||, |hij | = |lij | + (j − 1)2c+1, |lij | =
2|tij | − 1 and |tp|tij || = q

(p)
ij . Thus, |d(p)ij | = (2q

(p)
ij − 1) + (|tij | − 1)2c+1, which

implies m
(p)
ij = 2q

(p)
ij − 1. This completes the proof.
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Lemma A.2. For c ≥ 1, we have ST

cSc = 2cI2c, T
T

cTc = 6−12c(2c + 1)(2c+1 +

1)I2c, and ST

cTc +TT

cSc = (22c + 2c)I2c.

Lemma A.3. For an integer c ≥ 1, we have sp|tij |sp|tij′ | = sp|ti′j |sp|ti′j′ | for

i, i′, j, j′, p = 1, . . . , 2c.

Proof. For p = 1 and k = 1, . . . , 2c, all spk are 1 and hence sp|tij |sp|tij′ | = 1 for

i, j, j′ = 1, . . . , 2c. For p = 2, . . . , 2c, let Ip,c = {k : the (p, k)th entry of Sc is −
1}. Consider columns j ̸= j′ of |Tc|. For i = 1, . . . , 2c, take

ai =

{
1, either {|tij | ∈ Ip,c, |tij′ | ̸∈ Ip,c} or {|tij | ̸∈ Ip,c, |tij′ | ∈ Ip,c};

0, either {|tij | ∈ Ip,c, |tij′ | ∈ Ip,c} or {|tij | ̸∈ Ip,c, |tij′ | ̸∈ Ip,c}.
(A.6)

We now verify that the ai satisfy

2c∑
i=1

ai = 2c or 0. (A.7)

Clearly, (A.7) holds for c = 1. Suppose (A.7) holds for c. We show (A.7)

holds for c + 1. Let P1 = {p : 2 ≤ p ≤ 2c+1/4, 2c+13/4 + 1 ≤ p ≤ 2c+1} and

P2 = {p : 2c+1/4 + 1 ≤ p ≤ 2c+13/4}. Let p′ be p if 2 ≤ p ≤ 2c and p − 2c

if 2c + 1 ≤ p ≤ 2c+1. Note that Ip,c+1 = Ip′,c ∪ (Ip′,c + 2c) if p ∈ P1, and

Ip′,c ∪ (Īp′,c + 2c) if p ∈ P2, where Īp′,c = {1, . . . , 2c}\Ip′,c. For any p ∈ P1,

consider columns j ̸= j′ of |Tc+1|. For i = 1, . . . , 2c+1, take

bi =

1, either {|tij | ∈ Ip,c+1, |tij′ | ̸∈ Ip,c+1} or {|tij | ̸∈ Ip,c+1, |tij′ | ∈ Ip,c+1},

0, either {|tij | ∈ Ip,c+1, |tij′ | ∈ Ip,c+1} or {|tij | ̸∈ Ip,c+1, |tij′ | ̸∈ Ip,c+1},
(A.8)

where tij is the (i, j)th entry of Tc+1. Divide j and j′ into four cases: (i)

1 ≤ j < j′ ≤ 2c; (ii) 2c + 1 ≤ j < j′ ≤ 2c+1; (iii) 1 ≤ j ̸= (j′ − 2c) ≤ 2c; (iv)

1 ≤ j = (j′ − 2c) ≤ 2c. For cases (i) - (iii), we have
∑2c+1

i=1 bi = 2
∑2c

i=1 ai. For

case (iv), we have
∑2c+1

i=1 bi = 0. Thus, (A.7) holds for c + 1. For p ∈ P2, the

result also holds for c+ 1 following similar lines.

For p, j, j′ = 1, . . . , 2c,
∑2c

i=1 ai = 2c or 0 in (A.7) yield sp|tij |sp|tij′ | = −1 or

1, respectively. Thus, sp|tij |sp|tij′ | = sp|ti′j |sp|ti′j′ |. This completes the proof.

Proof of Theorem 1. Part (i) follows by Theorem 1(ii) of Sun, Liu, and

Lin (2009). To prove part (ii), we first show that Ec is a 22c+1 × 2c sliced

Latin hypercube with slices Er,1, . . . ,Er,2r . Clearly, Ec is a Latin hypercube.

The Latin hypercube structure of Er,p, p = 1, . . . , 2r means that each column of

Fr,p = 2⌈{Er,p+(22c+1+1)}/(2r+1)⌉− (22c−r+1+1) has 22c−r+1 distinct entries,
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as shown below. Note that Er,p is the foldover ofDr,p and the rows ofDr,p are the

rows (p, 2r+p, . . . , (2c−r−1)2r+p) of Hc. In addition, hkj = lkj+(j−1)2c+1skj ,

where hkj is the (k, j)th entry of Hc. The entries in each column of Fr,p are

2
⌈±hkj + (22c+1 + 1)

2r+1

⌉
− (22c−r+1 + 1), (A.9)

with k = p, 2r + p, . . . , (2c−r − 1)2r + p and j = 1, 2, . . . , 2c. Simplifying{⌈
(±hkj + 22c+1 + 1)

2r+1

⌉
: k = p, 2r + p, . . . , (2c−r − 1)2r + p; j = 1, 2, . . . , 2c

}
to {1, 2, . . . , 22c−r+1}, the entries in (A.9) are {−(22c−r+1−1),−(22c−r+1−3), . . .,

22c−r+1 − 3, 22c−r+1 − 1}, indicating that Er,p is a Latin hypercube of 22c−r+1

levels corresponding to the 22c−r+1 equally-spaced intervals [−22c+1,−22c+1 +

2r+1), [−22c+1 + 2r+1,−22c+1 + 2r+2), . . . , [22c+1 − 2r+2, 22c+1 − 2r+1), [22c+1 −
2r+1, 22c+1).

To show that Er,p is second-order orthogonal for r = 1, . . . , c and p =

1, . . . , 2r, it suffices to verify that Ec,p is second-order orthogonal for p = 1, . . . , 2c.

Since Ec,p is the foldover of Dc,p, any three columns e1, e2, e3 of Ec,p satisfy

(e1 ⊙ e2 ⊙ e3)
T12c+1 = 0, where 12c+1 represents a column of 1’s of length 2c+1

and ⊙ is the Hadamard product. This means the second-order orthogonality of

Ec,p. It now remains to verify that the first-order orthogonality of Ec,p or Dc,p.

For columns j ̸= j′ of Dc,p, we have that

2c∑
i=1

d
(p)
ij d

(p)
ij′ =

2c∑
i=1

sign(d
(p)
ij )|d(p)ij |sign(d(p)ij′ )|d

(p)
ij′ |. (A.10)

Since sign(d
(p)
ij ) = sijsp|tij | and |d(p)ij | = m

(p)
ij + 2c+1(|tij | − 1), (A.10) is

2c∑
i=1

sijsp|tij |sij′sp|tij′ |

[
2c+1(|tij | − 1) +m

(p)
ij

] [
2c+1(|tij′ | − 1) +m

(p)
ij′

]
,

which, by Lemmas A.2 and A.3, can be expressed as

±
2c∑
i=1

sijsij′
[
m

(p)
ij m

(p)
ij′ + 2c+1(m

(p)
ij |tij′ |+m

(p)
ij′ |tij |)− 2c+1(m

(p)
ij′ +m

(p)
ij′ )

]
.

(A.11)

By Lemma A.3, sijsij′ = si|tij |si|tij′ |. This, together with Lemma A.1, shows that

(A.11) is 0, which completes the proof.
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Appendix B: L1 and L2 in Example 2
L1

−27 21 −27 21 45 −35 45 −35 63 −49 63 −49 9 −7 9 −7

−31 53 59 −17 39 13 3 41 53 31 17 59 13 −39 −41 3

−21 −27 −49 −63 35 45 −7 −9 49 63 −21 −27 7 9 35 45

−17 −59 17 59 41 −3 −41 3 59 −17 −59 17 3 41 −3 −41

−63 49 −63 49 −9 7 −9 7 −27 21 −27 21 45 −35 45 −35

−59 17 31 −53 −3 −41 −39 −13 −17 −59 −53 −31 41 −3 −13 39

−49 −63 −21 −27 −7 −9 35 45 −21 −27 49 63 35 45 7 9

−53 −31 53 31 −13 39 13 −39 −31 53 31 −53 39 13 −39 −13

27 −21 27 −21 −45 35 −45 35 −63 49 −63 49 −9 7 −9 7

31 −53 −59 17 −39 −13 −3 −41 −53 −31 −17 −59 −13 39 41 −3

21 27 49 63 −35 −45 7 9 −49 −63 21 27 −7 −9 −35 −45

17 59 −17 −59 −41 3 41 −3 −59 17 59 −17 −3 −41 3 41

63 −49 63 −49 9 −7 9 −7 27 −21 27 −21 −45 35 −45 35

59 −17 −31 53 3 41 39 13 17 59 53 31 −41 3 13 −39

49 63 21 27 7 9 −35 −45 21 27 −49 −63 −35 −45 −7 −9

53 31 −53 −31 13 −39 −13 39 31 −53 −31 53 −39 −13 39 13

−39 −13 −39 −13 −31 53 −31 53 13 −39 13 −39 −53 −31 −53 −31

−35 −45 7 9 −21 −27 −49 −63 7 9 35 45 −49 −63 21 27

−41 3 −13 39 −17 −59 53 31 3 41 −39 −13 −59 17 −31 53

−45 35 45 −35 −27 21 27 −21 9 −7 −9 7 −63 49 63 −49

−3 −41 −3 −41 59 −17 59 −17 −41 3 −41 3 −17 −59 −17 −59

−7 −9 35 45 49 63 21 27 −35 −45 −7 −9 −21 −27 49 63

−13 39 −41 3 53 31 −17 −59 −39 −13 3 41 −31 53 −59 17

−9 7 9 −7 63 −49 −63 49 −45 35 45 −35 −27 21 27 −21

39 13 39 13 31 −53 31 −53 −13 39 −13 39 53 31 53 31

35 45 −7 −9 21 27 49 63 −7 −9 −35 −45 49 63 −21 −27

41 −3 13 −39 17 59 −53 −31 −3 −41 39 13 59 −17 31 −53

45 −35 −45 35 27 −21 −27 21 −9 7 9 −7 63 −49 −63 49

3 41 3 41 −59 17 −59 17 41 −3 41 −3 17 59 17 59

7 9 −35 −45 −49 −63 −21 −27 35 45 7 9 21 27 −49 −63

13 −39 41 −3 −53 −31 17 59 39 13 −3 −41 31 −53 59 −17

9 −7 −9 7 −63 49 63 −49 45 −35 −45 35 27 −21 −27 21

L2

51 47 51 47 5 25 5 25 25 −5 25 −5 −47 51 −47 51

55 15 −19 −43 15 −55 43 −19 19 43 55 15 −43 19 15 −55

61 −33 25 −5 11 −23 −47 51 23 11 −51 −47 −33 −61 −5 −25

57 −1 −57 1 1 57 −1 −57 29 −37 −29 37 −37 −29 37 29

23 11 23 11 −33 −61 −33 −61 −61 33 −61 33 −11 23 −11 23

19 43 −55 −15 −43 19 −15 55 −55 −15 −19 −43 −15 55 43 −19

25 −5 61 −33 −47 51 11 −23 −51 −47 23 11 −5 −25 −33 −61

29 −37 −29 37 −37 −29 37 29 −57 1 57 −1 −1 −57 1 57

−51 −47 −51 −47 −5 −25 −5 −25 −25 5 −25 5 47 −51 47 −51

−55 −15 19 43 −15 55 −43 19 −19 −43 −55 −15 43 −19 −15 55

−61 33 −25 5 −11 23 47 −51 −23 −11 51 47 33 61 5 25

−57 1 57 −1 −1 −57 1 57 −29 37 29 −37 37 29 −37 −29

−23 −11 −23 −11 33 61 33 61 61 −33 61 −33 11 −23 11 −23

−19 −43 55 15 43 −19 15 −55 55 15 19 43 15 −55 −43 19

−25 5 −61 33 47 −51 −11 23 51 47 −23 −11 5 25 33 61

−29 37 29 −37 37 29 −37 −29 57 −1 −57 1 1 57 −1 −57

15 −55 15 −55 −55 −15 −55 −15 43 −19 43 −19 19 43 19 43

11 −23 −47 51 −61 33 −25 5 33 61 5 25 23 11 −51 −47

1 57 37 29 −57 1 29 −37 37 29 −1 −57 29 −37 57 −1

5 25 −5 −25 −51 −47 51 47 47 −51 −47 51 25 −5 −25 5

43 −19 43 −19 19 43 19 43 −15 55 −15 55 55 15 55 15

47 −51 −11 23 25 −5 61 −33 −5 −25 −33 −61 51 47 −23 −11

37 29 1 57 29 −37 −57 1 −1 −57 37 29 57 −1 29 −37

33 61 −33 −61 23 11 −23 −11 −11 23 11 −23 61 −33 −61 33

−15 55 −15 55 55 15 55 15 −43 19 −43 19 −19 −43 −19 −43

−11 23 47 −51 61 −33 25 −5 −33 −61 −5 −25 −23 −11 51 47

−1 −57 −37 −29 57 −1 −29 37 −37 −29 1 57 −29 37 −57 1

−5 −25 5 25 51 47 −51 −47 −47 51 47 −51 −25 5 25 −5

−43 19 −43 19 −19 −43 −19 −43 15 −55 15 −55 −55 −15 −55 −15

−47 51 11 −23 −25 5 −61 33 5 25 33 61 −51 −47 23 11

−37 −29 −1 −57 −29 37 57 −1 1 57 −37 −29 −57 1 −29 37

−33 −61 33 61 −23 −11 23 11 11 −23 −11 23 −61 33 61 −33
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